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Abstract 

Osteoporosis is the most prominent chronic bone disorder characterized by a deficit bone 

mineral density (BMD), which elevates the probability of bone fractures. An early and precise 

osteoporosis diagnosis increases the patient's survival rate. X-ray imaging is the most 

affordable and accessible method for diagnosing bone diseases. Still, manually interpreting 

X-rays for osteoporosis is laborious and time-consuming, and choosing high-performance 

classifiers is a highly challenging task. To address the above issues, this paper presents an 

ensemble-based model that uses knee X-ray images to predict osteoporosis as a binary class 

(normal and osteoporosis). The model used different transfer learning techniques and a 

custom CNN to detect osteoporosis in this work. It is found that the ensemble model has 

produced exceptional outcomes, particularly in terms of accuracy for binary classification. 

Additionally, the model's efficiency was tested and compared with other deep learning 

models, which indicated that the ensemble model is more robust than recent DL approaches. 

Hence, our methodology may save surgeons time while simultaneously enhancing patient 

outcomes. 

Keywords: Knee X-ray images; Osteoporosis; Deep Learning; Transfer learning; Ensemble 

learning. 
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1. Introduction 

Osteoporosis is an asymptomatic and multifactorial bone disorder characterized by a 

reduction in bone density or bone quality and micro-architectural bone tissue deterioration, 

subsequently enhancing bone fragility and elevating the risk of bone fracture. It is 

considered a silent disease as there are often no symptoms before the first fracture, and it is 

seen in all age groups, genders, and races, especially postmenopausal women who are at the 

highest risk. Over 200 million individuals worldwide, one in three women and one in five 

men over 50, are expected to have osteoporotic fractures, according to estimates from the 

International Osteoporosis Foundation [1]. Osteoporosis not only induces fractures but also 

causes people to become bedridden, which can lead to secondary complications that can be 

fatal over time. Osteoporosis is difficult to identify in its early stages because of a lack of 
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recognizable symptoms and can result in patient death in many circumstances. It is a 

widespread bone disorder that causes millions of fractures and poses a global medical risk. 

Early identification and treatment of osteoporosis can reduce death rates while increasing 

survival rates. 

Osteoporosis-related fractures impose a heavy burden on both individuals and society, 

as their treatment costs a huge amount of budget for economies. It accelerates the death rate, 

morbidity, and disability while significantly reducing quality of life. It causes fractures of 

the humerus, pelvis, thoracolumbar vertebrae, distal forearm, hip, etc. Females are at a 

higher risk of tibial and fibular fractures, and as the population ages, osteoporotic fractures 

surrounding the knee have become more common [2]. The X-ray image illustrates that due 

to decreased bone density, the osteoporotic knee has more gray-level intensity than normal. 

An annual death rate of 22 % is found in elderly patients who endure femoral fractures, with 

a poor quality of life, and approximately fifty percent of all knee fractures occur in older 

individuals over 50 [3]. Some risk factors for osteoporosis are modifiable, such as diet, 

weight reduction, air pollution, stress, and lifestyle variables, while some factors are non-

modifiable, such as older age, gender, past fractures, and reproductive factors [4]. 

Furthermore, numerous factors, such as cancer therapies, bone cancer, or certain cancer 

types that metastasize to the bones, can contribute to the development of osteoporosis [5]. 

Diagnostic imaging modalities used for osteoporosis detection include digital X-ray 

radiogrammetry (DXR), quantitative ultrasound (QUS), magnetic resonance imaging 

(MRI), quantitative computed tomography (QCT), high-resolution peripheral quantitative 

computed tomography (HR-pQCT), and radiography. The Dual Energy X-ray 

Absorptiometry Technique (DXA) is the method most commonly used in healthcare to 

diagnose osteoporosis [6]. An X-ray is the traditional and widely used screening technique 

for acquiring images of almost every single bone in the body, including the bones of the 

hand, ankle, elbow, pelvic region, and vertebrae. Furthermore, these methods are expensive, 

have a low spatial resolution, and have high radiation doses, making them unsuitable for 

screening and unable to identify osteoporosis until the disease has progressed. DXA is the 

preferred norm for determining bone mineral density (BMD), however, it only captures 

information concerning bone strength and ignores the contribution of clinical risk factors 

and bone constraints (trabecular bone geometry and score) [7,8]. Furthermore, human 

diagnostics is time-consuming, prone to errors, and does not fulfill social expectations. 

Considering these limitations, a cost-effective, efficient, and novel approach for 

automatically detecting malignancy is required. As a result, the researchers develop 

computer-aided diagnostic tools by using recent developments in imaging technology to 

evaluate medical images through computer algorithms. 

Computer-aided detection and diagnosis are being utilized to improve the identification 

or diagnosis of osteoporosis. Medical, pharmacological, and fundamental biology have 

benefited from the advent of AI technologies, which have improved performance in these 

domains, and human specialist-level performance has been attained [9]. Furthermore, 

smarter diagnostic tools have been invented to solve diagnostic problems and improve 

efficiency in healthcare [10]. Deep learning, a subfield of artificial intelligence and high-
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level neural networks that resembles the human brain, solves complex problems, facilitates 

automatic feature extraction, and is rapidly being applied in both fundamental and clinical 

cancer research and bone-associated disorders [11]. Among other DL approaches, 

Convolutional Neural Networks (CNNs) are the most well-known and are gaining more 

attention from researchers. CNN is a state-of-the-art technique for processing massive 

medical image data sets to determine and test new imaging attributes [12-15]. Numerous 

CNN research studies have embraced transfer learning strategies, which 

reuse the knowledge learned from a network to enhance performance by freezing initial 

layers and fine-tuning the training parameters in the final layers [16,17]. It eliminates the 

necessity for large training datasets while simultaneously performing exceptionally well in 

tumor detection, microbleed segmentation, tumor segmentation,  and many other areas [18]. 

Although the researchers have proposed methodologies for osteoporosis detection at several 

bone sites, such as the spine, upper extremity, hip region, and tooth, there hasn't been much 

study done on transfer learning techniques to identify osteoporosis in the knees [19].  

The automated categorization of biological samples has received a great deal of interest 

in recent years. Some of the previous research in the field of osteoporosis detection and 

classification using deep learning and transfer learning has been discussed in the literature. 

Several machine learning techniques were utilized to build a prediction model for femoral 

neck osteoporosis [20]: Yang et al. predicted the presence of osteoporosis [21]: Dadsetan 

et al. used radiomics on clinically accessible X-ray images for predicting the risk of 

osteopenia and osteoporosis [22]. Twenty machine-learning techniques were assessed based 

on four diagnostic factors (age, sex, height, and weight) for osteoporosis risk prediction and 

categorized into osteoporosis and non-osteoporosis [23]. A novel vibroacoustic approach 

was presented to detect osteoporosis from the tibia's impulse responses in vivo along with 

an artificial neural network, and the obtained results showed that it could be suitable for 

screening tests for the early detection of osteoporosis  [24]. Lim et al. assessed the 

predictive ability of machine learning analysis with radionics features and abdominal-pelvic 

CT (APCT) to diagnose femoral osteoporosis [25]. Based on clinical data and CT images, 

Liu et al. developed a three-layered hierarchical model by utilizing six different machine 

learning techniques to identify osteoporosis [26]. 

A novel approach has been developed to predict whether the patient is osteoporotic or 

healthy from the radiographic image of the bone [27]. The authors examined the use of deep 

learning to identify osteoporosis using dental panoramic radiographs [28]. Furthermore, an 

ensemble model-based osteoporosis classifier was developed, to which patient clinical 

variables were incorporated. The outcomes showed that osteoporosis could be properly 

classified using deep learning with CNN, and the performance could be enhanced using an 

ensemble model incorporating patient covariates. In another research study, four distinct 

transfer learning models with fine-tuning parameters were utilized to distinguish 

osteoporosis using dental panoramic radiographs (DPRs), labeled based on T-score [29].  

Tassoker et al. presented several deep learning methods for predicting radiological 

variations that resemble osteoporosis on panoramic radiographs in women above the age of 

fifty and validated them with the 5-fold cross-validation approach [30]. To optimize ELM 
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to differentiate between osteoporotic and normal data, an HMBA-ELM classifier was 

developed [31]. The algorithm was developed by merging an artificial algae algorithm, a 

multi-light source algorithm (AAAML), and a Monarch butterfly optimization (MBO) 

algorithm, and the evolutionary phase of AAAML was called Evolution-migrated AAAML. 

The methodology was assessed using 10 independent runs of 10-fold cross-validation on 

three distinct osteoporosis datasets. It was found that the proposed HMBA-ELM 

successfully classified osteoporotic datasets with outstanding outcomes. 

The outcomes of a computer-aided diagnosis (CAD) system based on deep 

convolutional neural networks (DCNNs) to identify osteoporosis utilizing radiographs were 

compared with the diagnosis made by oral and maxillofacial radiologists by Lee et al. [32]. 

The convolutional neural network was trained, validated, and tested using both single-

column and multicolumn deep convolutional neural networks. To facilitate the early and 

trustworthy diagnosis, Gaudin et al. showed that a deep learning algorithm could accurately 

identify osteoporosis using panoramic radiographs [33]. A deep neural network (DNN) 

model and a nonlocal neural network (NLNN) model based on VGG16 were integrated to 

diagnose osteoporosis from hip radiography [34]. The outcomes of the study showed that 

the model was considered to be among the best and most effective screening tools for 

osteoporosis prediction. To assess patient X-ray images of the chest and detect COVID-19-

positive people, Kumar and Rani introduced the "LiteCovidNet" model, which is based on 

deep neural networks [35]. The COVID-19 case was divided into two classes by the model: 

a multi-class and a binary class. An optimal artificial neural network was proposed by Umar 

et al. to forecast the closing price for each day of the National Stock Exchange's NIFTY-50 

index [36]. 

According to the literature discussed above, DL-based diagnostic models outperform 

machine learning approaches for osteoporosis diagnosis or classification. We have also 

concluded that some models' performance is unsatisfactory. Many methods for detecting 

and classifying bone fractures have been proposed in the past, but less work has been done 

for predicting and classifying knee osteoporosis with X-ray. This fact motivates the 

researchers to concentrate on developing an effective model for osteoporosis prediction. In 

this study, a methodology has been developed by ensembling transfer learning and a custom 

CNN model that can efficiently predict knee osteoporosis in patients using X-ray images. 

The proposed ensemble model has been evaluated based on accuracy and specificity, 

evaluating measures. 

The following are the main objectives of this study: 

• To demonstrate that transfer learning-based algorithms can effectively diagnose 

osteoporosis using a publicly available X-ray images dataset. 

• Investigate a suitable CNN framework for effective prediction and uncover potential 

hints that aid performance.  

• The proposed Ensemble approach distinguishes between normal and osteoporosis as a 

binary classification. 
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• Explore how transfer learning methods and custom CNNs work together. It is a one-of-

a-kind, significant, practical, and successful ensemble methodology for predicting knee 

X-ray images that yields positive results. 

• Compare and evaluate the outcomes of the proposed methodology with those of existing 

approaches. 

The format of the manuscript is as follows: The osteoporosis imaging analysis procedure 

is thoroughly explained in the Materials and Methods section. Furthermore, it discusses the 

phases involving data preparation and classification utilizing deep learning and machine 

learning techniques. Using a variety of performance metrics, the Results section analyses 

feature categories and assesses the outcomes of deep learning methods. The Discussion 

section provides an overview of the study's overall achievements, lays out the context for 

the results, and offers suggestions for future research possibilities. 

 

2. Materials and Methods 

The section provides a detailed description of the several processes that the study 

undertook, starting with data processing and continuing with learning and prediction 

utilizing ensemble models and deep learning. 

 

2.1. Dataset description 

 

This section has covered the dataset that is being utilized in the experiments. For the 

prediction of osteoporosis, an X-ray image dataset obtained from a source has been utilized, 

as discussed below. 

The dataset has been taken from Kaggle, open-source, and community-maintained 

platforms. Table 1 includes a link to where the data for the experiment was collected. X-ray 

images of individuals with normal and osteoporosis patients are included in the dataset. The 

dataset has two classes (binary classification). Fig. 1 depicts the data distribution as a bar 

chart for binary classifications (normal and osteoporosis). Table 1 displays the cases of both 

normal and osteoporosis patients, as well as their references listed in the next row. Out of 

the 360 total X-ray images, 180 are of a healthy individual and 180 are of a patient with 

osteoporosis. There were 360 X-ray images utilized in the experiment, with the total number 

of images included by a certain class being shown in the number of images column. 

 

 
Fig. 1. Dataset distribution. 
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Table 1. Dataset description. 

Classes Number of Images Reference 

Osteoporosis 180 [37] 
Normal 180 

Total X-Ray Images used for the experiment: 360 

2.2. Methodology 

 

In this section, the process of the ensemble model for the prediction of osteoporosis is 

described. Additionally, there has been a discussion on the utilized transfer learning models, 

the custom CNN architecture, the proposed architecture's working, and the algorithm. 

 

 
Fig. 2. Workflow for ensemble methodology. 

 
Initially, the knee X-ray image dataset was extracted from the publicly accessible Kaggle 

platform. The data set needs to be enhanced before model training to improve the model's 

robustness as well as avoid excessive attention to meaningless features. The X-ray images 

in the dataset have been preprocessed, which includes resizing, shuffling, and labeling into 

two classes: normal and osteoporosis. There are differences in the resolution of the images 

within the datasets. As a result, images have been resized to 128x128 pixels. The 
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preprocessed data was divided into training -80 % (DXtt) and testing – 20 % (DXts). The 

training data has been employed to construct the structure of the ensemble model. The 

model has been trained over 200 epochs using a batch size of 25 to avoid the overfitting 

problem. After configuring the hyperparameters, the pretrained models (ResNet101, 

DenseNet169, VGG16, and EfficientNetB5) and the custom CNN model have been trained 

on the training dataset. Custom CNN (WXC) and pretrained models (WXN) weights have 

been saved and utilized for ensemble training. The resulting model has been obtained from 

the ensembling model, and the weights will be saved. However, testing data has been 

employed in the model's evaluation. Based on the results, the knee X-ray images have been 

categorized as osteoporosis and normal. Fig. 2 depicts the workflow block diagram for 

osteoporosis prediction using X-ray images of the knee, and the algorithm is illustrated 

in Algorithm 1. 

 

Algorithm 1: Osteoporosis Prediction 

  

1 Input: Knee X-ray Images Dataset 

2 Dataset Preparation: Shuffling, Resizing and Labelling the image dataset  

    Splitting the dataset  

    DX:{ Training data DXtt and Testing data DXts}  

 

3 Initialize and varying hyperparameters  

4 Pretrained models are built up as follows:  

Vgg16, DenseNet169, ResNet101, EfficientNetB5, custom CNN model setup 

5 Training:  

 a) For all pretrained models do  

   For all epochs do  

Execute the pre-trained models that have been defined.  

Hyperparameters have been modified to conserve weights (WXN) and choose the 

optimal pretrained model. 

End for  

       End for  

 b) For all epochs do 

          Train the custom CNN model  

Hyperparameters are adjusted to select the optimal model and save weights 

(WXC) 

     End for  

c) For all epochs do 

          Train the ensemble model using save weights WXN and WXC 

     End for 

6 Testing  

For DXt do 

    Test the pretrained models and custom CNN 

      Test ensemble model 

    Classify into binary class and generate the confusion matrix 

    Calculate Accuracy and Specificity 

End for 

7 Output: Binary class labels (Normal and Osteoporosis)  
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2.3. Convolutional Neural Network 

 

CNN is a unique type of deep neural network with intermediate layers built on the 

convolution idea and has demonstrated remarkable performance in image identification, 

segmentation, and classification [38]. The fundamental components of CNNs include of 

input layer, convolutional layers, pooling layers, fully connected layers, and an output layer 

[39]. It has several architectures, including AlexNet, VGG, Inception, NasNet, and 

DenseNet, based on how effectively they can train [40]. In the study, four pretrained models 

and a CNN model have been utilized for prediction by fine-tuning their parameters. 

 

2.4. Transfer learning models  

 

Transfer Learning is an approach that allows you to train a new model with minimum fine-

tuning or training parameters by applying previously learned model knowledge [41]. It 

reduces training time, trains with limited data, and enhances neural network performance 

[42]. There are various transfer learning models available, including Inception, ResNet, 

EfficientNet, Vgg, and many more. In the study, four pretrained models such as ResNet101, 

DenseNet169, Vgg16 and EfficientNetB5 has applied and described in Table 2.  

 
Table 2. Description of pretrained models. 
 

Architecture Trained Layers Description 

ResNet101 101 It has 25.6 M parameters and a residual block stack with 

three layers. Residual blocks employ skip connections, 

which allow the system to train faster by transmitting the 

activation to a layer deeper in the network and address the 

problem of vanishing gradients. 

DenseNet169 169 It has a total of 14.3M parameters and solves the vanishing 

gradient problem, has a strong feature propagation approach, 

reduces trainable parameters, and encourages the reuse of 

features [43,44]. 

VGG16 16 The Visual Geometry Group-16 is constructed with 13 

Conv2D blocks and three fully interconnected layers [45]. It 

has 138.4 M parameters and employs stacks of convolutional 

layers with smaller kernels of size 3x3. 

EfficientNetB5 312 The model's layers were trained at 456 x 456 resolution 

utilizing ImageNet-1k and have 30.6M parameters. 

 

2.5. Custom CNN architecture 

 

The section goes into depth on the custom CNN architecture. The custom CNN model 

comprises two phases, which are training and testing. During the training phase, feature 

extraction has been performed. After training, the custom CNN developed has been used 

for the classification of osteoporosis. Following the initial extraction of the feature, 

classification has been performed and the OsteoporosisNet architecture has been trained. 

During the testing phase, the proposed framework has been assessed. Finally, the model 
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evaluation findings have been used to classify the X-ray images into two categories: normal 

or osteoporosis. When this process is complete, the model weights are saved for ensemble 

processing. Fig. 3 depicts the workflow of the custom CNN framework for the prediction 

of osteoporosis. 

 

 
 

Fig. 3. Flow diagram of Custom CNN work. 

 
The architecture of the custom CNN is shown in Fig. 4, whereas Table 3 describes the 

custom CNN layers. Table 3 describes the custom CNN layers. This model represents a 

deep learning model for predicting osteoporosis in which it transforms raw pixels of the 

input image using convolutional or feature extraction layers, batch normalization layers, 

leaky RELU layers, and pooling layers. Finally, the last fully connected layer, which 

receives the feeds, uses class scores or probabilities to classify the input into the class with 

the highest likelihood. 

The first layer, through which data enters the network, is called the input layer. Here, 

the input layer takes knee X-ray images as input. The task of extracting features from the 

image has been assigned to the feature extraction layer, which consists of four convolutional 

layers with varying filters (32, 64, 256, and 512) and kernel sizes of 2 × 2 and 3 × 3. The 

integration of an activation function aids the deep neural network in identifying complex 

patterns within the knee X-ray image dataset. Additionally, Batch normalization and Leaky 

RELU have been applied to all convolution layers. Batch normalization improves the 

recognition rate for test samples, and leaky [46,47] is a form of activation function that adds 

a small negative slope to the ReLU to maintain and propagate the weight updates 

throughout the entire propagation process [48,49]. Max pooling has been used in the pooling 

layer. The convolution layer result has been flattened further into three dense layers, 

followed by a dropout to remove unneeded features and provide for the softmax activation 

function. The Adamax optimization approach has been used to assemble each convolutional 

layer, and layers of dropout with different units have been employed, which implies that to 
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prevent overfitting on the training dataset, 25 % of neurons have to be arbitrarily assigned 

zero after every epoch. In the output layer, feature maps from different layers have been 

concatenated, and the result has been given to the output layer via a binary class (normal or 

osteoporosis). 
 

Table 3. Details of custom CNN layers. 
 

Layer type Number of 

filters 

Kernel 

size 

Output 

shape 

#trainable 

parameters 

conv2d_61 (Conv2D) 32 (2x2) 127x255x32 416 

batch_normalization_61 

(BatchNormalization) 

- - 127x255x32 128 

leaky_re_lu_88 (LeakyReLU) - - 127x255x32 0 

max_pooling2d_60 

(MaxPooling2D) 

- - 63x127x32 0 

conv2d_62 (Conv2D) 64 (3x3) 61x125x64 18496 

batch_normalization_62 

(BatchNormalization) 

- - 61x125x64 256 

leaky_re_lu_89 (LeakyReLU) - - 61x125x64 0 

max_pooling2d_61 

(MaxPooling2D) 

- - 20x41x64 0 

conv2d_63 (Conv2D) 256 (3x3) 18x39x256 147712 

batch_normalization 63 

(BatchNormalization) 

- - 18x39x256 1024 

leaky_re_lu_90 (LeakyReLU) - - 18x39x256 0 

max_pooling2d_62 

(MaxPooling2D) 

- - 6x13x256 0 

conv2d_64 (Conv2D) 512 (2x2) 5x12x512 524800 

batch_normalization 64 

(BatchNormalization) 

- - 5x12x512 2048 

leaky_re_lu_91 (LeakyReLU) - - 5x12x512 0 

max_pooling2d_63 

(MaxPooling2D) 

- - 2x6x512 0 

flatten_13 (Flatten) - - 6144 0 

dense_41 (Dense) - - 256 1573120 

leaky_re_lu_92 (LeakyReLU) - - 256 0 

dropout_10 (Dropout) - - 256 0 

dense_42 (Dense) - - 128 32896 

leaky_re_lu_93 (LeakyReLU) - - 128 0 

dense_43 (Dense) - - 2 258 

 

3. Experiment Evaluation and Results 

 

The section highlights the ensemble model's predicted outcomes. Additionally, highlights 

the environment in which implementation has been carried out, model descriptions, and the 

results of all employed techniques.  
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3.1. Implementation environment 

 

The Jupyter Notebook provided by Google's Collaboratory platform has been utilized for 

the entire experimental work. The platform provides the GPU-based ‘free cloud service’ for 

research purposes or scientific computations. A system combination with 13 GB RAM, 78 

GB Hard Drive, 15 GB GPU, and NVIDIA T4 GPU has been utilised during the 

experimental procedure. 

 

3.2. Performance evaluation  

 

The diagnostic ability of the trained models has been assessed using a test dataset of knee 

x-ray images from both the normal and osteoporosis groups. To comprehensively evaluate 

the model’s performance, accuracy and specificity have been used as measurement 

indicators. These parameters have been specified by the actual label and predicted label that 

comprise the confusion matrix, which are shown in Fig. 5. The model's performance has 

been clarified by a confusion matrix consisting of true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN). Among them, S1 and S2 are two class labels; 

TP signifies that it has been proven to be an osteoporosis class, which is an osteoporosis 

class. FP denotes that it has been determined to be a normal class, but it is also a normal. 

TN implies that it is classified as an osteoporosis class. However, it is actually a normal 

class FN depicts that it is considered normal, yet it is actually an osteoporosis class. The 

confusion matrix for ResNet101, DenseNet169, VGG16, EfficientNetB5, custom CNN, and 

Ensemble are shown in Fig. 6.  

 

 
 
Fig. 4. Custom CNN architecture. 

 
Fig. 5. Confusion matrix for Binary Class. 

 
3.3. Model description 

 

To avoid overfitting, a total of 100 epochs have been done when training the model with a 

batch size of 25 and utilizing early stopping. In task-specific binary classification, to 

differentiate osteoporosis from normal images in the test dataset, the binary_cross-entropy 

S2S2Binary class confusion matrix

FNTPS1

TNFPS2

Predicted

A
ct

u
al
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loss function to compute cross-entropy losses between the predicted and target outcomes 

has been chosen. An optimizer is required to assemble a deep learning model. Optimizers 

are algorithms that execute all possible solutions iteratively until they reach a point that is 

optimum or satisfactory by altering attributes such as weight and learning rate to lower the 

overall loss and enhance accuracy [50]. It benefits in achieving quicker outcomes because 

a deep learning model often has millions of parameters. The proposed model has been 

compiled with the Adamax optimizer. 

 

 
Fig. 6. Confusion matrix for a) ResNet101, b) DenseNet169, c) VGG16, d) EfficientNetB5, e) custom 

CNN, f) Ensemble. 
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AdaMax is an acronym that represents "adaptive moment estimation with maximum." 

It is an extended form of the gradient descent Adam optimizer that employs the maximum 

value of the second momentum portion and generalizes the approach to the infinite norm 

(max) [51]. The learning rate is a tuning parameter that determines the pace at which deep 

or machine learning models learn, as well as the number of steps needed to reduce the loss 

function's value [52]. The momentum parameter is utilized to enhance both the speed and 

accuracy of model training. A distinct function known as the activation function determines 

a node's output.  

 

3.4. Experimental Results 

The section discusses the ensemble methodology's outcomes from testing. Using knee X-

ray images, experiments have been conducted to predict and categorize confirmed 

osteoporosis cases. The model's efficacy has been assessed using performance parameters, 

and the model has been evaluated for binary class (osteoporosis and normal) data. Table 4 

reports the aggregate accuracy of the customized CNN model, pretrained models 

and ensemble model and also deduces the model's effectiveness. Loss curves for pretrained 

models, custom CNN model, and ensemble model for testing data are shown in Fig. 7. As 

shown in Fig. 7, there is a positive trend toward improving accuracy and reducing loss. 

 
Table 4. Performance of all applied models. 
 

Models  Accuracy (%) Specificity (%) 

ResNet101 76.92 66.67 

DenseNet169 84.61 66.67 

Vgg16 91.83 83.33 

EfficientNetB5 69.23 57.14 

Custom CNN 92.30 85.71 

Ensemble Approach 95.8 100 

 

3.5. Comparative analysis 

 

Numerous works from the literature have been reviewed, including the current state-of-the-

art for osteoporosis detection and classification. A comparison of existing techniques for 

predicting osteoporosis is shown in Table 5, and the proposed system achieved the highest 

accuracy of 100 %. It is evident from the table that the ensemble methodology has 

outperformed all current models for osteoporosis detection and classification in terms of 

accuracy. The ensemble methodology outlined in this paper has functioned more precisely 

to aid rheumatologists in the more efficient detection of osteoporosis. 
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Fig. 7. Loss curve for a) ResNet101, b) DenseNet169, c) VGG16, d) EfficientNetB5, e) custom CNN, 

f) Ensemble. 

 
Table 5. Comparative analysis. 

Authors & Years Techniques Used 
Imaging 

Modality 
Performance  

Tejaswini et al. 

2016 [53] 

Feed-forward 

backpropagation 
CT - 

Tecle et al. 2019 

[54] 
CNN[VGG16-TR-TF] X-RAY Accuracy- 84 % 

Jang et al. 2021 [34] 
VGG16 and Grad-

CAM 
X-RAY 

Accuracy- 71.8 % and 

AUC- 70 %. 

Tang et al. 2019 

[55] 
CNN CT images Accuracy- 76.5 % 
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Meng et al. 2019 

[56] 
ANN and OSTA 

X-RAY and 

dual-energy X-

ray 

absorptiometry 

Accuracy- 78.8 %  

Ferizi et al. 2019 

[57] 
ANN MRI Accuracy- 71 % 

Nam et al. 2019 [58] GLCM CT 

Accuracy- 92.5 %, 

precision- 93.9 % 

recall- 0.969, F1 score- 95.4, 

AUC- 90 % 

Yamamoto et al. 

2020 [59] 

ResNet18, ResNet34, 

GoogleNet, 

EfficientNetB3, and 

EfficientNetB4 

Hip 

Radiographs 

Accuracy- 79 %, Sensitivity- 

86 %, Specificity-86 % 

Mao et al. 2022 [60] 
Convolutional Neural 

Network 

Lumbar 

Radiographs 
AUC- 78.5 % 

Sato et al. 2022 [61] Deep Learning X-rays AUC- 89 % 

Abubakar et al. 

2022 [62] 
VGG16 X-rays 

Accuracy- 88 %, sensitivity-

90 %, specificity-91 % 

Dodamani & 

 Danti, 2023 [63] 

VGG16, VGG19, 

DenseNet121,  

Resnet50, and 

InceptionV3 

X-rays Accuracy- 93.4 % 

Mane et al. 2023 

[64]  

VGG16, InceptionV3, 

ResNet50 
X-rays Accuracy- 95 % 

Naguib et al. 2024 

[65] 

AlexNet and 

ResNet50 
X-rays Accuracy- 85.42 % 

Our Work 

Ensemble of 

ResNet101, 

DenseNet169, 

VGG16 

EfficientNetB5 and 

custom CNN 

X-rays Accuracy- 95.8 % 

 

4. Discussion 

 

Osteoporosis is an undiagnosed bone disorder that affects millions of individuals and harms 

healthcare systems, society, and the affected individuals worldwide. A physician utilizes X-

ray diagnostic procedures to treat bone problems since they are the most widely used 

method of detecting bone mineral density. These methods are inadequate for screening 

osteoporosis due to their high price, high radiation dosage, huge size, and limited 

availability of specialized infrastructure. Due to these drawbacks, there has been increasing 

interest in developing computer-aided or automated screening tools for the detection of 

osteoporosis. Accurate and timely diagnosis of osteoporosis would lead to improved clinical 

care, including prevention and appropriate pharmacological or surgical treatment. 

With the rise of digital information, artificial intelligence technologies have regained 

popularity and demonstrated potential in many areas of bone disorders. Deep learning 

algorithms can relieve radiologists and pathologists of tedious and repetitive work by 

ingesting, analyzing, and reporting massive amounts of data across multiple modalities to 
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diagnose illnesses and guide therapeutic choices. Among deep learning methods, CNN has 

performed more rapidly and with higher classification accuracy. the researchers utilized the 

advantage of CNN networks' capacity to categorize knee X-ray images by analyzing the 

normal and osteoporosis class images and then automatically classifying them. The goal of 

the study is to build an ensemble model that can predict osteoporosis based on patient X-

ray scans. Early osteoporosis case prediction is possible using the proposed clinical 

decision-making framework. The osteoporosis identification utilizing knee X-ray images 

saves time for tool training on a dataset gathered from numerous databases and radiologists 

may find value in these trained tools. To evaluate the trained models' diagnostic ability, x-

ray images were utilized as the test set. The evaluation parameters, such as specificity and 

accuracy, are calculated to provide an in-depth assessment of the test dataset screening 

performance. 

To demonstrate the accuracy and significance of research work, the ensemble model 

(shown in Table 5) has been compared to other recently developed models and the 

substantial literature on osteoporosis identification. The previously proposed deep learning 

models for the detection of osteoporosis had achieved good performance but still, but there 

is still a need for improvement. According to the findings of the Ensemble methodology, 

deep learning with CNNs may have significant effects on the automatic detection and 

classification of knee X-ray images related to osteoporosis diagnosis. Integration of deep 

learning technologies in osteoporosis care could ameliorate the accuracy and speed of 

diagnosis, assist clinical decision-making, and lead to better health outcomes. 

 

5. Conclusion 

 

Accurate and timely diagnosis of osteoporosis is crucial to prevent widespread osteoporotic 

fractures. In this paper, the researchers have developed an ensemble method for predicting 

osteoporosis. A database of knee X-ray images from individuals with verified cases and 

normal cases is used to classify osteoporosis automatically. There are 360 images in the 

dataset, 180 of which are normal cases and 180 are osteoporosis proven. A total accuracy 

of 95.8 % is achieved, which is better than others related to osteoporosis detection. The 

suggested technique outperforms existing deep learning methods in terms of specificity and 

accuracy. 

The ensemble model outperforms previous cutting-edge techniques in osteoporosis 

diagnosis. Also, the ensemble technique is computationally efficient because of a few 

parameters. After evaluating the proposed network's performance score, it may be utilized 

as a benchmark in osteoporosis screening. The ensemble model might be utilized as a 

supplement tool for doctors to diagnose osteoporosis using knee X-ray pictures. 

The future research will concentrate on working with larger datasets or for osteoporosis 

screening, enhancing the method's robustness. Current research might be further enhanced 

by developing automated methods for osteoporosis prediction based on multidisciplinary 

deep learning models and images, such as digital CT scans, MRIs, etc. The work also 
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encourages the researchers to focus on different validation methods and cross-datasets for 

network training and testing. 
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