

Available Online

JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/JSR

J. Sci. Res. 4 (1), 33-37 (2012)

Generalized Derivations Acting as Homomorphisms and Anti-Homomorphisms of Gamma Rings

K. K. Dey^{*} and A. C. Paul

Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh

Received 2 July 2011, accepted in revised form 1 October 2011

Abstract

Let *M* be a prime Γ -ring and let *I* be a nonzero ideal of *M*. Suppose that *D*: $M \to M$ is a nonzero generalized derivation with associated derivation $d : M \to M$. Then we prove the following:

(i) If *D* acts as a homomorphism on *I*, then either d = 0 on *M* or *M* is commutative. (ii) If *M* satisfies the assumption (*) (see below), and if *D* acts as an anti-homomorphism on *I*, then either d = 0 on *M* or *M* is commutative.

Keywords: Prime Γ -rings; Generalized derivations; Torsion free Γ -rings; Homomorphisms; Anti-homomorphisms.

© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi:10.3329/jsr.v4i1.7911 J. Sci. Res. **4** (1), 33-37 (2012)

1. Introduction

In classical ring theory, Bell and Kappe [1] proved that if d is a derivation of a semiprime ring R which is either an endomorphism or an anti-endomorphism on R, then d = 0: whereas, the behavior of d is somewhat restricted in case of prime rings in the way that if d is a derivation of a prime ring R acting as a homomorphism or anti-homomorphism on a nonzero right ideal of R, then d = 0 on R.

Afterwards Yenigul and Argac [2] generalized these results with α -derivations and M. Ashraf, Rehman and Quadri [3] obtained the similar results with (σ, τ) -derivations. Analogously Rehman [4] extended the results for generalized derivation acting on nonzero ideals in case of prime rings. Recently Ali and Kumar [5] established the above mentioned result for generalized (θ, ϕ) -derivations in prime rings. By the same motivation, we extend the results in [4] of classical ring theory to the Γ -ring theory in the case of generalized derivation acts as a homomorphism and an anti-homomorphism of prime Γ -rings.

^{*} *Corresponding author*: kkdmath@yahoo.com

Definition 1.1 [6]

Let *M* and Γ be additive abelian groups. *M* is called a Γ -ring if for all $x, y, z \in M$, $\alpha, \beta \in \Gamma$ the following conditions are satisfied:

(i) $x\beta y \in M$,

- (ii) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)y = x\alpha y + x\beta y$, $x\alpha(y + z) = x\alpha y + x\alpha z$,
- (iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$.

Definition 1.2

A Γ -ring *M* is called prime if for any $a, b \in M$, $a\Gamma M \Gamma b = 0$ implies that either a = 0 or b = 0.

Definition 1.3

An additive mapping $d : M \to M$ is called a derivation if $d(x\alpha y) = d(x)\alpha y + x\alpha d(y)$ holds for all $x, y \in M$, $\alpha \in \Gamma$.

For a fixed $a \in M$, $\alpha \in \Gamma$, the mapping $I_a^{\alpha} : M \to M$ given by $I_a^{\alpha}(x) = [x, a]_{\alpha}$ is a derivation which is said to be inner derivation. An additive function $D_{a,b}^{\alpha} : M \to M$ is called generalized inner derivation if $D_{a,b}^{\alpha}(x) = a\alpha x + x\alpha b$ for some fixed $a, b \in M$, $\alpha \in \Gamma$. It is straight forward to note that if $D_{a,b}^{\alpha}$ is a generalized inner derivation, then for any $x, y \in M$, $\alpha \in \Gamma$, $D_{a,b}^{\alpha}(x\alpha y) = D_{a,b}^{\alpha}(x)\alpha y + x\alpha I_{b}^{\alpha}(y)$ where I_{b}^{α} is an inner derivation. In view of the above observation, the concept of generalized derivation is introduced as follows:

Definition 1.4

An additive mapping $D: M \to M$ is called a generalized derivation associated with a derivation d if $D(x\alpha y) = D(x)\alpha y + x\alpha d(y)$ for all $x, y \in M$, $\alpha \in \Gamma$.

Definition 1.5

The commutator $x\alpha y - y\alpha x$ will be denoted by $[x, y]_{\alpha}$. We know that $[x\beta y, z]_{\alpha} = [x, z]_{\alpha}\beta y + x\beta[y, z]_{\alpha} + x[\beta,\alpha]_z y$ and $[x, y\beta z]_{\alpha} = y\beta[x, z]_{\alpha} + [x, y]_{\alpha}\beta z + y[\beta,\alpha]_z z$.

We take an assumption (*) $x\beta z\alpha y = x\alpha z\beta y$ for all $x,y,z \in M$ and $\alpha,\beta\in\Gamma$. Using the assumption the basic commutator identities reduces to $[x\beta y, z]_{\alpha} = [x, z]_{\alpha}\beta y + x\beta[y, z]_{\alpha}$ and $[x, y\beta z]_{\alpha} = y\beta[x, z]_{\alpha} + [x, y]_{\alpha}\beta z$.

Definition 1.6

Let *M* be a Γ -ring. An additive mapping ϕ on *M* is called a homomorphism if $\phi(x, y) = \phi(x)\alpha\phi(y)$, for every $x, y \in M$ and $\alpha \in \Gamma$.

Definition 1.7

A Γ -ring *M* is commutative if $x\alpha y = y\alpha x$ for all $x, y \in M$ and $\alpha \in \Gamma$.

It is clear that a Γ -ring *M* is commutative if and only if $[x, y]_{\alpha} = 0$ for every $x, y \in M$ and $\alpha \in \Gamma$.

Definition 1.8

Let *S* be a nonempty subset of *M* and *D* be a generalized derivation on *M* with associated derivation *d*. A generalized derivation *D* of *M* is said to act as a homomorphism on *S* if $D(x\alpha y) = D(x)\alpha y + x\alpha d(y) = D(x)\alpha D(y)$ for all $x, y \in S$ and $\alpha \in \Gamma$.

Definition 1.9

Let *S* be a nonempty subset of *M* and *D* be a generalized derivation on *M* with associated derivation *d*. A generalized derivation *D* of *M* is said to act as an anti-homomorphism on *S* if $D(x\alpha y) = D(x)\alpha y + x\alpha d(y) = D(y)\alpha D(x)$ for all $x, y \in S$ and $\alpha \in \Gamma$.

2. Results

Lemma 2.1

If *d* is a nonzero derivation of a prime Γ -ring *M*, then the left and right annihilators of d(x) = 0, $x \in M$. In particular $a\beta[b, x]_{\alpha} = 0$ or $[b, x]_{\alpha}\beta a = 0$ implies that $I_b(x) = 0$, $(b \in Z, \alpha, \beta \in \Gamma)$ or a = 0.

Proof

In $a\alpha d(x) = 0$ for all $x \in M$, $\alpha \in \Gamma$, replace x by $x\beta y$. Then we get $a\alpha d(x\beta y) = 0 = a\alpha d(x)\beta y + a\alpha x\beta d(y) = a\alpha x\beta d(y)$, for all $x, y \in M$, $\alpha, \beta \in \Gamma$. If $d \neq 0$, that is $d(y) \neq 0$ for some $y \in M$, then, by the primeness of M we get a = 0.

Lemma 2.2

Let *I* be a nonzero right ideal in a prime Γ -ring *M*.

- (a) If *M* has a derivation *d* which is zero on *I*, then *d* is zero on *M*.
- (b) If *M* has homomorphism *T* which is the identity on *I*, then *T* is the identity on *M*.

Proof

- (a) If d(x) = 0, $x \in I$, then $0 = d(x\alpha r) = d(x)\alpha r + x\alpha d(r) = x\alpha d(r)$, for all $x \in I$, $r \in M$, $\alpha \in \Gamma$. By lemma 2.1, *d* must be zero since *I* is nonzero.
- (b) Let $x \in I$ and $a, b \in M$. Then $x\alpha a\beta b = T(x\alpha a\beta b) = T(x\alpha a)\beta T(b) = x\alpha a\beta T(b)$. Thus $x\alpha a\beta(b T(b)) = 0$ and either x = 0 or b T(b) = 0. But *I* is nonzero and so contains an $x \neq 0$. This forces T(b) = b for all $b \in M$.

Lemma 2.3 If a prime Γ -ring *M* contains a nonzero commutative right ideal *I*, then *M* is commutative.

Proof

If $x \in I$, then $I_x(y) = [x, y]_a = 0$, for all $y \in I$, $a \in \Gamma$, since *I* is commutative. By lemma 2.2(a), $I_x(y) = 0$ on *M* and *x* is in the center. Thus $[x, r]_a = 0$ for every $x \in I$, $r \in M$, $a \in \Gamma$. Hence $I_a(x) = 0$ for $a \in M$ and again by lemma 2.2(a), $I_a(r) = 0$ and *a* is in the center for all $a \in M$. Therefore *M* is commutative.

Theorem 2.4. Let *M* be a prime Γ -ring and *I* be a nonzero ideal of *M*. Suppose $D : M \to M$ is a nonzero generalized derivation with associated derivation *d*. If *D* acts as a homomorphism on *I* and if $d \neq 0$ on *I*, then *M* is commutative.

Proof

If D acts as a homomorphism on I, then we have

$$D(x\alpha y) = D(x)\alpha y + x\alpha d(y) = D(x)\alpha D(y) \text{ for all } x, y \in I, \alpha \in \Gamma.$$
(1)

For any $x, y, z \in I$, we find that

 $D(x\alpha y\beta z) = D(x\alpha y)\beta z + x\alpha y\beta d(z) = D(x)\alpha D(y)\beta z + x\alpha y\beta d(z) \text{ for all } x, y, z \in I, \alpha, \beta \in \Gamma$ (2)

On the other hand,

$$D(x\alpha y\beta z) = D(x)\alpha D(y\beta z) = D(x)\alpha D(y)\beta z + D(x)\alpha y\beta d(z) \text{ for all } x, y, z \in I, \alpha, \beta \in \Gamma.$$
(3)

On comparing (2) and (3), we get $(D(x) - x)\alpha y\beta d(z) = 0$ for all $x, y, z \in I$, $\alpha, \beta \in \Gamma$. Thus, primeness of *M* forces that either (D(x) - x) = 0 or d(z) = 0. If d(z) = 0 for all $z \in I$, then d = 0, a contradiction. On the other hand if D(x) = x for all $x \in I$, then

(4)

(5)

$$x\alpha y = D(x\alpha y) = D(x)\alpha y + x\alpha d(y)$$
 for all $x, y \in I, \alpha \in I$

and hence we find that $x\alpha d(y) = 0$.

Replace x by $x\beta z$ in $x\alpha d(y) = 0$,

we get $x\beta z\alpha d(y) = 0$, for all $x, y, z \in I$, $\alpha, \beta \in \Gamma$,

Similarly, replacing *x* by $z\beta x$, we get

 $z\beta x\alpha d(y) = 0$, all $x, y, z \in I$, $\alpha, \beta \in \Gamma$,

Subtracting (5) from (4), we get, $[x, z]_{\beta}\alpha d(y) = 0$, all $x, y, z \in I$, $\alpha, \beta \in \Gamma$.

Replacing *y* by $y\delta r$, $r \in I$, we get for all *x*, *y*, *z*, $r \in I$, $\alpha, \beta, \delta \in \Gamma$,

 $[x, z]_{\beta}\alpha d(y\delta r) = [x, z]_{\beta}\alpha d(y)\delta r + [x, z]_{\beta}\alpha y\delta d(r) = [x, z]_{\beta}\alpha y\delta d(r) = 0,$

Since $d(r) \neq 0$ on *I*, we get $[x, z]_{\beta} = 0$, for all $x, z \in I$, $\beta \in \Gamma$ by the primeness of *M*. By lemma 2.3, *M* is commutative.

Theorem 2.5. Let *M* be a prime Γ -ring satisfying the condition (*) and *I* be a nonzero ideal of *M*. Suppose $D : M \to M$ is a nonzero generalized derivation with associated derivation *d*. If *D* acts as an anti-homomorphism on *I* and if $d \neq 0$ on *I*, then *M* is commutative.

Proof

If D acts as an anti-homomorphism

$$D(x\alpha y) = D(x)\alpha y + x\alpha d(y) = D(y)\alpha D(x) \text{ for all } x, y \in I, \alpha \in \Gamma.$$
(6)

Replacing x by x
$$\beta y$$
 in (6) and (*), we get
 $x\alpha y\beta d(y) = D(y)\alpha x\beta d(y)$, for all $x, y \in I$, $\alpha, \beta \in \Gamma$. (7)
Now, replace x by $z\delta x$ in (7), to get
 $z\delta x\alpha y\beta d(y) = D(y)\alpha z\delta x\beta d(y)$, for all $x, y, z \in I$, $\alpha, \beta, \delta \in \Gamma$ (8)
Left multiplying (7) by z, we obtain

$$z\delta x\alpha y\beta d(y) = z\delta D(y)\alpha x\beta d(y), \text{ for all } x, y, z \in I, \ \alpha, \beta, \delta \in \Gamma$$
(9)

Comparing (8) and (9), we find that $[D(y), z]_{\alpha}\alpha x\beta d(y) = 0$, for all $x, y, z \in I$, $\alpha, \beta \in \Gamma$. Replacing x by $x\lambda r$, we get $[D(y), z]_{\alpha}\delta x\lambda r\beta d(y) = 0$, $x, y, z \in I$, $r \in M$, $\alpha, \beta, \delta, \lambda \in \Gamma$. By the primeness of M either $[D(y), z]_{\alpha}\delta x = 0$ or d(y) = 0. By lemma 2.1, either $[D(y), z]_{\alpha} = 0$ or d(y) = 0 Now, let $A = \{y \in I \mid [D(y), z]_{\alpha} = 0$, for all $z \in I\}$, $B = \{y \in I \mid d(y) = 0\}$. Thus A and B are additive subgroups of I and $I = A \cup B$. But a group can not be a union of two proper subgroups and hence I = A or I = B. If I = B then d(y) = 0 for all $y \in I$ and hence d = 0, a contradiction. On the other hand, if I = A, then $[D(y), z]_{\alpha} = 0$, for all $y, z \in I$, $\alpha \in \Gamma$. Now, replace y by $y\lambda z$ to get $[y, z]_{\alpha}\lambda d(z) + y\lambda[d(z), z]_{\alpha} = 0$. Again replacing y by $x\delta y$ we get $[x, z]_{\alpha}\delta y\lambda d(z) = 0$ for all $x, y, z \in I$, $\alpha, \delta, \lambda \in \Gamma$. Thus primeness of M implies that for each $z \in I$ either $[x, z]_{\alpha} = 0$ or d(z) = 0. If d(z) = 0 for all $z \in I$ then d = 0. Now, if $[x, z]_{\alpha} = 0$ for all $x, z \in I$, $\alpha \in \Gamma$, then by Lemma 2.3 we get the required result. This completes the proof of the theorem.

References

- H. E. Bell and L.C. Kappe, Acta Math. Hung. 53, 339 (1989). <u>http://dx.doi.org/10.1007/BF01953371</u>
- 2. M.S. Yenigul and N. Argac, Turkish J. Math. 18, 280 (1994).
- 3. M. Ashraf, N. Rehman and M.A. Quadri, Rad. Math. 9, 187 (1999).
- 4. Nadem-Ur-Rehman, Glasnik Matematicki 39 (59), 27 (2004).
- 5. A. Ali and D. Kumar, Internat. Math. Forum 2 (23), 1105 (2007).
- 6. W. E. Barnes, Pacific J. Math. 18, 411 (1966).
- 7. H. E. Bell and W.S. Martindale, Canad. Math. Bull. 30, 91 (1987).
- 8. B. Havala, Comm. Algebra 26, 1147 (1998). http://dx.doi.org/10.1080/00927879808826190
- 9. J. H. Mayne, Canad. Math. Bull. 27, 122 (1984). http://dx.doi.org/10.4153/CMB-1984-018-2
- 10. N. Rehman, Math. J. Okayama Univ. 44, 43 (2002).
- 11. M. J. Atteya, Int. Math. J. Algebra 4, 591 (2010).