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Abstract 

Biometrics has transformed identification using human traits, but challenges like privacy 

concerns and security vulnerabilities persist. Fingerprint biometrics, crucial for uniqueness, 

has evolved with digitalization and machine learning. The paper investigates blurring effects 

on fingerprint features, proposing machine learning for comparative minutiae-based 

matching. Gaussian blur impact on identification accuracy is studied, with a decline observed 

beyond a standard deviation (SD) of 0.3. FLANN matching score remains 100 % for SD in 

the range 0.1-0.3. The diminishing matching ratio and modified minutiae spatial pattern with 

increasing SD highlight the influence of blurring. The study assesses a machine learning 

system's tolerance to blurring, revealing poor matching beyond an SD of 0.4. Generally, the 

blurring is introduced because of skin scattering, optical blur, or motion blur, emphasizing 

the need for a pilot mechanism with standard reference fingerprints before scanning for 

developing future-ready fingerprint scanners. 

Keywords: Biometric features; Fingerprint matching; Minutiae; Gaussian blurring; Minutiae 
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1. Introduction 

 

Biometric technology has revolutionized personal identification and authentication by 

utilizing unique physiological and behavioral characteristics of individuals. Physiological 

traits such as fingerprints, facial structure, iris patterns, hand geometry, and DNA, along 

with behavioral traits like voice, gait, typing rhythm, and signature dynamics, provide high 

levels of distinctiveness, permanence, and resistance to forgery. These qualities make 

biometrics a reliable and increasingly adopted approach across domains such as security, 

healthcare, and forensics. 

 The core advantage of biometric systems lies in their ability to directly link an individual 

to their biological traits. However, the adoption of biometric systems at scale continues to 

face critical challenges, including privacy concerns over data storage, the threat of spoofing 
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and cyber attacks, environmental sensitivity affecting accuracy, and the high cost of 

implementation in large-scale applications. Biometric identification relies on three essential 

processes: feature extraction, classification, and matching. Feature extraction algorithms 

isolate distinguishing patterns to generate identity templates. Classification algorithms 

categorize biometric data into known groups, while matching algorithms assess similarity 

between input and stored templates. Despite advancements, system performance may still 

degrade due to intrinsic factors such as aging, injuries, or illness, and extrinsic conditions 

like sensor noise, illumination variations, and background interference. 

 Among all biometric modalities, fingerprints are considered the most stable and 

accessible, offering high distinctiveness, permanence, and consistency over time. Their 

inherent uniqueness and reliability make them an ideal primary biometric trait for human 

identification. Fingerprints support advanced forensic investigations by enabling the 

determination of identity and providing clues about specific actions [1]. The fingerprint 

recognition systems typically analyze ridge flow, valley structures, and minutiae points 

specifically ridge endings and bifurcations which serve as unique identifiers [2], as 

illustrated in Fig. 1. Minutiae, defined by the distinct patterns formed by ridges and valleys, 

are the most critical features for identification. The precise location and orientation of ridge 

endings and splits along ridge paths enhance the accuracy of recognition. 

 Fingerprint features encompass various types of minutiae like crossover, core, 

bifurcation, ridge ending, island, delta and pore and additional fine-grained details used in 

automatic classification and minutiae extraction processes. On average, around 30 minutiae 

points are employed in fingerprint matching techniques [3]. The spatial distribution and 

arrangement of these points allow for effective discrimination between individual 

fingerprints. 

 
Fig. 1. Important feature like minutiae and their characteristics in a given fingerprint2. 

 

Studies have shown that even genetically identical individuals, such as twins, do not 

share the same fingerprint patterns, further supporting their reliability. Traditional 

fingerprint classification involves detecting global patterns such as arches, loops, and 

whorls, along with specific minutiae like cores, deltas. With the advent of digital 

technology, fingerprint analysis has shifted from manual methods to automated systems 

using optical sensors and large databases for efficient identification [4]. 
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 Although minutiae points were once considered insufficient for fingerprint 

reconstruction, recent work suggests that partial reconstruction is possible. Nevertheless, a 

significant difference remains between the matching accuracy of original and reconstructed 

prints, reinforcing the need for robust and resilient recognition systems. In response to these 

challenges, machine learning (ML) techniques have been extensively adopted in fingerprint 

recognition tasks including feature extraction, classification, and matching. Techniques 

such as Support Vector Machines (SVMs), Genetic Algorithms (GAs), and Artificial Neural 

Networks (ANNs) have shown efficacy not only in fingerprint recognition but also in 

handling non-linear and noisy datasets [5,6]. These approaches are widely applied in areas 

ranging from stock market prediction [7], security [8]. More recently, Convolutional Neural 

Networks (CNNs) have enabled alignment-free recognition, improving system performance 

on distorted and partial fingerprint inputs. 

 Recent advancements in fingerprint identification highlight significant progress in 

visualizing and analyzing third-level features, such as pores, incipient ridges, ridge 

contours, scars, and creases. These microscopic features, often overlooked in earlier 

studies, are now recognized for their role in enhancing individualization, donor profiling, 

spoof detection, fingerprint age estimation, and even disease diagnosis [9]. As the demand 

for high-fidelity fingerprint recognition increases, the development of advanced fingerprint 

sensors including optical, capacitive, ultrasonic, and electromagnetic wave-based 

acquisition technologies has greatly improved the precision and reliability of fingerprint 

capture [10]. In forensic applications, the use of fluorescent organic materials for latent 

fingerprint imaging has further enhanced visualization on complex surfaces at crime scenes 

[11]. 

 With the growing deployment of biometric identification systems, Automated 

Fingerprint Identification Systems (AFIS) have become integral to sectors such as law 

enforcement, border control, and consumer devices. Despite ethical concerns around data 

privacy, fingerprint recognition remains less intrusive than DNA or facial biometrics [3]. 

Fingerprints are generally classified into three types patent (visible), plastic (impression-

based), and latent (invisible) each playing a crucial role in forensic investigations [12]. 

 The combination of texture, minutiae, and frequency spectrum features in fingerprint 

analysis has been extensively explored using CNN-based frameworks. One approach 

addresses the limited usage of frequency spectrum in conventional systems and 

incorporates a minutiae attention module to improve feature extraction accuracy. 

Additionally, novel fingerprint-specific augmentation strategies have been proposed to 

boost model generalization [13]. 

 Various fingerprint feature extraction techniques, including K-means clustering, Local 

Binary Patterns (LBP), Wavelet Packet Transform (WPT), and traditional minutiae-based 

methods, have been evaluated [14]. Among them, minutiae and K-means approaches stand 

out for their rotation invariance, computational efficiency, and uniqueness of extracted 

features. Moreover, researchers have reported that extracting valleys, rather than ridges, 

especially in blurred fingerprints, provides richer feature sets for subsequent matching 

stages. Filtering techniques such as median, Gaussian, Wiener, Kalman, and Gabor filters 
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have proven effective in enhancing these valley structures [15]. In healthcare, fingerprints 

are employed to verify patient identities and detect fraudulent activities. A median filtering 

approach followed by hybrid binarization has demonstrated an average precision of 

85.28%, particularly in neonatal units where accurate identification is crucial [16]. 

 Deep neural networks (DNNs) are also employed in biometric systems, either for single 

or multimodal analysis, focusing on feature extraction, classifier design, and performance 

evaluation [17]. Classification of fingerprints based on minutiae patterns arch, loop, and 

whorl has been refined using CNNs [18]. Gan et al. [19] proposed a deep learning-based 

fingerprint classification using the SqueezeNet model, emphasizing reduced computational 

cost without compromising accuracy. Further, Michelsanti et al. [20] used two transfer 

learning-based CNNs VGG19-F (fast) and VGG19-S (slow) to classify fingerprint patterns 

using the NIST SD4 dataset. Both models were trained using data augmentation techniques 

such as flipping and rotation. The optimized networks achieved 94.4 % and 95.05 % 

accuracy, respectively, highlighting the potential of CNNs in fingerprint categorization. 

 In scenarios involving blurred or distorted fingerprints from crime scenes or low-quality 

sensors, automated systems struggle to achieve reliable matching. To tackle this, FDeblur-

GAN was introduced, a conditional GAN-based model that includes auxiliary sub-

networks: one for ridge extraction and another for ID verification. This multi-stage model, 

trained on a dedicated blurred fingerprint dataset, achieved 95.18 % matching accuracy 

[21]. 

 For consumer-level devices, where computational resources are limited, lightweight 

deblurring networks are preferred. The SRN+ model, enhanced using pseudo-labeling and 

soft funnel labels, has demonstrated improved PSNR by +1 dB over MPRNet while 

reducing parameters by 70 %, thus making it suitable for embedded systems [22]. 

 The issue of fingerprint alteration, such as deliberate distortion to evade recognition, is 

a growing challenge. The SOCOFing dataset provides 55,249 images with various 

alteration types like Z-cut, obliteration, and central rotation. A CNN trained on this dataset 

achieved 98.55 % accuracy, while a residual CNN pre-trained on ImageNet reached 99.88 

% [23]. Moreover, encoding fingerprint ridge orientation and phase continuity using patch 

dictionaries has enhanced resistance to Type-I and Type-II spoofing attacks [24] 

 The impact of varying distortion levels on recognition accuracy was investigated [25]. 

The results indicated a linear degradation in performance; higher distortion led to increased 

false acceptance and rejection rates across 201 individuals’ fingerprints. For, fingerprints 

affected by corruption or partial absence, generative CNNs have been used to reconstruct 

missing ridge patterns. These enhanced images were then passed through standard tools 

like MINDTCT and matched using MCC and BO-ZORTH3, yielding improved recognition 

on multiple public datasets [26]. 

 Blurring caused by skin scattering, optical mismatch, and motion is a major source of 

degraded performance [27]. In particular, motion blur common during image acquisition 

significantly lowers accuracy in finger-vein and fingerprint systems. A modified 

DeblurGAN was proposed to restore motion-blurred images, effectively improving 

recognition under real-world conditions [28]. 
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 However, one critical aspect that remains underexplored is the effect of image blurring 

on fingerprint recognition accuracy. In real-world scenarios, blur often occurs due to 

motion, sensor limitations, or skin scattering, which can severely affect the quality of 

captured prints and the reliability of recognition. This study uniquely investigates the 

quantitative impact of Gaussian blurring on fingerprint identification accuracy using 

minutiae and Gabor features. A novel threshold of blurring tolerance is established, beyond 

which recognition performance significantly deteriorates. The use of the FLANN algorithm 

enables efficient matching under varied blur conditions. The findings offer valuable insights 

for developing robust fingerprint scanners equipped to handle real-world image 

degradation. The paper is structured as follows: Section 2 describes the proposed 

methodology, Section 3 discusses the experimental results, and Section 4 concludes with 

potential future directions. 

 

2. Materials and Methods 

 

Blurred fingerprints pose challenges in minutiae detection, affecting identification 

accuracy. Some fingerprint enhancement algorithms effectively reduce false minutiae but 

may still yield inaccuracies. Input image quality, influenced by factors like skin conditions 

and sensor noise, determines the success of pre-processing and minutiae extraction. 

Fingerprint recognition relies on reliable minutiae extraction, influenced by image quality 

and acquisition factors. The effect of blurring on biometric feature detection from the 

fingerprints is investigated using Sokotocoventry fingerprint dataset (SOCOFing) [30]. The 

dataset includes 6,000 fingerprint images collected from 600 subjects, featuring distinct 

attributes that enhance its usability for research and analysis. Each fingerprint image is 

accompanied by detailed labels indicating the subject's gender, as well as specific 

information about the hand and finger from which the print was taken. This comprehensive 

labelling provides valuable context for various studies, including those focused on 

biometric identification, gender-based analysis, and finger-specific pattern recognition. 

The overall methodology is shown in Fig. 2. 

The system uses a compact, high-performance biometric device SLK20R USB 

Fingerprint Scanner by ZKTeco featuring a 500 ppi optical CMOS sensor that captures 

fingerprint images at 300×400 pixels with a 15×20 mm sensing area. It is designed to offer 

precise minutiae detail essential for accurate recognition. It operates reliably in a wide 

temperature range of -20 °C to 50 °C and 0–90 % humidity, making it suitable for varied 

environments. The data acquisition converts the raw scanned image into a standard digital 

format compatible with pre-processing algorithms. The reference image in each batch was 

modified by adding different amount of Gaussian blur with varying kernel size and the 

standard deviation using (1). 
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Fig. 2. Schematic of the methodology employed for proposed fingerprint matching. 

 
where σ is the standard deviation (SD) of the distribution and (x,y) represents the spatial 

coordinates. The standard deviation determines the extent of the blurring affecting the high 

frequency content of the image resulting in modification of the minutiae points within the 

given fingerprint image. Images from the dataset are fetched and grouped into batches for 

efficient processing. Each batch includes a reference (original) image and one or more 

blurred versions. The batch-wise processing helps assess how blurring impacts minutiae 

extraction and matching accuracy. For extracting unique patterns that are used for the 

identification, the fingerprint image is processed for Gabor parameters and ridge contour 

estimation. The input mage is converted to grey scale. Noise reduction and contrast 

enhancement are carried out during the pre-processing step. Gabor filters are highly 

effective for capturing both local orientation and frequency details from fingerprint images. 

These filters are mathematically tuned to enhance fingerprint structures and suppress 

irrelevant noise. By adjusting a Gabor filter to specific frequencies and orientations, it is 

possible to extract precise local frequency and orientation information from the image. This 

tuning process enables the filter to optimize the detection of relevant features within the 

fingerprint. Sobel operator is used to calculate the gradient and based on the gradient 

information the orientations of ridges are determined. The extracted ridges are enhanced 

by suppressing non-maximum values in the direction perpendicular to the ridge 

orientations. This is followed by non-maximum suppression, which sharpens ridge 

continuity and supports clearer boundary formation. Adaptive thresholding is used to 

handle variations in image intensity and converting the ridges map to binary. The small and 

isolated regions are then removed to smoothen the ridge segment thereby creating 

continuous ridge structures. Skeletonized representation of the binary ridge image is 

achieved by Zhang-Suen algorithm. This ensures that extracted minutiae (ridge endings 

and bifurcations) are geometrically accurate.  

The parameters are matched using FLANN (Fast Library for Approximate Nearest 

Neighbors) algorithm. It is a library of algorithms that is usually optimized for fast nearest 

neighbor search in the large datasets and high-dimensional features. FLANN is used to find 

matches between two fingerprint images by generating good key points using a ratio test 
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based on the distance between the descriptors. The total number of key points generated 

will be greater than the two key points obtained from two images. Based on the number of 

key points obtained, key points are generated in both images, and accuracy is obtained [31]. 

Fingerprint matching involves calculating the Euclidean distance between feature vectors 

derived from the fingerprints being compared. This distance measures how similar the 

feature vectors are to one another. The smaller the Euclidean distance, the closer the match 

between the two fingerprints. The minimum score obtained from this distance calculation 

indicates the best alignment between the fingerprints, suggesting a higher likelihood that 

the fingerprints belong to the same individual. This process ensures accurate and reliable 

identification by quantifying the degree of similarity between the fingerprint features. If 

the Euclidean distance between two feature vectors is less than a threshold, then the 

decision that “the two images come from the same finger” is made, otherwise a decision 

that “the two images come from different fingers” is assumed. The results obtained from 

minutiae and Gabor parameters matching are statistically analysed.  

 

3. Results 

 

The results of the investigation into the impact of Gaussian blurring on fingerprint 

identification accuracy are presented in Table 1 and Fig. 3. These results offer insight into 

how varying levels of image blur influence the system's ability to accurately extract and 

match fingerprint features. Specifically, the study examines the relationship between the 

standard deviation (SD) of the Gaussian blur and two primary evaluation metrics: the 

matching ratio and the FLANN matching score. The matching ratio is defined as the ratio 

of the number of matched minutiae points to the total number of minutiae points extracted 

from the reference fingerprint. For this study, the reference fingerprint contained a total of 

754 minutiae points. In contrast, the FLANN matching score represents the accuracy of 

feature matching based on Gabor filter parameters, which are particularly effective in 

capturing both orientation and frequency components of fingerprint ridges.  

 
Table 1. Variation of minutiae matching ratio and FLANN matching score with standard 

deviation (SD) of the Gaussian blur added to the target fingerprint image. 
 

S. NO. SD Matched Ratio Score 

1 0.1 754 1.0 100 

2 0.2 754 1.0 100 

3 0.3 740 0.98 100 

4 0.4 646 0.85 78 

5 0.5 484 0.64 42 

6 0.6 358 0.47 35 

7 0.7 239 0.316 21 

8 0.8 159 0.21 23 

9 0.9 121 0.16 23 

10 1.0 102 0.13 21 
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Fig. 3. The extraction of minutiae is affected by the amount of Gaussian blur present in the reference 

fingerprint. The first column shows the SD used for introducing the blur in the fingerprint and the 

resulted image is shown in column 2. The image obtained after thresholding and contouring is shown 

in column 3. The extracted minutiae are marked as red and shown in column 4. 
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In this case, 128 Gabor parameters were extracted from the reference fingerprint, and 

the FLANN matching score is expressed as the percentage of these parameters that were 

successfully matched between the reference and the blurred images. To evaluate the impact 

of blur, Gaussian noise was added to the reference fingerprint images by varying the SD 

from 0.1 to 1.0, while the kernel size was adjusted from 3×3 to 21×21. Preliminary tests 

revealed that kernel sizes greater than 3×3 introduced significant distortion, rendering the 

matching process unreliable. Hence, for consistency and reliability, the final experiments 

were carried out using a 3×3 kernel size. 

Analysis of the results reveals three distinct performance regions with respect to the SD 

values. For SD values in the range of 0.1 to 0.3, both the matching ratio and FLANN score 

remained close to 100 %, indicating a region of best matching. This suggests that the system 

is highly tolerant to minor blurring and can still accurately identify the fingerprints. At SD 

= 0.4, the system exhibited a drop in both metrics, identifying a region of acceptable 

matching, where recognition is still possible but slightly degraded. Beyond this point, 

particularly from SD = 0.5 to 1.0, a significant decline in matching performance is 

observed. This marks the region of poor matching, where the identification reliability falls 

below acceptable thresholds. Fig. 3 further illustrates these observations by visually 

depicting the progressive distortion of minutiae patterns as SD increases. It also includes 

images of the blurred fingerprints post-Gaussian filtering and their corresponding pre-

processed versions following thresholding and ridge contour enhancement. These visual 

cues confirm the numerical findings, showing how increased blurring not only reduces the 

number of matched minutiae but also alters their spatial configuration, thereby degrading 

the ability of the system to perform accurate identification. 

 

4. Conclusion 

This study investigated how varying degrees of Gaussian blur affect the accuracy of 

fingerprint recognition using a machine learning-based approach that combines minutiae 

and Gabor features. Through experimentation with different standard deviation (SD) 

values, it was found that the system maintains high recognition accuracy for SD values up 

to 0.3, where both the minutiae matching ratio and FLANN score remained near 100 %. 

However, a noticeable decline in performance began at SD = 0.4, and further degradation 

was observed as the blur increased. The study effectively identified three performance 

regions optimal, acceptable, and poor based on SD values, helping to quantify the tolerance 

limit of fingerprint recognition systems under blur conditions. The results emphasize that 

blurring caused by motion, skin scattering, or optical imperfections significantly alters the 

spatial configuration of minutiae points and reduces the system’s ability to correctly match 

fingerprint images. These findings are critical for designing robust and accurate fingerprint 

scanners capable of functioning in real-world environments where image degradation is 

common. For future enhancement, the study suggests incorporating a pilot mechanism 

using standard reference fingerprints to assess image quality before final capture. This 
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proactive step could help ensure that input images meet minimum quality thresholds, 

improving system reliability in practical deployments. 
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