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Abstract 

Parasitic nematodes cause serious crop damage worldwide, resulting in significant financial 

losses. Approximately 0.01 % of these species have not yet been found, according to estimates 

from certain experts. Nematodes can be challenging to classify using conventional methods 

because most of them share similar morphological characteristics. In the past, nematodes 

could only be distinguished by their morphological qualities, which include body length, the 

orientation of their reproductive organs, and other physical attributes. The previously 

mentioned approach requires a great deal of labor and expertise, and it only uses expensive 

machinery and human skills to classify objects. DL-based methods have significantly 

improved and increased accuracy in recent years. These species were successfully classified 

using the DL algorithms ResNet50 and VGG16. Acrobeles, Acrobeloides, Aphelenchoides, 

Amplimerlinius, and Discolimus are the five species of nematodes that were employed. The 

provided dataset, which originally contained 1500 digital images of nematodes, is further 

increased to 5000 images by the use of data augmentation techniques such as zooming, 

flipping, shearing, and other processes. ResNet50 and VGG16, two pre-trained CNN models, 

have been enhanced to better categorize these species. The accuracy rates of the VGG16 and 

ResNet50 models are 95.87 % and 98.02 %, respectively. 
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1.Introduction 

 

Nematodes, members of the phylum Nematoda, are unsegmented, transparent, cylindrical 

invertebrates commonly referred to as roundworms. They represent one of the most 

abundant and diverse groups of organisms on Earth, with estimates suggesting the existence 

of up to one million species, though fewer than 0.01 % have been formally described to date 

[1]. Nematodes occupy a wide range of ecological niches, functioning either as free-living 

organisms-commonly found in soil, freshwater, deserts, and deep subsurface environments-

or as parasites of plants and animals. 

 
*
Corresponding author: meetaliverma16@gmail.com 

Available Online 

J. Sci. Res. 17 (3), 809-819 (2025) 

JOURNAL OF  

SCIENTIFIC RESEARCH 

www.banglajol.info/index.php/JSR 
 

Publications 

 

https://dx.doi.org/10.3329/jsr.v17i3.79068
mailto:meetaliverma16@gmail.com


810 Plant Parasitic Nematodes Classification 

 

Free-living nematodes, which mostly consume bacteria, fungi, algae, and decaying 

organic matter, play an important role in the ecology by regulating microbial populations 

and cycling nutrients. However, because of their toxicity, a number of parasitic species are 

of medical and agricultural significance. Numerous parasitic disorders in humans, such as 

trichuriasis [2], hookworm infection [3], angiostrongyliasis [4], helminthiases [5] and 

onchocerciasis [6]; are caused by nematodes. Plant-parasitic nematodes are a serious hazard 

to crop productivity and health in agricultural settings. Nematodes are both ecological 

regulators and pests, but they are still not well understood, especially when it comes to 

species diversity and functional characterisation [7]. 

Conventional identification uses culturing methods and microscopic inspection to look 

for biological, genetic, and physiological traits [8,9]. Anatomical characteristics like body 

length, reproductive organs, and the shape of the mouthparts and tail have historically been 

used to differentiate between nematodes. The anatomy of their stylet, which are piercing 

mouthparts utilized for eating, is a crucial diagnostic characteristic. However, precise 

classification—particularly among closely related species-remains challenging and prone 

to errors because of overlapping morphological traits and a lack of skilled taxonomists [10]. 

Large-scale sample studies make this problem worse. Furthermore, traditional 

morphological identification is costly, time-consuming, and dependent on specialized tools 

and human skill. It entails contrasting standardized taxonomic keys with observable 

structures. Experts frequently combine conventional morphological methods with 

molecular (DNA-based) techniques to increase accuracy [11]. 

Identifying nematodes is made easier with the help of artificial intelligence (AI) 

techniques, especially those that scan microscopic images. By automating and speeding up 

the classification process, these technologies drastically cut down on the time and effort 

typically involved with morphological and molecular identification methods. A subset of 

artificial intelligence, machine learning (ML) has been effectively used in a number of 

fields, such as speech recognition [12], healthcare [13], business forecasting [14], and 

agriculture [15]. A more sophisticated subset of machine learning (ML), deep learning 

(DL), has lately shown considerable gains in accuracy and performance, especially in the 

fields of pattern recognition and image-based classification [16–18]. 

DL techniques have produced state-of-the-art outcomes in microscopic image analysis 

for tasks like autonomous car vision systems [19], object recognition, and cell and tissue 

segmentation [20]. Widely used designs like ResNet, Inception, Xception, and VGG16 are 

examples of Convolutional Neural Networks (CNNs), which were created especially for 

image classification tasks and are very good at extracting visual patterns from small 

datasets. The ResNet50 and VGG16 architectures have been updated in this study to better 

identify five nematode species: Acrobeles, Acrobeloides, Aphelenchoides, Amplimerlinius, 

and Discolaimus. 

Several deep learning (DL) techniques have been applied for the automatic classification 

of nematode species from microscopic images. Common steps in DL pipelines include 

image acquisition, preprocessing, feature extraction, and classification. For instance, Abade 

et al. [21] classified 3,063 images from five soybean nematode species using 13 CNN 
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models, including their proposed NemaNet, which achieved 99.34 % accuracy. Similarly, 

Lu et al. [22] utilized the public I-Nema dataset with six CNN models, reporting an average 

accuracy of 79 %. 

The parasitic nematodes known as entomopathogenic nematodes (EPNs) infect insects 

with bacteria that lead to illness in the insects. The usage of EPNs has been investigated as 

a possible substitute for chemical pesticides, which have the potential to contaminate the 

environment. Three distinct species of EPNs are included [23]: Steinernema feltiae, 

Heterorhabditis bacteriophora, and Steinernema carpocapsae. The utilisation of currently 

available state-of-the-art model architecture is applied to transfer learning. Thirteen CNN 

architectures, whether or not the weights are pre-trained, are available for use in the Keras 

deep learning library. For the dataset of juvenile nematodes, the model's mean validation 

accuracy was 88.28 %, and for dataset of adult nematodes, it was 69.45 %. Living organisms 

that live in the soil called entomopathogenic nematodes are commonly used to biologically 

control agricultural insect pests. With the development of easy methods for administering 

them with traditional sprayers, they are among the best substitutes for pesticides.  

By using microscopic images of Acrobeles and Acrobeloides nematodes [24], to show 

the classification of plant parasitic nematodes. The dataset comprises 277 photos that are 

further enhanced by data augmentation methods such as shearing, zooming, and so forth. 

These species are categorised using InceptionV3, a deep learning approach. The author's 

training and testing accuracy are 99 % and 90 %, respectively. The quarantine nematode 

species Globodera pallida and Globodera rostochiensis have been classified using image-

based Convolutional Neural Network (CNN) models [25]. The accuracy rate of the 

suggested CNN model was 71%. 

For the classification of five nematode trophic groups—Xiphinema, Helicotylenchus, 

Heterorhabditis indica, Meloidogyne incognita, and Anguina tritici—a novel lightweight 

CNN model was recently developed [26]. This model's precision, recall, and F1-scores all 

surpassed 95 %, and its classification accuracy was 98.52 %. Notably, it was four times 

faster and five times lighter than traditional models, which made it appropriate for expert-

independent, real-time applications. The model was implemented through a mobile 

application that underwent effective validation on unseen data by nematode experts. 

These studies highlight the potential of CNNs in nematode image classification. 

However, most existing work focuses either on limited species or lacks a comparative 

evaluation of pre-trained models under identical dataset conditions. In this experimental 

study, ResNet50 and VGG16 model were used that automatically classified and extracted 

features from digital microscopic images of five nematode species: Acrobeles, 

Acrobeloides, Aphelenchoides, Amplimerlinius, and Discolimus. The CNN was developed 

using Python, the Tensorflow framework, and the Keras API. 

Despite advancements in DL-based nematode classification, visual similarity, dataset 

size constraints, and generalization problems still pose difficulties for species-level 

discrimination. Additionally, there is a lack of research on hybrid techniques that combine 

the advantages of several CNN architectures. In order to categorize five nematode species—
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Acrobeles, Acrobeloides, Aphelenchoides, Amplimerlinius, and Discolaimus—we provide 

a novel hybrid framework in this study that uses ResNet50 and VGG16 CNN models.  

The study's primary goals are to: (i) use transfer learning to create and improve the 

ResNet50 and VGG16 models. (ii) compare the suggested method with cutting-edge 

methods on the same dataset; (iii) assess their classification performance on an enhanced I-

Nema dataset. 

The remainder of this paper is structured as follows: Section 2 describes the dataset, 

materials, and proposed methodology; Section 3 presents experimental results and 

discussion; and Section 4 concludes the study with future directions. 

 

2.  Materials and Methodology 

 

2.1. Dataset and preprocessing 

 

The "I-Nema" state-of-the-art dataset comprises five plant parasitic nematode (PPN) 

species—Acrobeles, Acrobeloides, Aphelenchoides, Amplimerlinius, and Discolimus—

has the highest damage relevance for crops. This publication presents the dataset to 

intentionally enhance the amount of our training data, data augmentation techniques like as 

flipping, shearing, zooming, and other procedures were used. Following that, there are 5000 

photos in the final dataset, with 1000 photos for every species of nematode. After that, it 

was divided into 80:20 ratios, with 3750 shots making up the training set and 1250 photos 

making up the test set.  

 

2.2. Transfer learning 

 

CNN requires a large amount of processing power, a large dataset, and training time. 

Transfer learning is an option for solving this issue. In order to classify nematode species, 

ResNet50 and VGG16 models are applied. Below is a more detailed explanation of the 

selection criteria that were employed.  

 

 2.2.1. ResNet50 

 

For image recognition applications, ResNet-50 is a deep convolutional neural network. 

Convolutional, pooling, and fully connected layers make up its total of fifty layers. Residual 

Network, or ResNet for short, is an acronym that stresses the use of residual connections or 

"shortcuts" that omit one or more levels. These shortcuts reduce the vanishing gradient 

problem, allowing for considerably deeper network training. ResNet-50 is well known for 

its strong performance in computer vision tasks, as demonstrated by its outcomes in the 

ImageNet competition. It combines 1×1, 3×3, and 7×7 convolutions with more than 23 

million parameters to produce a potent and computationally effective image. The ResNet50 

model's architecture is depicted below in Fig. 1. 
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Fig. 1.  Architecture of ResNet50. 

 

2.2.2. VGG16 

 

A straightforward and well-liked convolutional neural network architecture called VGG16 

(Visual Geometry Group) is used in the ImageNet project, a sizable visual database project 

that is used to create software for visual object recognition. The idea of Very Deep 

Convolutional Networks for Large-Scale Image Recognition was first up by A. Zisserman 

and K. Simonyan of the University of Oxford. Sixteen convolutional layers are present. 

VGG16 is frequently utilized straight out of the box for a variety of applications because it 

is freely available online. The VGG16 architecture is displayed in Fig. 2. 

 
Fig. 2.  Architecture of VGG16. 

 
Deep learning models are widely used for prediction, however they have certain 

drawbacks, such as overfitting, incorrect categorization, and incorrect predictions for low-

quality microscopic pictures. For the purpose of classifying nematodes, the unique hybrid 

model ResNet50 with VGG16 is suggested. 
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2.3. Proposed technique 

 

Fig. 3 shows the flowchart of the proposed methodology. First, the provided image 

undergoes preprocessing. Preprocessing includes increasing the image count by employing 

data augmentation and scaling each image to 299 by 299 pixels. Following this, VGG16 

and ResNet50, two widely used pre-trained CNN models, were employed for evaluation. 

 

 

Fig. 3.  Proposed methodology. 

 

On the "ImageNet" dataset, the ResNet50 picture categorization system achieves 

accuracy scores higher than 80 %. Convolutions, concatenations, drops, average pooling, 

maximum pooling, and fully connected layers are the essential elements of the model. This 

approach often performs batch normalization on the inputs used for activation. SoftMax is 

employed in the computation of loss. 

In contrast, the modified VGG16 that is offered consists of five blocks: two 

convolutional layers with Max Pooling and a Relu activation function make up the first two 

blocks, followed by three other blocks. Each block contains three convolutional layers using 

Max Pooling and a Relu activation function. Two blocks and an adaptive average pooling 

come after these blocks. A ReLu activation function, a dropout layer, and a linear layer are 

present in every block. Finally, a linear layer is used to predict the class of species. This 

model underwent 50 epochs of adjustment. The loss function is optimized by the "Adam 

optimizer," also referred to as the Adaptive Moment Estimation. The chosen model is 

trained using the cross-entropy loss function. 

 

3.  Results and Discussion 

 

In this work, photographs of five different species of nematodes are used to train two CNN 

models—the ResNet50 and the VGG16 model-through transfer learning. For feature 

extraction, data from the ImageNet dataset was utilized. These characteristics were then 

given to classification layers so they could be categorized. These layers are made up of 

softmax and fully-connected layers. Moreover, the fully-connected layer size is maintained 

in all models. Since our task involves five classes, the Softmax layer generates five 
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probabilities. One of the primary problems with applying transfer learning with little 

datasets is model overfitting.  

To avoid overfitting, a dropout with a value of 0.5 has been added before fully connected 

layers. Both models were trained for 50 epochs at a learning rate of 0.001 using the Adam 

optimizer. Moreover, Relu and Categorical-crossentropy, respectively, are the activation 

and loss functions that have been used. Python has been used in conjunction with the 

Tensorflow and Keras inbuilt libraries to develop CNN models. Through random dataset 

division, the suggested system's performance was examined, with 20 % of the dataset used 

for testing and 80 % for training. There are 1250 photos in the test set and 3750 images in 

the training set. 

Augmentation techniques such as flipping, shearing, zooming, and so on have been 

applied to training data in order to provide CNN architecture with a variety of visual input. 

[27,28]. The performance of the classification model was assessed using a confusion matrix. 

This table compares the actual and expected values to provide a summary of the prediction 

findings. Typically, the matrix is arranged squarely, with each row denoting an instance in 

the real class and each column denoting instances in the projected class.  

The elements of a confusion matrix for a binary classification task are explained as follows:  

True Positives (TP): The total number of positive predictions made with accuracy.  

True Negatives (TN): The quantity of cases that were accurately forecast as negative.  

False Positives (FP): The quantity of cases that were erroneously counted as positive.  

False Negatives (FN): The quantity of cases that were erroneously counted as negative. 

 

Four metrics have been used to evaluate model performance: F-score, Accuracy, Recall, 

and Precision. 

Accuracy: The ratio of correctly predicted instances to the total instances. 

Accuracy = (TP+TN)/(TP+TN+FN+FP) 

Precision: The ratio of correctly predicted positive instances to the total predicted positives. 

Precision = TP/(TP+FP) 

Recall (Sensitivity or True Positive Rate): The ratio of correctly predicted positive 

instances to all actual positives. 

Recall = TP/(TP+FN) 

F1 Score: The harmonic mean of precision and recall, providing a balance between the two. 

F1Score = 2×Precision×Recall/(Precision + Recall) 

 

Fig. 4 presents the confusion matrices for the VGG16 and ResNet50 models, illustrating 

the number of correct and incorrect predictions made by each model. The labels 0, 1, 2, 3, 

and 4 represent the nematode genera Acrobeles, Acrobeloides, Aphelenchoides, 

Amplimerlinius, and Discolaimus, respectively. The experimental data obtained with both 

models is shown in Table 1. The outcomes showed that the ResNet50 model performed 

better than the VGG16 model, with an accuracy of 98.02 %. Fig. 5 shows the plotted curves 

of training and validation accuracy over the epochs. The curves show that there is no over-

fitting because the training accuracy is higher and comparable to the validation accuracy. 
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Fig. 4. Confusion matrix (a) ResNet50 and (b) VGG16. 

 
Table 1. Classification results of InceptionV3 and VGG16. 
 

CNN Model Acc. (%) Prec.  Recall  F1score  

ResNet50 98.02 0.98 0.98 0.98 

 VGG16 95.87 0.96 0.95 0.9 

 
Fig. 5. Accuracy curves. (a) ResNet50 and (b) VGG16. 

 

3.1. Comparative analysis 

 

To improve the accuracy of nematode identification and classification, various researchers 

have proposed various architectures and techniques. Table 2 compares the current technique 

with our proposed technique. When compared to the existing state-of-the-art approaches, 

the proposed model achieved good accuracy. However, due to variations in model 

parameters and the use of different datasets, it is not possible to definitively determine 

which model performs better. Further evaluation can be conducted using additional 

performance metrics. 
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Table 2. Comparison of the proposed model with existing work.  
 

References Technique used Species/Dataset Performance 

metrics 

[29] CNN PPN 

(44 nematode images) 

Acc.=88 % 

 

[30] SVM C. elegans Acc.=94.8 % 

 

 

[31] 

 

 

SVM 

Sugarbeet nematodes 

(Heteroderaschachtii) 

Part 1 contains 47 

images with overall 435 

nematode cysts. Part 2 consists 

of 85 images with overall 1038 

nematode cysts 

 

Precision= 87 % 

and 

Recall= 84 % 

 

[22] 

CNN (AlexNet, VGG-

16, VGG-19, ResNet-

34, ResNet-50 and 

ResNet-101) 

PPN 

(2769 images were collected) 

 

Acc. 79:0 % 

Our 

Purposed 

Model 

ResNet50 & VGG16 PPN (5 Species) ResNet50=98 % 

VGG16=95 % 

 

4.  Conclusion and Future Scope 

 

Acrobeles, Acrobeloides, Aphelenchoides, Amplimerlinius, and Discolimus are the only 

five nematode species that are automatically categorized in this research utilizing the 

transfer learning method of ResNet50 and VGG16. 1500 microscopic photos of five PPN 

species were used in this study from the "I-Nema" public dataset. The number of photos 

was raised to 5000 by utilizing a variety of data augmentation techniques, such as flipping, 

shearing, zooming, and more. To classify these species, two cutting-edge DL models, 

VGG16 and InceptionV3, have been enhanced. The two different pre-trained CNN models 

were compared. Regarding classification results, it has been observed that the ResNet50 

model performs better than other VGG16 models. The VGG16 model has an accuracy of 

95.87 %, whereas the Inception V3 model has an accuracy of 98.02 %. 

It is clear that compared to other previous approaches, our suggested method has yielded 

better outcomes. However, the study only examines five distinct nematode species. In our 

upcoming job, we will need to enhance its performance. In actuality, concatenation or 

combination of deep learning models may lead to better categorization results. Furthermore, 

the investigation's dataset was extremely small. The experiment will be conducted on a 

proprietary core dataset, with plans to include additional species and expand the dataset in 

future work. This research and the accompanying benchmark are expected to be valuable 

to scholars from related domains for advancing their own studies. 

 

Data availability 

 

In this experimental paper we use secondary dataset set named as I-Nema dataset. And we 

select only five species out of them. https://github.com/xuequanlu/I-Nema 

https://github.com/xuequanlu/I-Nema
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