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Abstract 
 
Criterion for proper actions has been established for a homogeneous space of reductive type 
by Kobayashi (Math. Ann. 1989, 1996). On the other hand, an analogous criterion to 
Kobayashi’s equivalent conditions was proposed by Lipsman (1995) for a nilpotent Lie 
group 𝐺𝐺. Lipsman's Conjecture: Let 𝐺𝐺 be a simply connected nilpotent Lie group. Then the 
following two conditions on connected subgroups 𝐻𝐻 and 𝐿𝐿 are equivalent: (i) the action of 𝐿𝐿 
on 𝐺𝐺/𝐻𝐻 is proper; (ii) 𝐿𝐿⋂𝑔𝑔𝐻𝐻𝑔𝑔−1 is compact for any 𝑔𝑔 ∊  𝐺𝐺. The condition (i) is important 
in the study of discontinuous groups for the homogeneous space 𝐺𝐺/𝐻𝐻, while the second 
condition (ii) can easily be checked. The implication (i)  (ii) is obvious, and the opposite 
implication (ii)  (i) was known only in some lower dimensional cases. In this paper we 
prove the equivalence (i) ⇔ (ii) for certain affine nilpotent Lie groups 𝐺𝐺. 
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1.  Introduction 

 
Let 𝐺𝐺 be a Lie group, 𝐻𝐻 a closed subgroup and 𝛤𝛤 a torsionless discrete subgroup of 𝐺𝐺. If 
𝐻𝐻 is compact, then the double coset space 𝛤𝛤\𝐺𝐺/𝐻𝐻 is always Hausdorff in the quotient 
topology, and equips with a naturally manifold structure such that the map 
 

𝐺𝐺/𝐻𝐻 → 𝛤𝛤\𝐺𝐺/𝐻𝐻 
 

is a local diffeomorphism. Such a double coset manifold is called a Clifford-Klein form of 
the homogeneous manifold  𝐺𝐺/𝐻𝐻. A typical example is a closed Riemann surface 𝑀𝑀𝑔𝑔  with 
genus  𝑔𝑔 ≥ 2, which is a Clifford-Klein form of the Poincaré disk 𝑃𝑃𝑃𝑃𝐿𝐿(2 ;ℝ)/ 𝑃𝑃𝑆𝑆(2) as a 
special case of the uniformization theorem due to Klein-Koebe-Poincaré. 

On the other hand, if  𝐻𝐻 is non-compact then the left action of  𝛤𝛤 on the homogeneous 
manifold 𝐺𝐺/𝐻𝐻 is not always properly discontinuous and the double coset space 𝛤𝛤\𝐺𝐺/𝐻𝐻 is 
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not always Hausdorff. A notorious phenomenon, so called “the Calabi-Markus 
phenomenon" shows that some homogeneous space 𝐺𝐺/𝐻𝐻  admits no infinite discrete 
subgroup 𝛤𝛤  such that 𝛤𝛤  acts properly discontinuously on 𝐺𝐺/𝐻𝐻 . Loosely speaking, this 
phenomenon indicates that the fundamental group of a manifold 𝑀𝑀 might be not very 
complicated if 𝑀𝑀 is locally isomorphic to such a homogeneous manifold 𝐺𝐺/𝐻𝐻. The first 
example for the Calabi-Markus phenomenon was found by Calabi and Markus in 1962 [3] 
for (𝐺𝐺,𝐻𝐻)  =  (𝑆𝑆(𝑛𝑛, 1),𝑆𝑆(𝑛𝑛 − 1,1)), and generalized by Wolf [22] and Kulkarni [15] for 
(𝐺𝐺,𝐻𝐻) =  (𝑆𝑆(𝑝𝑝, 𝑞𝑞),𝑆𝑆(𝑝𝑝;  𝑞𝑞 −  1)) from 1960s to the early 1980s, and then completely 
settled by Kobayashi [7] in 1989 for reductive Lie groups (𝐺𝐺,𝐻𝐻) in terms of real rank 
conditions. The key lemma of Kobayashi's paper [7] is to establish the criterion of proper 
actions of continuous subgroups. Here the notion of proper action was proposed by Palais 
[19] in 1961to single out a nice category of actions of non-compact groups. 

In another language, if 𝐺𝐺 is algebraic, one can replace 𝛤𝛤  by its Zariski- closure 𝐿𝐿 =  𝛤𝛤� 
and can consider analogous setting concerning 𝐿𝐿. In a basic paper [8], Kobayashi has done 
exactly that and he has discovered strong results about Clifford-Klein forms of 
homogeneous spaces  𝑋𝑋 = 𝐺𝐺/𝐻𝐻 . He then initiates an intense investigation of this. He 
begins by noting the standard criteria for 𝛤𝛤\𝑋𝑋 to be a manifold namely if and only if 𝛤𝛤 
acts both properly discontinuously and freely on  𝑋𝑋. He then develops continuous analogs 
of these properties for 𝐿𝐿 −one of them well-known, another less so. We note that the 
action of  𝐿𝐿 on 𝑋𝑋 is properly discontinuous if and only if the action of  𝐿𝐿 on 𝑋𝑋 is proper 
and 𝐿𝐿  is discrete, because a discrete and compact set is finite. We will state these 
properties in the next section. 

Since Kobayashi's paper [7] in 1989, there have been extensive studies of Clifford-
Klein forms of homogeneous spaces 𝐺𝐺/𝐻𝐻 for a reductive Lie group 𝐺𝐺 by various methods 
(see surveys [10,11] and references therein). On the other hand, much has not been 
studied in the case where 𝐺𝐺 is a nilpotent Lie group, which is supposed to be an opposite 
extremal case of reductive groups. Lipsman, inspired by the reductive results in ref. [8], 
proposed the following conjecture for nilpotent groups: 
 
Conjecture 1.1 (Conjecture 4.1(b) of ref. [16]).  Let 𝐺𝐺 be a simply connected nilpotent 
Lie group, and 𝐻𝐻, 𝐿𝐿 be connected subgroups of 𝐺𝐺 . Then 𝐿𝐿 acts properly on 𝐺𝐺/𝐻𝐻 if and 
only if the triplet (𝐺𝐺,𝐻𝐻, 𝐿𝐿) has the (CI)  property.   

Here we say the triplet (𝐺𝐺, 𝐻𝐻, 𝐿𝐿) has the (CI)  property if 𝐿𝐿⋂𝑔𝑔𝐻𝐻𝑔𝑔−1 = {𝑒𝑒} for any 
𝑔𝑔 ∊  𝐺𝐺. 

This conjecture is built on the simplest case where 𝐺𝐺 is the group of unipotent upper 
triangular real matrices of order  𝑛𝑛 =  3 (Kobayashi [8] '92), and is proved also for n = 4 
(Lipsman [16] '95) and remains open for 𝑛𝑛 ≥ 5. In the case 𝑛𝑛 = 4 the most difficult case 
in [16] was the case where  dim 𝐿𝐿 = dim 𝐺𝐺/𝐻𝐻 − 1 , where there is a large room for 
deformation of L with deformation being parameterized by  2× 2 matrices. 

The present paper generalizes this specific case to higher dimension. The formulation 
is roughly as follows: 

G = upper triangular matrices of order 𝑛𝑛 =  𝑘𝑘 +  2, 
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H = the isotropy group in G of the coordinate vector (0, … , 0, 1) ∈ ℝ𝑘𝑘  + 2.  
𝐿𝐿 ≡ 𝐿𝐿(𝐴𝐴)  =  𝑘𝑘-dimensional abelian subgroup of 𝐺𝐺, 

with deformation parameter 𝐴𝐴 ∈  𝑀𝑀(𝑘𝑘,ℝ). 
As 𝐺𝐺/𝐻𝐻 ≅  ℝ𝑘𝑘+1, our object of study is a proper action of the abelian group ℝ𝑘𝑘  on 

ℝ𝑘𝑘+1 . Then we shall obtain an explicit criterion on the deformation parameter 𝐴𝐴 ∈
 𝑀𝑀(𝑘𝑘,ℝ) such that the action of 𝐿𝐿(𝐴𝐴) on 𝐺𝐺/𝐻𝐻  is proper. The main result is roughly as 
follows: 
 
Theorem 1.2 (see Theorem 4.1 for precise statement) 
 
The following three conditions on 𝐴𝐴 ∈ 𝑀𝑀(𝑘𝑘,ℝ) are equivalent: 
 

(i) the group 𝐿𝐿(𝐴𝐴) acts on 𝐺𝐺/𝐻𝐻 properly 
(ii) the triplet (𝐺𝐺,𝐻𝐻, 𝐿𝐿(𝐴𝐴)) has the (CI) property 
(iii) any eigenvalue of A is contained in {𝑍𝑍 ∈ ℂ: Im 𝑧𝑧 ≠ 0} ∪ {0}. 
 

In particular, this result supports the conjecture of Lipsman in this special setting. 
Most part of this paper is devoted to the proof of Theorem 1.2 after making a precise 
formulation. 

The author [17] showed earlier that the conjecture holds when 𝐺𝐺 is two-step nilpotent. 
Yoshino [24] and Baklouti and Khlif [2] independently proved that it is also the case 
when 𝐺𝐺 is three-step nilpotent. On the other hand, Yoshino [23] gave a counterexample to 
this conjecture when 𝐺𝐺 is four-step nilpotent. 

This paper is an outcome of the master thesis at the University of Tokyo of the 
auther.  In the meantime, the subject has been rapidly developing. For the convenience to 
the reader we refer the following very recent papers (see also the references therein), 
where Baklouti--Khlif [1] treats deformation for discontinuous group for nilpotent groups, 
Kobayashi [14] for his general program in this area as the pioneer of the field, Okuda [18] 
for the classification of proper actions of surface groups and SL(2,ℝ) on semisimple 
symmetric spaces, and Kassel--Kobayashi [6] for a new spectral theory of the 
ultrahyperbolic Laplacian under the deformation of discontinuous groups. 
 
2.  Preliminary Results 
 
In this section we shall recall the basic properties of the action of a Lie group 𝐿𝐿 on 𝐺𝐺/𝐻𝐻 
or, of the action of a discrete subgroup 𝛤𝛤 on 𝐺𝐺/𝐻𝐻 . Basic references for this section are [8, 
10, 11]. 
 
2.1.  Proper actions  as a continuous analogue of properly discontinuous actions  
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In general, the study of the action of a discrete group is quite difficult. The approach taken 
in [4] is to approximate the action of discrete groups by that of connected Lie groups. For 
this purpose, it is crucial to find a continuous analogue of a properly discontinuous action: 
 
Definition  2.1. (see [19]) Suppose that a locally compact topological group 𝐿𝐿 acts 
continuously on a locally compact topological space 𝑋𝑋. For a subset S of 𝑋𝑋, we define a 
subset of 𝐿𝐿 by {𝐿𝐿𝑃𝑃 = 𝛾𝛾 ∈ 𝐿𝐿: 𝛾𝛾𝑃𝑃 ∩ 𝑠𝑠 ≠ ∅}. 

The action of 𝐿𝐿  on 𝑋𝑋 is said to be proper if and only if 𝐿𝐿𝑃𝑃  is compact for every 
compact subset 𝑃𝑃 of X. 

Recall that the action of 𝐿𝐿 on 𝑋𝑋 is properly discontinuous if and only if the action of 𝐿𝐿 
on 𝑋𝑋 is proper and 𝐿𝐿 is discrete, because a discrete and compact set is finite. 
 
2.2. An observation 
 
The following elementary observation is a bridge between the action of a discrete group 
and that of a connected group. 
 
Observation  2.2. ([2], Lemma 2.3) Suppose a Lie group 𝐿𝐿 acts on a locally compact 
space X. Let 𝛤𝛤  be a co-compact discrete subgroup of 𝐿𝐿. Then 
 

(1) The 𝐿𝐿 − action on 𝑋𝑋  is proper if and only if the 𝛤𝛤  action is properly 
discontinuous. 

(2) 𝐿𝐿\𝑋𝑋 is compact if and only if 𝛤𝛤\𝑋𝑋 is compact. 
 
2.3. Problems in a continuous analogue 
 
In view of observation 2.2, Kobayashi [7] posed the following analogous problems in a 
continuous setting. 
 
Problem 2.3. ([8]) Let 𝐺𝐺 be a Lie group and 𝐻𝐻 and 𝐿𝐿 be closed subgroups. 

(1) Find the criterion on the triplet (𝐿𝐿,𝐺𝐺,𝐻𝐻) such that the action of L on 𝐺𝐺/𝐻𝐻  is 
proper. 

(2) Find the criterion on the triplet (𝐿𝐿,𝐺𝐺,𝐻𝐻) such that the double coset 𝐿𝐿\𝐺𝐺/𝐻𝐻  is 
compact in the quotient topology. 

There is a complete answer to problem 2.3 in terms of Lie algebras in [11] in the 
following cases: 

(i) Problem 2.3(1) when 𝐺𝐺 is reductive (see [10]; [11], Section 2) 
(ii) Problem 2.3(2) when the groups 𝐺𝐺,𝐻𝐻, 𝐿𝐿 are real reductive (see [7];[11], Section 

5) 
Inspired by [8] Lipsman has discussed Problem 2.3 in the case where 𝐺𝐺 is a simply 

connected nilpotent Lie group. This case is considered as an opposite extremal to the 
semisimple case. We will give an answer to Problem 2.3(1) in a special case where 𝐺𝐺 is a 
simply connected nilpotent Lie group. 
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Now we introduce some notations that are useful for a further study of problem  
2.3(1). 

 
2.4. Property (CI) 
 
If a discrete group 𝛤𝛤 acts on 𝑋𝑋 properly discontinuously, then every isotropy subgroup is 
finite and every 𝛤𝛤 orbit is closed ([11], Lemma 2.3). The latter condition corresponds to 
the fact that each point is closed in the quotient topology of 𝛤𝛤\𝑋𝑋. In general, the converse 
implication does not hold (see [11], Example 2.8 for a counter example). 

Kobayashi has singled out an intermediate property in a continuous setting. In fact, let 
𝐻𝐻, 𝐿𝐿 be closed subgroups of a locally compact topological group 𝐺𝐺 . If 𝐿𝐿 acts properly 
on 𝐺𝐺/𝐻𝐻, then any 𝐿𝐿 –orbit 𝐿𝐿𝑔𝑔𝐻𝐻 ≅  𝐿𝐿/𝐿𝐿 ∩  𝑔𝑔𝐻𝐻𝑔𝑔−1 ⊂  𝐺𝐺/𝐻𝐻 is a closed subset, and each 
isotropy subgroup 𝐿𝐿 ∩  𝑔𝑔𝐻𝐻𝑔𝑔−1 is compact. In general, this condition is not sufficient for 
the properness of the 𝐿𝐿 −action (see [11], Example 2.9 for a counter example). However, 
we pick up the second condition because of its simplicity: 
 
Definition 2.4. ([8,11]) Suppose that 𝐻𝐻 and 𝐿𝐿 are subsets of a locally compact topological 
group 𝐺𝐺. We say that the pair (𝐿𝐿;𝐻𝐻) has the property (𝐶𝐶𝐶𝐶) in 𝐺𝐺 if and only if 𝐿𝐿 ∩ 𝑔𝑔𝐻𝐻𝑔𝑔−1 
is compact for any 𝑔𝑔 ∈  𝐺𝐺. Here (𝐶𝐶𝐶𝐶) stands for that action of 𝐿𝐿 has a compact isotropy 
subgroup 𝐿𝐿 ∩  𝑔𝑔𝐻𝐻𝑔𝑔−1  at each point 𝑔𝑔𝐻𝐻 ∈ 𝐺𝐺/𝐻𝐻 , or stands for that 𝐿𝐿 and 𝑔𝑔𝐻𝐻𝑔𝑔−1  has a 
compact intersection (𝑔𝑔 ∈ 𝐺𝐺) (see also [16]). 
 
3.  Conjecture of Lipsman 
 
Now we turn our attention to proper actions for nilpotent homogeneous spaces. Inspired 
by the results in reductive cases proved by Kobayashi [7,8], Lipsman proposed a 
conjecture for nilpotent groups: 
 
Conjecture 𝟑𝟑.𝟏𝟏. [16] Conjecture 4.1(𝑎𝑎)) Suppose =  𝑁𝑁 ⋉ 𝑉𝑉 , where 𝑁𝑁 = 𝑁𝑁𝑘𝑘+1(ℝ), the 
group of (𝑘𝑘 + 1) × (𝑘𝑘 + 1) upper triangular matrices and 𝑉𝑉 = ℝ𝑘𝑘+1. Then any connected 
Lie subgroup 𝐿𝐿 of 𝐺𝐺 which acts on 𝐺𝐺/𝑁𝑁 with the 𝐶𝐶𝐶𝐶 property, acts properly. 

We note that in this case 𝒈𝒈 =  Lie(𝐺𝐺) is nilpotent and the following general lemma 
simplies the (CI) property in the nilpotent situation. 

Here, we remark that, 𝐺𝐺 is isomorphic to, 𝑁𝑁′ = 𝑁𝑁𝑘𝑘+2(ℝ) 
 
Lemma 3.2. Let 𝐺𝐺 be a connected, simply connected nilpotent group and let 𝐿𝐿 and 𝑁𝑁 be 
connected subgroups of 𝐺𝐺.Then the following three conditions are equivalent: 

(i) (𝐺𝐺, 𝐿𝐿,𝑁𝑁) satisfies the (CI) property. 
(ii) 𝐿𝐿 ∩ 𝑔𝑔𝑁𝑁𝑔𝑔−1 = {𝑒𝑒}   for any 𝑔𝑔 ∈ 𝐺𝐺 
(iii) 𝒍𝒍 ∩ 𝐴𝐴𝐴𝐴 𝑔𝑔(𝒏𝒏) = {0} for any 𝑔𝑔 ∈  𝐺𝐺, 𝒏𝒏 = Lie(𝑁𝑁). 

Before proving Lemma 3.2, we recall some basic results on nilpotent groups: 
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Fact 𝟑𝟑.𝟑𝟑. ([4],  see also [5],  Theorem 𝑋𝑋𝐶𝐶𝐶𝐶. 2.2, 𝑝𝑝. 137).  Every connected subgroup of a 
simply connected, solvable Lie group 𝐺𝐺 is closed and simply connected. 
Fact 𝟑𝟑.𝟒𝟒. ([5], Theorem 2.3). A compact subgroup of a simply connected, solvable Lie 
group is trivial. 
 
Fact 3.5. ([20], Lemma 2.4, 𝑝𝑝. 31). If 𝑈𝑈1 and 𝑈𝑈2 are connected subgroups of a simply 
connected, nilpotent Lie group 𝐺𝐺, then the intersection 𝑈𝑈1 ∩ 𝑈𝑈2 is also connected. 

 
Proof of Lemma 3.2: 
 
𝑖𝑖)  

 
⇒  𝑖𝑖𝑖𝑖):   Suppose (𝐺𝐺, 𝐿𝐿,𝑁𝑁) has the (CI) property. Then 𝐿𝐿 ∩ 𝑔𝑔𝑁𝑁𝑔𝑔−1 is compact for 

any 𝑔𝑔 ∈ 𝐺𝐺. 
Then 𝐿𝐿 ∩  𝑔𝑔𝑁𝑁𝑔𝑔−1  = {𝑒𝑒} by Fact 3.4. 
 

𝑖𝑖𝑖𝑖) 
 
⇒  𝑖𝑖𝑖𝑖𝑖𝑖) :   Obvious. 

 

𝑖𝑖𝑖𝑖𝑖𝑖) 
 
⇒  𝑖𝑖𝑖𝑖) :   It follows from Fact 3.5 that 𝐿𝐿 ∩  𝑔𝑔𝑁𝑁𝑔𝑔−1  is connected. Therefore 𝐿𝐿 ∩

 𝑔𝑔𝑁𝑁𝑔𝑔−1  = {𝑒𝑒} if its Lie Algebra 𝒍𝒍 ∩ 𝐴𝐴𝐴𝐴𝑔𝑔(𝒏𝒏) = {0} 
 

𝑖𝑖𝑖𝑖) 
 
⇒  𝑖𝑖):      Obvious from the defininition of the (CI) property. 

 
4.  Statement of the Main Theorem 
 
Here, we are ready to state our main result of this paper. 
 

Theorem 𝟒𝟒.𝟏𝟏. For 𝐴𝐴 ∈  𝑀𝑀(𝑘𝑘;ℝ), we define an abelian Lie subalgebra 𝒍𝒍(𝐴𝐴) of 𝑔𝑔 by 

                             

  𝒍𝒍(𝐴𝐴) = ��
0 𝐴𝐴𝐴𝐴 𝐴𝐴
0 0 0
0 0 0

�  │𝐴𝐴 ∈ ℝ𝑘𝑘�                                                                    (4.1) 

 

We denote by 𝐿𝐿(𝐴𝐴) the connected Lie group with Lie algebra 𝒍𝒍(𝐴𝐴). Then the following 
three conditions are equivalent: 

 
(i) 𝐿𝐿(𝐴𝐴) acts properly on 𝐺𝐺/𝑁𝑁  
(ii) 𝐿𝐿(𝐴𝐴) acts on 𝐺𝐺/𝑁𝑁 with the 𝐶𝐶𝐶𝐶 property. 
(iii) Any eigenvalue of the matrix 𝐴𝐴 lies in ℂ\ℝ× 
 
We put, 
 

𝕍𝕍: = {𝐴𝐴 ∈ 𝑀𝑀(k,ℝ): 𝐿𝐿(𝐴𝐴) acts properly on 𝐺𝐺/𝑁𝑁}. 

Corollary 4.2 If 𝑘𝑘 is odd, the 𝕍𝕍 does not contain a non-empty open set of 𝑀𝑀(𝑘𝑘;ℝ). 

Proof.  We recall that the characteristic polynomial 𝑓𝑓𝐴𝐴(𝜆𝜆) = det(λI − A) is a polynomial 
of degree 𝑘𝑘 with real coefficient. If 𝑘𝑘 is odd then we have  
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                           lim𝜆𝜆→−∞ 𝑓𝑓𝐴𝐴(𝜆𝜆) =  −∞,     lim𝜆𝜆→+∞ 𝑓𝑓𝐴𝐴(𝜆𝜆) =  ∞.   

Hence there is at least one real eigenvalue of 𝐴𝐴 . Therefore, the condition (iii) is 
satisfied only if  is the eigenvalue of 𝐴𝐴, i.e. det𝐴𝐴 = 0.  

Since eigenvalues of matrices vary continuously when we purturb the matrices, the 
variety {𝐴𝐴 ∈ 𝑀𝑀(𝑘𝑘,ℝ): det𝐴𝐴 = 0} does not contain a non-empty open subset of 𝑀𝑀(𝑘𝑘,ℝ).  

Thus we have proved the corollary. 

Corollary 4.3. If 𝑘𝑘 is even, then 𝕍𝕍 contains a non-empty open set of 𝑀𝑀(𝑘𝑘;ℝ).  

Proof.   Take 𝐴𝐴 ∈ 𝑀𝑀(𝑘𝑘,ℝ) to be 𝐴𝐴 = �
0 −𝐶𝐶𝑘𝑘

2
𝐶𝐶𝑘𝑘

2
0 �. Then the eigenvalues of 𝐴𝐴 = ±𝑖𝑖. Since 

the eigenvalues of 𝐴𝐴 vary continuously when we purturb 𝐴𝐴, there exists an open subset 𝑈𝑈 
of 𝐴𝐴 in 𝑀𝑀(𝑘𝑘;ℝ) such that the eigenvalues of 𝐵𝐵 are contained in the open set ℂ ∖ ℝ for any 
𝐵𝐵 ∈ 𝑈𝑈.  

Thus Corollary 4.3 is proved.  

Remark 4.4. If 𝑘𝑘 = 2, then the matrix �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝐴𝐴� has no real eigenvalue if and only if   

𝜆𝜆2 − (𝑎𝑎 + 𝐴𝐴)𝜆𝜆 + (𝑎𝑎𝐴𝐴 − 𝑏𝑏𝑐𝑐) > 0 for any 𝜆𝜆 ∈ ℝ, 

That is, the discriminant 

(𝑎𝑎 + 𝐴𝐴)2 − 4(𝑎𝑎𝐴𝐴 − 𝑏𝑏𝑐𝑐) < 0, 
 
namely,    (𝑎𝑎 − 𝐴𝐴)2 + 4𝑏𝑏𝑐𝑐 < 0. 

 
Now, let 
 

 𝕍𝕍0: = {𝐴𝐴 ∈ 𝑀𝑀2(ℝ): 𝐴𝐴 has only 0 real eigenvalue} 
 

 𝕍𝕍1: = {𝐴𝐴 ∈ 𝑀𝑀2(ℝ): 𝐴𝐴 has no real eigenvalue} 
 

That is, 𝕍𝕍0,𝕍𝕍1  can be defined as, 
 
 𝕍𝕍0 = ��𝑎𝑎 𝑏𝑏

𝑐𝑐 𝐴𝐴� : (𝑎𝑎 − 𝐴𝐴)2 + 4𝑏𝑏𝑐𝑐 < 0� 
 
 𝕍𝕍1 = ��𝑎𝑎 𝑏𝑏

𝑐𝑐 𝐴𝐴� : (𝑎𝑎 + 𝐴𝐴) = 0 and 𝑎𝑎𝐴𝐴 − 𝑏𝑏𝑐𝑐 = 0  � 

Therefore, we can take 𝕍𝕍 in Corollary 4.3 such as 𝕍𝕍 =  𝕍𝕍0  ∪ 𝕍𝕍1. 
This case (𝑘𝑘 = 2) was previously obtained by Lipsman (see [16], (4.5)). 
Now we need a (slight) generalization of Lemma 4. 2 [16] (𝑘𝑘 = 2 case) to a higher 

dimensional case. 

Lemma 4.5. We denote the variety in 𝒈𝒈 by, 
 

𝔙𝔙 = �Ad u(𝒏𝒏)
u∈V
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Then we have, 
 

𝔙𝔙 = {𝑊𝑊 − [𝑊𝑊,𝑋𝑋]:𝑊𝑊ϵ𝒏𝒏,𝑋𝑋ϵv} 
    = �∑ �𝑐𝑐𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖𝑖𝑖 � − �𝑐𝑐12𝑦𝑦2 + 𝑐𝑐13𝑦𝑦3 + ∙∙∙ +𝑐𝑐1,𝑘𝑘+1𝑦𝑦𝑘𝑘+1�𝐸𝐸1,𝑘𝑘+2 − �𝑐𝑐23𝑦𝑦3 +∙∙∙1≤𝑖𝑖<𝑖𝑖≤𝑘𝑘+1

    +𝑐𝑐2,𝑘𝑘+1𝑦𝑦𝑘𝑘+1)𝐸𝐸2,𝑘𝑘+2 −∙∙∙ −�𝑐𝑐𝑘𝑘 ,𝑘𝑘+1𝑦𝑦𝑘𝑘+1�𝐸𝐸𝑘𝑘 ,𝑘𝑘+2: 𝑐𝑐𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖   ∈  ℝ�  
 
Proof.  If 𝑢𝑢 =  𝑒𝑒𝑋𝑋 ∈ 𝑉𝑉 (𝑋𝑋 ∈ 𝒗𝒗)  and 𝑊𝑊 ∈  𝒏𝒏 = 𝐿𝐿𝑖𝑖𝑒𝑒(𝑁𝑁), then we have 
 

Ad(𝑢𝑢)𝑊𝑊 =  Ad(𝑒𝑒𝑋𝑋)𝑊𝑊 = 𝑒𝑒 ad  𝑋𝑋𝑊𝑊 

( )         =  𝑊𝑊 +  [𝑋𝑋,𝑊𝑊] +  1
2

 �𝑋𝑋, [𝑋𝑋,𝑊𝑊]� +∙∙∙  
 
Because 
 
[𝑋𝑋,𝑊𝑊]  ∈  [𝒗𝒗,𝒏𝒏]   ⊂ 𝒗𝒗 and   [X, [𝑋𝑋,𝑊𝑊]]  ∈  [𝒗𝒗,𝒗𝒗]  = {0}, we have (from ( )) 
 𝑊𝑊 +  [𝑋𝑋,𝑊𝑊] +  1

2
 �𝑋𝑋, [𝑋𝑋,𝑊𝑊]� +∙∙∙   

         = W + [X, W] = W − [W, X]. 
 

Hence the first equality is proved. Now if we write 
 
𝑊𝑊 = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖𝑖𝑖  ∈  𝒏𝒏1≤𝑖𝑖<𝑖𝑖≤𝑘𝑘+1   and    𝑋𝑋 = ∑ 𝑦𝑦𝑙𝑙𝐸𝐸𝑙𝑙 ,𝑘𝑘+2 ∈ 𝒗𝒗𝑘𝑘+1

𝑖𝑖=1 ,  then, 
 
[𝑊𝑊,𝑋𝑋] = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖 𝑦𝑦𝑙𝑙[𝐸𝐸𝑖𝑖𝑖𝑖 ,𝐸𝐸𝑙𝑙 ,𝑘𝑘+2]𝑖𝑖 ,𝑖𝑖 ,𝑙𝑙  = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖 𝐸𝐸𝑖𝑖 ,𝑘𝑘+21≤𝑖𝑖<𝑖𝑖≤𝑘𝑘+1  
 
This is because, 
 

�𝐸𝐸𝑖𝑖𝑖𝑖 ,𝐸𝐸𝑙𝑙 ,𝑘𝑘+2� = �
0                  if  𝑖𝑖 ≠ 𝑙𝑙
𝐸𝐸𝑖𝑖 ,𝑘𝑘+2            if 𝑖𝑖 = 𝑙𝑙,

� 

 
where   1 ≤ 𝑖𝑖 < 𝑖𝑖 ≤ 𝑘𝑘 +1. 

 
Thus the second equality is also proved 

Proposition 4.6. SupposeL(𝐴𝐴) acts on 𝐺𝐺/𝑁𝑁 with the property CI. Then for any non-zero 
element 𝑊𝑊 +  𝑋𝑋 ∈  𝒍𝒍 (𝐴𝐴) with 𝑊𝑊 ∈  𝒏𝒏,𝑋𝑋 ∈  𝒗𝒗, we have 𝑋𝑋 ∉ Range(ad𝒗𝒗 𝑊𝑊). 

Proof. It follows from Lemma 3.2 and from the definition of 𝔙𝔙 that 𝒍𝒍(𝐴𝐴) ∩  𝔙𝔙 = {0}. 
Therefore, if {0}  ≠  𝑊𝑊 + 𝑋𝑋 ∈  𝒍𝒍(𝐴𝐴) , then 𝑊𝑊 +  𝑋𝑋  ∉  𝔙𝔙 , which implies 𝑋𝑋 ∉
 Range(ad𝒗𝒗 𝑊𝑊) by Lemma 4.5.  
 
5. Proof of the main theorem 
 
In this section we give a proof of the precise version (that is, the three equivalent 
conditions) in Theorem 4.1. For this purpose we need to establish the following two 
lemmas: 
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Lemma 5.1. If the matrix 𝐴𝐴 =  (𝑎𝑎𝑖𝑖𝑖𝑖 )1≤𝑖𝑖 ,𝑖𝑖≤𝑘𝑘  has no real eigenvalue except for  then 𝐿𝐿(𝐴𝐴) 
acts on 𝐺𝐺/𝑁𝑁 properly. 

Remark 𝟓𝟓.𝟐𝟐. The converse is also true. It will be proved after Lemma 5.3. 

Proof of Lemma 5.1. To establish that 𝐿𝐿(𝐴𝐴) acts properly on 𝐺𝐺/𝑁𝑁, we shall prove that 
𝐿𝐿(𝐴𝐴) ∩ 𝑃𝑃𝑁𝑁𝑃𝑃−1  is compact for any compact set 𝑃𝑃 ⊂ 𝑉𝑉  . Because 𝒍𝒍(𝐴𝐴)  is abelian, each 
ℓ ∈  𝐿𝐿(𝐴𝐴) is of the form 

 
ℓ = exp�∑ 𝜆𝜆𝑖𝑖𝑇𝑇𝑖𝑖𝑘𝑘

𝑖𝑖=1 �              (5.1) 
 

= exp���𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖 ,𝑘𝑘+1

𝑘𝑘

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

� exp��𝜆𝜆𝑖𝑖𝐸𝐸𝑖𝑖 ,𝑘𝑘+2

𝑘𝑘

𝑖𝑖=1

� ∈ 𝑁𝑁𝑘𝑘+1(ℝ) ⋉ V 

 
for some 𝜆𝜆1, … , 𝜆𝜆𝑘𝑘  ∈   ℝ  and where for 1 ≤  𝑖𝑖 ≤  𝑘𝑘 we put 
 

𝑇𝑇𝑖𝑖 = �𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖 ,𝑘𝑘+1  + 𝐸𝐸𝑖𝑖 ,𝑘𝑘+2

𝑘𝑘

𝑖𝑖=1

 

 
It is convenient to define, 

𝑠𝑠(𝐴𝐴) ≔ exp  � xjE𝑖𝑖 ,𝑘𝑘+2 =

⎝

⎜
⎛

1
  
0
 

1
 
⋱ 
 

…
 ⋱
⋱ 
 

0
⋮
0
1
 

x1
⋮

x𝑘𝑘
x𝑘𝑘+1

1 ⎠

⎟
⎞

𝑘𝑘+1

𝑖𝑖=1

 

for 𝐴𝐴 = (𝐴𝐴1,∙∙∙,𝐴𝐴𝑘𝑘+1)ϵℝ𝑘𝑘+1  
 
Since S is compact, S can be written as 
 
𝑃𝑃 =  {s(x):𝐴𝐴ϵ𝐵𝐵}. 

 
Here 𝐵𝐵 is a compact subset of ℝ𝑘𝑘+1. 

Let us compute 𝑠𝑠(𝑦𝑦)𝑛𝑛𝑠𝑠(𝐴𝐴) [𝑠𝑠(𝐴𝐴)𝑛𝑛𝑠𝑠(𝑦𝑦)] for 𝑠𝑠(𝑦𝑦),  𝑠𝑠(𝐴𝐴)−1 ∈  𝑃𝑃 and for 
 

𝒏𝒏 =

⎝

⎜
⎛

1
  
0
 

b12
 
⋱ 
 

…
 
⋱ 

 ⋱

b1,𝑘𝑘+1
⋮

b𝑘𝑘 ,𝑘𝑘+1
1
 

0
⋮
0
0
1⎠

⎟
⎞

 ϵ N𝑘𝑘+1(ℝ)  

Suppose we have 
 
𝑠𝑠(𝑦𝑦)𝑛𝑛𝑠𝑠(𝐴𝐴) = n′ 𝑠𝑠(𝑧𝑧), 

where  n′ ∈  𝑁𝑁𝑘𝑘+1(ℝ) and 𝑠𝑠(𝑧𝑧)  ∈  𝑉𝑉 . Then we obtain, 
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�
n′ = 𝑛𝑛

𝑧𝑧𝑖𝑖 = 𝐴𝐴𝑖𝑖 + 𝑦𝑦𝑖𝑖(−) + 𝑏𝑏𝑖𝑖 ,𝑘𝑘+1𝑦𝑦𝑘𝑘+1      mod 〈𝑏𝑏𝑖𝑖𝑖𝑖  ;1≤𝑖𝑖<𝑖𝑖≤𝑘𝑘〉

𝑧𝑧𝑘𝑘+1 = 𝐴𝐴𝑘𝑘+1 + 𝑦𝑦𝑘𝑘+1

� 

 
In particular, if 𝑠𝑠(𝑦𝑦)𝑛𝑛𝑠𝑠(𝐴𝐴)  ∈  𝐿𝐿(𝐴𝐴) then by comparing with (5.1), we have 

 
𝑏𝑏𝑖𝑖𝑖𝑖  =  0 for 1 ≤  𝑖𝑖 <  𝑖𝑖 ≤ 𝑘𝑘                                                                                 (5.2) 
   
 𝐴𝐴𝑘𝑘+1  + 𝑦𝑦 𝑘𝑘+1 =  0                                                    (5.3) 
 

x�⃗+y�⃗  = λ��⃗ − �
b1,k+1
b2,k+1

⋮
bk,k+1

� yk+1             (5.4) 

 

�
𝑏𝑏1,𝑘𝑘+1
𝑏𝑏2,𝑘𝑘+1

⋮
𝑏𝑏𝑘𝑘 ,𝑘𝑘+1

�   = 𝐴𝐴𝜆𝜆              (5.5) 

 
where   𝐴𝐴 =  �𝑎𝑎ij�1≤𝑖𝑖 ,𝑖𝑖≤𝑘𝑘

    and 
 

�⃗�𝐴 = �

𝐴𝐴1
𝐴𝐴1
⋮
𝐴𝐴𝑘𝑘

�,  �⃗�𝑦 = �

𝑦𝑦1
𝑦𝑦1
⋮
𝑦𝑦𝑘𝑘

�,  𝜆𝜆 = �

𝜆𝜆1
𝜆𝜆1
⋮
𝜆𝜆𝑘𝑘

� 

From equations (5.2), (5.3), (5.4), (5.5), we obtain a matrix equation,  
 

�⃗�𝐴 + �⃗�𝑦 = (𝐶𝐶𝑘𝑘 − 𝑦𝑦𝑘𝑘+1𝐴𝐴)𝜆𝜆.��⃗              (5.6) 
 

From our assumption that 𝐴𝐴 has no real eigenvalue except for 0, it follows that 
 
det(𝐶𝐶𝑘𝑘 − 𝑦𝑦𝑘𝑘+1𝐴𝐴) ≠ 0              (for any  𝑦𝑦𝑘𝑘+1  ∈   ℝ× ). 
 
Suppose  𝑦𝑦𝑘𝑘+1  is contained in a compact set 𝐶𝐶 of ℝ×. Then there exists a constant 

𝛿𝛿 >  0 such that, 

|det(𝐶𝐶𝑘𝑘 + 𝑦𝑦𝑘𝑘+1𝐴𝐴)| > 𝛿𝛿    for any  𝑦𝑦𝑘𝑘+1  ∈  ℝ×. 

 
Then there exists a constant 𝑀𝑀 >  0 such that  
 

�(C)ij � ≤ 𝑀𝑀  for any  𝑦𝑦𝑘𝑘+1  ∈  ℝ×.  and any  1 ≤ 𝑖𝑖, 𝑖𝑖 ≤ 𝑘𝑘 

Here 𝐶𝐶𝑖𝑖𝑖𝑖 denotes 𝑡𝑡ℎ𝑒𝑒 (𝑖𝑖, 𝑖𝑖)th element of the matrix  C = (𝐶𝐶𝑘𝑘 + 𝑦𝑦𝑘𝑘+1𝐴𝐴)−1 
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Because �⃗�𝐴, �⃗�𝑦 are elements in the bounded set 𝐵𝐵 ⊂ ℝ𝑘𝑘+1, the solution 𝜆𝜆 of the equation 
(5.6)  is bounded. In view of the definition of  in (5.1) , 𝐿𝐿(𝐴𝐴) ∩ 𝑃𝑃𝑁𝑁𝑃𝑃−1  is compact. 
Therefore, we have proved that the action of 𝐿𝐿(𝐴𝐴) is proper. 

Lemma 5.3. If the action of 𝐿𝐿(𝐴𝐴) on 𝐺𝐺/𝑁𝑁 has the (CI) property, then the matrix 𝐴𝐴 ∈
 𝑀𝑀𝑘𝑘(ℝ) has no non-zero real eigenvalue. 

Proof. Any element of 𝒍𝒍(𝐴𝐴) is of the form 
 

           ∑ 𝜆𝜆𝑖𝑖𝑇𝑇𝑖𝑖𝑘𝑘
𝑖𝑖=1                ( 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑘𝑘 ∈  ℝ ). 

 

By defnition 4.1,  ∙ 
 

�𝜆𝜆𝑖𝑖𝑇𝑇𝑖𝑖 = ��𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖 ,𝑘𝑘+1 + �𝜆𝜆𝑖𝑖𝐸𝐸𝑖𝑖 ,𝑘𝑘+2 

𝑘𝑘

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

∈   𝒏𝒏 + 𝒗𝒗 

If (𝜆𝜆1, 𝜆𝜆2, ∙∙∙, 𝜆𝜆𝑘𝑘) ≠ (0, 0, … ,0), then by Proposition 4.6 we have, 
 

∑ 𝜆𝜆𝑖𝑖𝐸𝐸𝑖𝑖 ,𝑘𝑘+2
𝑘𝑘
𝑖𝑖=1 ∉ Range �ad𝒗𝒗 �∑ ∑ 𝜆𝜆𝑖𝑖 𝑎𝑎𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖 ,𝑘𝑘+1

𝑘𝑘
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1 ��          (5.7) 

 

In order to compute the right side of (5.7), we use: 
 

����𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖 ,𝑘𝑘+1

𝑘𝑘

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

� ,��𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖 ,𝑘𝑘+2

𝑘𝑘+1

𝑖𝑖=1

�� = 𝐴𝐴𝑘𝑘+1 ���𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖 ,𝑘𝑘+2

𝑘𝑘

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

� 

 
for  𝑢𝑢 = ∑ 𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖 ,𝑘𝑘+2

𝑘𝑘+1
𝑖𝑖=1  

The condition (5.7) implies that the system of equations for  𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑘𝑘  : 
 

⎩
⎪
⎨

⎪
⎧

 
𝜆𝜆1

= 𝐴𝐴𝑘𝑘+1 ∑ 𝜆𝜆𝑖𝑖𝑎𝑎1𝑖𝑖
𝑘𝑘
𝑖𝑖=1 

𝜆𝜆2
= 𝐴𝐴𝑘𝑘+1 ∑ 𝜆𝜆𝑖𝑖𝑎𝑎2𝑖𝑖

𝑘𝑘
𝑖𝑖=1

⋮ 
𝜆𝜆𝑘𝑘 = 𝐴𝐴𝑘𝑘+1 ∑ 𝜆𝜆𝑖𝑖𝑎𝑎𝑘𝑘𝑖𝑖𝑘𝑘

𝑖𝑖=1

�              (5.8) 

 
has no solution except for    (𝜆𝜆1, 𝜆𝜆2, ∙∙∙,  𝜆𝜆𝑘𝑘) = (0, 0,∙∙∙  ,0)   for each fixed 𝐴𝐴1, 𝐴𝐴2 ∙∙∙,𝐴𝐴𝑘𝑘+1. 
In a matrix form, (5.8) is expressed as 
 
 

(𝐶𝐶𝑘𝑘 − 𝐴𝐴𝑘𝑘+1𝐴𝐴)𝜆𝜆 = 0. 
 

Therefore,   det(𝐶𝐶𝑘𝑘 − 𝐴𝐴𝑘𝑘+1𝐴𝐴) ≠ 0   for any    𝐴𝐴1,∙∙∙,𝐴𝐴𝑘𝑘+1  ϵ ℝ.  This is equivalent to the 
condition that 𝐴𝐴 has no non-zero real eigenvalue.  

Therefore we have proved Lemma 5.3. 
Thus we have completed the proof of Theorem 4.1. In particular Lipsman's conjecture 

holds for the triplet (𝐿𝐿(𝐴𝐴), 𝐺𝐺, 𝑁𝑁). 
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