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Abstract

Biometrics has transformed identification using human traits, but challenges like privacy
concerns and security vulnerabilities persist. Fingerprint biometrics, crucial for uniqueness,
has evolved with digitalization and machine learning. The paper investigates blurring effects
on fingerprint features, proposing machine learning for comparative minutiae-based
matching. Gaussian blur impact on identification accuracy is studied, with a decline observed
beyond a standard deviation (SD) of 0.3. FLANN matching score remains 100 % for SD in
the range 0.1-0.3. The diminishing matching ratio and modified minutiae spatial pattern with
increasing SD highlight the influence of blurring. The study assesses a machine learning
system's tolerance to blurring, revealing poor matching beyond an SD of 0.4. Generally, the
blurring is introduced because of skin scattering, optical blur, or motion blur, emphasizing
the need for a pilot mechanism with standard reference fingerprints before scanning for
developing future-ready fingerprint scanners.
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1. Introduction

Biometric technology has revolutionized personal identification and authentication by
utilizing unique physiological and behavioral characteristics of individuals. Physiological
traits such as fingerprints, facial structure, iris patterns, hand geometry, and DNA, along
with behavioral traits like voice, gait, typing rthythm, and signature dynamics, provide high
levels of distinctiveness, permanence, and resistance to forgery. These qualities make
biometrics a reliable and increasingly adopted approach across domains such as security,
healthcare, and forensics.

The core advantage of biometric systems lies in their ability to directly link an individual
to their biological traits. However, the adoption of biometric systems at scale continues to
face critical challenges, including privacy concerns over data storage, the threat of spoofing
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and cyber attacks, environmental sensitivity affecting accuracy, and the high cost of
implementation in large-scale applications. Biometric identification relies on three essential
processes: feature extraction, classification, and matching. Feature extraction algorithms
isolate distinguishing patterns to generate identity templates. Classification algorithms
categorize biometric data into known groups, while matching algorithms assess similarity
between input and stored templates. Despite advancements, system performance may still
degrade due to intrinsic factors such as aging, injuries, or illness, and extrinsic conditions
like sensor noise, illumination variations, and background interference.

Among all biometric modalities, fingerprints are considered the most stable and
accessible, offering high distinctiveness, permanence, and consistency over time. Their
inherent uniqueness and reliability make them an ideal primary biometric trait for human
identification. Fingerprints support advanced forensic investigations by enabling the
determination of identity and providing clues about specific actions [1]. The fingerprint
recognition systems typically analyze ridge flow, valley structures, and minutiae points
specifically ridge endings and bifurcations which serve as unique identifiers [2], as
illustrated in Fig. 1. Minutiae, defined by the distinct patterns formed by ridges and valleys,
are the most critical features for identification. The precise location and orientation of ridge
endings and splits along ridge paths enhance the accuracy of recognition.

Fingerprint features encompass various types of minutiae like crossover, core,
bifurcation, ridge ending, island, delta and pore and additional fine-grained details used in
automatic classification and minutiae extraction processes. On average, around 30 minutiae
points are employed in fingerprint matching techniques [3]. The spatial distribution and
arrangement of these points allow for effective discrimination between individual
fingerprints.
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Fig. 1. Important feature like minutiae and their characteristics in a given fingerprint?.

Studies have shown that even genetically identical individuals, such as twins, do not
share the same fingerprint patterns, further supporting their reliability. Traditional
fingerprint classification involves detecting global patterns such as arches, loops, and
whorls, along with specific minutiae like cores, deltas. With the advent of digital
technology, fingerprint analysis has shifted from manual methods to automated systems
using optical sensors and large databases for efficient identification [4].
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Although minutiae points were once considered insufficient for fingerprint
reconstruction, recent work suggests that partial reconstruction is possible. Nevertheless, a
significant difference remains between the matching accuracy of original and reconstructed
prints, reinforcing the need for robust and resilient recognition systems. In response to these
challenges, machine learning (ML) techniques have been extensively adopted in fingerprint
recognition tasks including feature extraction, classification, and matching. Techniques
such as Support Vector Machines (SVMs), Genetic Algorithms (GAs), and Artificial Neural
Networks (ANNs) have shown efficacy not only in fingerprint recognition but also in
handling non-linear and noisy datasets [5,6]. These approaches are widely applied in areas
ranging from stock market prediction [7], security [8]. More recently, Convolutional Neural
Networks (CNNss) have enabled alignment-free recognition, improving system performance
on distorted and partial fingerprint inputs.

Recent advancements in fingerprint identification highlight significant progress in
visualizing and analyzing third-level features, such as pores, incipient ridges, ridge
contours, scars, and creases. These microscopic features, often overlooked in earlier
studies, are now recognized for their role in enhancing individualization, donor profiling,
spoof detection, fingerprint age estimation, and even disease diagnosis [9]. As the demand
for high-fidelity fingerprint recognition increases, the development of advanced fingerprint
sensors including optical, capacitive, ultrasonic, and electromagnetic wave-based
acquisition technologies has greatly improved the precision and reliability of fingerprint
capture [10]. In forensic applications, the use of fluorescent organic materials for latent
fingerprint imaging has further enhanced visualization on complex surfaces at crime scenes
[11].

With the growing deployment of biometric identification systems, Automated
Fingerprint Identification Systems (AFIS) have become integral to sectors such as law
enforcement, border control, and consumer devices. Despite ethical concerns around data
privacy, fingerprint recognition remains less intrusive than DNA or facial biometrics [3].
Fingerprints are generally classified into three types patent (visible), plastic (impression-
based), and latent (invisible) each playing a crucial role in forensic investigations [12].

The combination of texture, minutiae, and frequency spectrum features in fingerprint
analysis has been extensively explored using CNN-based frameworks. One approach
addresses the limited usage of frequency spectrum in conventional systems and
incorporates a minutiae attention module to improve feature extraction accuracy.
Additionally, novel fingerprint-specific augmentation strategies have been proposed to
boost model generalization [13].

Various fingerprint feature extraction techniques, including K-means clustering, Local
Binary Patterns (LBP), Wavelet Packet Transform (WPT), and traditional minutiae-based
methods, have been evaluated [14]. Among them, minutiae and K-means approaches stand
out for their rotation invariance, computational efficiency, and uniqueness of extracted
features. Moreover, researchers have reported that extracting valleys, rather than ridges,
especially in blurred fingerprints, provides richer feature sets for subsequent matching
stages. Filtering techniques such as median, Gaussian, Wiener, Kalman, and Gabor filters
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have proven effective in enhancing these valley structures [15]. In healthcare, fingerprints
are employed to verify patient identities and detect fraudulent activities. A median filtering
approach followed by hybrid binarization has demonstrated an average precision of
85.28%, particularly in neonatal units where accurate identification is crucial [16].

Deep neural networks (DNNs) are also employed in biometric systems, either for single
or multimodal analysis, focusing on feature extraction, classifier design, and performance
evaluation [17]. Classification of fingerprints based on minutiae patterns arch, loop, and
whorl has been refined using CNNs [18]. Gan ef al. [19] proposed a deep learning-based
fingerprint classification using the SqueezeNet model, emphasizing reduced computational
cost without compromising accuracy. Further, Michelsanti et al. [20] used two transfer
learning-based CNNs VGG19-F (fast) and VGG19-S (slow) to classify fingerprint patterns
using the NIST SD4 dataset. Both models were trained using data augmentation techniques
such as flipping and rotation. The optimized networks achieved 94.4 % and 95.05 %
accuracy, respectively, highlighting the potential of CNNs in fingerprint categorization.

In scenarios involving blurred or distorted fingerprints from crime scenes or low-quality
sensors, automated systems struggle to achieve reliable matching. To tackle this, FDeblur-
GAN was introduced, a conditional GAN-based model that includes auxiliary sub-
networks: one for ridge extraction and another for ID verification. This multi-stage model,
trained on a dedicated blurred fingerprint dataset, achieved 95.18 % matching accuracy
[21].

For consumer-level devices, where computational resources are limited, lightweight
deblurring networks are preferred. The SRN+ model, enhanced using pseudo-labeling and
soft funnel labels, has demonstrated improved PSNR by +1 dB over MPRNet while
reducing parameters by 70 %, thus making it suitable for embedded systems [22].

The issue of fingerprint alteration, such as deliberate distortion to evade recognition, is
a growing challenge. The SOCOFing dataset provides 55,249 images with various
alteration types like Z-cut, obliteration, and central rotation. A CNN trained on this dataset
achieved 98.55 % accuracy, while a residual CNN pre-trained on ImageNet reached 99.88
% [23]. Moreover, encoding fingerprint ridge orientation and phase continuity using patch
dictionaries has enhanced resistance to Type-I and Type-II spoofing attacks [24]

The impact of varying distortion levels on recognition accuracy was investigated [25].
The results indicated a linear degradation in performance; higher distortion led to increased
false acceptance and rejection rates across 201 individuals’ fingerprints. For, fingerprints
affected by corruption or partial absence, generative CNNs have been used to reconstruct
missing ridge patterns. These enhanced images were then passed through standard tools
like MINDTCT and matched using MCC and BO-ZORTH3, yielding improved recognition
on multiple public datasets [26].

Blurring caused by skin scattering, optical mismatch, and motion is a major source of
degraded performance [27]. In particular, motion blur common during image acquisition
significantly lowers accuracy in finger-vein and fingerprint systems. A modified
DeblurGAN was proposed to restore motion-blurred images, effectively improving
recognition under real-world conditions [28].
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However, one critical aspect that remains underexplored is the effect of image blurring
on fingerprint recognition accuracy. In real-world scenarios, blur often occurs due to
motion, sensor limitations, or skin scattering, which can severely affect the quality of
captured prints and the reliability of recognition. This study uniquely investigates the
quantitative impact of Gaussian blurring on fingerprint identification accuracy using
minutiae and Gabor features. A novel threshold of blurring tolerance is established, beyond
which recognition performance significantly deteriorates. The use of the FLANN algorithm
enables efficient matching under varied blur conditions. The findings offer valuable insights
for developing robust fingerprint scanners equipped to handle real-world image
degradation. The paper is structured as follows: Section 2 describes the proposed
methodology, Section 3 discusses the experimental results, and Section 4 concludes with
potential future directions.

2. Materials and Methods

Blurred fingerprints pose challenges in minutiae detection, affecting identification
accuracy. Some fingerprint enhancement algorithms effectively reduce false minutiae but
may still yield inaccuracies. Input image quality, influenced by factors like skin conditions
and sensor noise, determines the success of pre-processing and minutiae extraction.
Fingerprint recognition relies on reliable minutiae extraction, influenced by image quality
and acquisition factors. The effect of blurring on biometric feature detection from the
fingerprints is investigated using Sokotocoventry fingerprint dataset (SOCOFing) [30]. The
dataset includes 6,000 fingerprint images collected from 600 subjects, featuring distinct
attributes that enhance its usability for research and analysis. Each fingerprint image is
accompanied by detailed labels indicating the subject's gender, as well as specific
information about the hand and finger from which the print was taken. This comprehensive
labelling provides valuable context for various studies, including those focused on
biometric identification, gender-based analysis, and finger-specific pattern recognition.
The overall methodology is shown in Fig. 2.

The system uses a compact, high-performance biometric device SLK20R USB
Fingerprint Scanner by ZKTeco featuring a 500 ppi optical CMOS sensor that captures
fingerprint images at 300x400 pixels with a 15%20 mm sensing area. It is designed to offer
precise minutiae detail essential for accurate recognition. It operates reliably in a wide
temperature range of -20 °C to 50 °C and 0-90 % humidity, making it suitable for varied
environments. The data acquisition converts the raw scanned image into a standard digital
format compatible with pre-processing algorithms. The reference image in each batch was
modified by adding different amount of Gaussian blur with varying kernel size and the
standard deviation using (1).

x2 +y2
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Fig. 2. Schematic of the methodology employed for proposed fingerprint matching.

where o is the standard deviation (SD) of the distribution and (x,y) represents the spatial
coordinates. The standard deviation determines the extent of the blurring affecting the high
frequency content of the image resulting in modification of the minutiae points within the
given fingerprint image. Images from the dataset are fetched and grouped into batches for
efficient processing. Each batch includes a reference (original) image and one or more
blurred versions. The batch-wise processing helps assess how blurring impacts minutiae
extraction and matching accuracy. For extracting unique patterns that are used for the
identification, the fingerprint image is processed for Gabor parameters and ridge contour
estimation. The input mage is converted to grey scale. Noise reduction and contrast
enhancement are carried out during the pre-processing step. Gabor filters are highly
effective for capturing both local orientation and frequency details from fingerprint images.
These filters are mathematically tuned to enhance fingerprint structures and suppress
irrelevant noise. By adjusting a Gabor filter to specific frequencies and orientations, it is
possible to extract precise local frequency and orientation information from the image. This
tuning process enables the filter to optimize the detection of relevant features within the
fingerprint. Sobel operator is used to calculate the gradient and based on the gradient
information the orientations of ridges are determined. The extracted ridges are enhanced
by suppressing non-maximum values in the direction perpendicular to the ridge
orientations. This is followed by non-maximum suppression, which sharpens ridge
continuity and supports clearer boundary formation. Adaptive thresholding is used to
handle variations in image intensity and converting the ridges map to binary. The small and
isolated regions are then removed to smoothen the ridge segment thereby creating
continuous ridge structures. Skeletonized representation of the binary ridge image is
achieved by Zhang-Suen algorithm. This ensures that extracted minutiae (ridge endings
and bifurcations) are geometrically accurate.

The parameters are matched using FLANN (Fast Library for Approximate Nearest
Neighbors) algorithm. It is a library of algorithms that is usually optimized for fast nearest
neighbor search in the large datasets and high-dimensional features. FLANN is used to find
matches between two fingerprint images by generating good key points using a ratio test
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based on the distance between the descriptors. The total number of key points generated
will be greater than the two key points obtained from two images. Based on the number of
key points obtained, key points are generated in both images, and accuracy is obtained [31].
Fingerprint matching involves calculating the Euclidean distance between feature vectors
derived from the fingerprints being compared. This distance measures how similar the
feature vectors are to one another. The smaller the Euclidean distance, the closer the match
between the two fingerprints. The minimum score obtained from this distance calculation
indicates the best alignment between the fingerprints, suggesting a higher likelihood that
the fingerprints belong to the same individual. This process ensures accurate and reliable
identification by quantifying the degree of similarity between the fingerprint features. If
the Euclidean distance between two feature vectors is less than a threshold, then the
decision that “the two images come from the same finger” is made, otherwise a decision
that “the two images come from different fingers” is assumed. The results obtained from
minutiae and Gabor parameters matching are statistically analysed.

3. Results

The results of the investigation into the impact of Gaussian blurring on fingerprint
identification accuracy are presented in Table 1 and Fig. 3. These results offer insight into
how varying levels of image blur influence the system's ability to accurately extract and
match fingerprint features. Specifically, the study examines the relationship between the
standard deviation (SD) of the Gaussian blur and two primary evaluation metrics: the
matching ratio and the FLANN matching score. The matching ratio is defined as the ratio
of the number of matched minutiae points to the total number of minutiae points extracted
from the reference fingerprint. For this study, the reference fingerprint contained a total of
754 minutiae points. In contrast, the FLANN matching score represents the accuracy of
feature matching based on Gabor filter parameters, which are particularly effective in
capturing both orientation and frequency components of fingerprint ridges.

Table 1. Variation of minutiae matching ratio and FLANN matching score with standard
deviation (SD) of the Gaussian blur added to the target fingerprint image.

S. NO. SD Matched Ratio Score
1 0.1 754 1.0 100
2 0.2 754 1.0 100
3 0.3 740 0.98 100
4 0.4 646 0.85 78
5 0.5 484 0.64 42
6 0.6 358 0.47 35
7 0.7 239 0.316 21
8 0.8 159 0.21 23
9 09 121 0.16 23

10 1.0 102 0.13 21
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Fig. 3. The extraction of minutiae is affected by the amount of Gaussian blur present in the reference
fingerprint. The first column shows the SD used for introducing the blur in the fingerprint and the
resulted image is shown in column 2. The image obtained after thresholding and contouring is shown
in column 3. The extracted minutiae are marked as red and shown in column 4.
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In this case, 128 Gabor parameters were extracted from the reference fingerprint, and
the FLANN matching score is expressed as the percentage of these parameters that were
successfully matched between the reference and the blurred images. To evaluate the impact
of blur, Gaussian noise was added to the reference fingerprint images by varying the SD
from 0.1 to 1.0, while the kernel size was adjusted from 3x3 to 21x21. Preliminary tests
revealed that kernel sizes greater than 3x3 introduced significant distortion, rendering the
matching process unreliable. Hence, for consistency and reliability, the final experiments
were carried out using a 3x3 kernel size.

Analysis of the results reveals three distinct performance regions with respect to the SD
values. For SD values in the range of 0.1 to 0.3, both the matching ratio and FLANN score
remained close to 100 %, indicating a region of best matching. This suggests that the system
is highly tolerant to minor blurring and can still accurately identify the fingerprints. At SD
= 0.4, the system exhibited a drop in both metrics, identifying a region of acceptable
matching, where recognition is still possible but slightly degraded. Beyond this point,
particularly from SD = 0.5 to 1.0, a significant decline in matching performance is
observed. This marks the region of poor matching, where the identification reliability falls
below acceptable thresholds. Fig. 3 further illustrates these observations by visually
depicting the progressive distortion of minutiae patterns as SD increases. It also includes
images of the blurred fingerprints post-Gaussian filtering and their corresponding pre-
processed versions following thresholding and ridge contour enhancement. These visual
cues confirm the numerical findings, showing how increased blurring not only reduces the
number of matched minutiae but also alters their spatial configuration, thereby degrading
the ability of the system to perform accurate identification.

4. Conclusion

This study investigated how varying degrees of Gaussian blur affect the accuracy of
fingerprint recognition using a machine learning-based approach that combines minutiae
and Gabor features. Through experimentation with different standard deviation (SD)
values, it was found that the system maintains high recognition accuracy for SD values up
to 0.3, where both the minutiae matching ratio and FLANN score remained near 100 %.
However, a noticeable decline in performance began at SD = 0.4, and further degradation
was observed as the blur increased. The study effectively identified three performance
regions optimal, acceptable, and poor based on SD values, helping to quantify the tolerance
limit of fingerprint recognition systems under blur conditions. The results emphasize that
blurring caused by motion, skin scattering, or optical imperfections significantly alters the
spatial configuration of minutiae points and reduces the system’s ability to correctly match
fingerprint images. These findings are critical for designing robust and accurate fingerprint
scanners capable of functioning in real-world environments where image degradation is
common. For future enhancement, the study suggests incorporating a pilot mechanism
using standard reference fingerprints to assess image quality before final capture. This
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proactive step could help ensure that input images meet minimum quality thresholds,
improving system reliability in practical deployments.
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