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Abstract 

In the present work, the Bianchi Type III spacetime is taken into account in the presence of a 

cosmic string and a domain wall within the framework of 𝑓(𝑅, 𝑇) theory of gravitation. A 

specific form of the 𝑓(𝑅, 𝑇), theory, namely 𝑓(𝑅, 𝑇) = 𝑅 + 2𝑓(𝑇), is taken into account in 

this work. The modified field equations for cosmic string and domain wall models are solved 

using a particular form of the deceleration parameter, and their physical behaviors are 

analyzed. In addition, the EoS parameter, jerk parameter, statefinder pair, and 𝑂𝑚(𝑧) 

diagnostic are utilized to analyze the evolutionary behavior of the Universe under the 

considered modified gravity model, indicating a quintessence-type nature of the cosmic 

expansion.This research offers significant insights into the anisotropic behaviour of the 

Universe and effectively describes the cosmic acceleration observed during late times. Our 

findings are then compared to recent observational data and are found to be in agreement with 

the ΛCDM model.  
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1.   Introduction 

The early Universe remains one of the most captivating subjects in cosmology, holding the 

key to unravelling the mysteries of its origin and evolution. Einstein's General Theory of 

Relativity, a cornerstone of modern physics, has profoundly shaped our understanding of 

cosmic dynamics and the large-scale structure of the Universe. However, the complexities 

of the early Universe, including the phase transitions that led to the formation of topological 

defects such as cosmic strings and domain walls, demand deeper investigation. The last two 

decades have marked a turning point in cosmology, as compelling observations from Type 

Ia supernovae [1-3] and the cosmic microwave background (CMB) [4] reveal an 

accelerating Universe. Moreover, studies on Baryon Acoustic Oscillations [5,6], Wilkinson 

Microwave Anisotropy Probe [7], the large-scale structure of the universe [8,9], 

assessments of galaxy redshifts [10], and examinations of the CMB radiation (CMBR) 
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[11,12] all provide convincing empirical proof for this phenomenon. This revelation not 

only challenges Einstein's original framework but also beckons us toward a deeper 

understanding of the forces shaping our cosmic destiny. 

The study of cosmic strings and domain walls has garnered significant interest in 

cosmology due to their critical role in the formation of structures and the evolution of the 

Universe. These entities are topological defects that come out as a result of spontaneous 

symmetry breaking, typically during phase transitions in the early Universe. The 

gravitational influences of cosmic strings have been extensively explored in works by 

Vilenkin [13], Letelier [14], Satchel [15], and Adhav et al. [16, 17] within the framework 

of general relativity. 

Cosmic strings are one-dimensional topological defects that may have formed during 

the early Universe's phase transitions. These are comparable to ‘cracks’ in spacetime 

resulting from spontaneous symmetry breaking in a high-energy field. Cosmic strings tell 

us about the observable effects of extreme energy densities and gravitational lensing, the 

formation of large-scale structures like galaxies and clusters. It provides a testbed for 

understanding the dynamics of symmetry-breaking mechanisms in the early Universe. 

Some distinguishing features of cosmic strings are, they are extremely thin but incredibly 

dense, with masses that could stretch across vast cosmic scales, Capable of producing 

gravitational lensing effects, bending light from distant sources, their oscillations and decay 

can generate gravitational waves, potentially detectable by modern observatories. Reddy 

[18,19] has obtained string cosmological models in Brans-Dicke and Saez-Ballester scalar 

tensor theories of gravitation when the sum of the energy density and the tension density of 

the cosmic string source vanish. String cosmological models in alternative theories of 

gravitation have been investigated by several authors [20-24]. Reddy and Naidu [25,26] 

analysed the cosmic strings with 𝑓(𝑅, 𝑇) gravity theory and their analysis revealed the 

absence of viable cosmic string and perfect fluid configurations in this particular theory. 

Pawar et al. [27] Examined the behaviour of string cosmological model incorporating a 

massless scalar field within the framework of a modified theory of general relativity. 

Bianchi type VI₀ space-time was investigated by Pawar [28] in the presence of a cloud of 

strings coupled with a perfect fluid within the framework of 𝑓(𝑅, 𝑇) gravity. Chirde et al. 

[29] investigated the LRS Bianchi type I metric with the source as barotropic perfect fluid 

and cosmic string in the framework of 𝑓(𝑇) gravity using three different functional forms 

of 𝑓(𝑇) gravity. Kantowaski-Sachs cosmological model with viscous cosmic string in the 

quadratic form of teleparallel gravity for a particular choice of 𝑓(𝑇) formalism was studied 

by Bhoyar et al. [30]. 

Domain walls are two-dimensional topological defects that arise when a discrete 

symmetry is spontaneously broken during a phase transition. They can be visualized as 

‘boundaries’ separating regions with different vacuum states. Unlike cosmic strings, 

domain walls are extended structures with large surface energy densities. Their gravitational 

effects are significant, but their persistence could disrupt the observed Universe, requiring 

mechanisms to limit their abundance. Their presence could manifest in gravitational waves, 

CMB anisotropies, or deviations in galaxy distributions. While talking about Topological 
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Stability of domain wall, Domain walls are stable due to their topological nature, arising 

from the vacuum manifold's configuration during symmetry breaking. Hill et al. proposed 

that domain walls are important in the formation of galaxies. Domain walls have gained 

significant attention in recent years from a cosmological perspective, particularly due to 

their role in newly proposed scenarios of galaxy formation. According to the researcher the 

formation of galaxies is due to domain walls produced during phase transitions after the 

time of recombination of matter and radiation. The study of Thick Domain Walls in Brans-

Dicke Theory of Gravitation was done by Pawar and Bayaskar [31]. Some authors have 

investigated domain walls in alternative theories of gravitation, one can refer [32-35]. Rao 

et.al. discussed Kantowski-Sachs Models with Domain Walls in 𝑓(𝑅, 𝑇) Theory of Gravity 

[36], Katore, Hatkar et.al. studied domain wall with different theories, 𝑓(𝑅, 𝑇), 𝑓(𝑄)[37-

41]. “Comparative study of transition FLRW and axially symmetric cosmological structures 

with domain walls in f (R, T) gravity” was done by Sharma et al. [42]. Pawde [43] studied 

Anisotropic behavior of universe in 𝑓(𝑅, 𝐿𝑚) gravity using special form of deceleration 

parameter. Same form was used by other also [48,49]. Mete et al. [53,54] studied five-

dimensional cosmological model with one-dimensional cosmic string coupled with zero 

mass scalar field in Lyra manifold and qualitative behavior of cosmological model with 

cosmic strings and minimally interacting dark energy. Bayaskar et al. [55] studied 

logarithmic 𝑓(𝑄) gravity with parametrization of deceleration parameter and energy 

conditions. Ugale et al. [56] studied anisotropic Bianchi Type 𝑉𝐼0 cosmological models in 

a modified 𝑓(𝑅, 𝑇) gravity. 

Cosmic strings, with their linear structure, and domain walls, characterized by their two-

dimensional nature, are not merely theoretical constructs but are believed to have played a 

pivotal role in shaping the Universe’s evolution. Both Cosmic string and domain wall was 

discussed by several authors [44-46]. Inspired by the aforementioned motivations this study 

concentrates on exploring these entities within the framework of 𝑓(𝑅, 𝑇) theory. The 

physical and geometrical aspects of the models are also studied with their graphical 

behaviour.  

The current manuscript is organised as follows: Section 2 provides the brief Overview 

of 𝑓(𝑅, 𝑇) gravity. In section 3 the metric and field equations of both cosmic string and 

domain wall are derived. Cosmological Solution for 𝑓(𝑅, 𝑇) gravity with some parameters 

discussed in section 4. Some Dynamical properties are in section 5. Graphs and their 

observation are given in section 6. In section 7 we conclude the present work. 

 

2. Overview/ Formalism of  𝒇(𝑹, 𝑻) Gravity 

 

Harko et al. [50] proposed another modification of Einstein’s theory of gravitation which is 

known as 𝑓(𝑅, 𝑇) theory of gravity. Wherein the gravitational Lagrangian is given by an 

arbitrary function of the Ricci scalar R and of the trace T of the stress energy tensor 𝑇𝑖𝑗 . 
Using the Hilbert–Einstein approach, the field equations for 𝑓(𝑅, 𝑇) gravity are derived 

from the total action introduced by Harko et al. [50] as: 

𝑆 =  ∫ [
1

2𝑘
 𝑓(𝑅, 𝑇) + 𝐿𝑚]  √−𝑔  𝑑4𝑥              (1) 
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where, 𝑘 =  8𝜋𝐺, g is the determinant of the metric, 𝐿𝑚 is the matter Lagrangian density, 

𝑓(𝑅, 𝑇) is the arbitrary function of the scalar curvature R and the trace T of the energy 

momentum tensor 𝑇𝑖𝑗  . 

The energy–momentum tensor 𝑇𝑖𝑗  corresponding to the matter source is taken in the form:  

𝑇𝑖𝑗 =  
−2

√−𝑔
−

𝛿 (√−𝑔 𝐿𝑚 )

𝛿 𝑔𝑖𝑗                  (2) 

where its trace is given by  𝑇 =  𝑔𝑖𝑗𝑇𝑖𝑗  

By differentiating the action Eq. (1) of the gravitational field with respect to the metric 

tensor 𝑔𝑖𝑗, Consequently, the field equations governing 𝑓(𝑅, 𝑇) gravity take the form: 

𝑓𝑅(𝑅, 𝑇)𝑅𝑖𝑗 −
1

2
 𝑓(𝑅, 𝑇)𝑔𝑖𝑗 + ( 𝑔𝑖𝑗□ − ∇𝑖∇𝑗)𝑓𝑅(𝑅, 𝑇) = 𝑘𝑇𝑖𝑗 − 𝑓𝑇(𝑅, 𝑇)𝑇𝑖𝑗 −

 𝑓𝑇(𝑅, 𝑇)𝜃𝑖𝑗                     (3) 

where, 𝑓𝑅(𝑅, 𝑇) =  
𝜕𝑓(𝑅,𝑇)

𝜕𝑅
, 𝑓𝑇(𝑅, 𝑇) =  

𝜕𝑓(𝑅,𝑇)

𝜕𝑇
 ,  𝜃𝑖𝑗 =  𝑔𝑚𝑛  

𝛿𝑇𝑚𝑛

𝛿𝑔𝑖𝑗  , □ = ∇𝑖∇𝑗  

∇𝑖∇𝑗 denotes the covariant derivative. 

Here 𝑐 is the speed light in vacuum and the Newtonian gravitational constant is 𝐺. The 

stress–energy tensor of the matter distribution is considered in the form: 

𝑇𝑖𝑗 = (𝜌 + 𝑝)𝑢𝑖𝑢𝑗 − 𝑝𝑔𝑖𝑗                        (4) 

In accordance with a basic statement of fluid mechanics, the matter Lagrangian density 𝐿𝑚 

is related to the fluid pressure through the relation 𝐿𝑚 = - 𝑝. 

    𝑢𝑖∇𝑗𝑢𝑖 = 0 ,  𝑢𝑖𝑢𝑖 =1                 (5) 

By using the above value of  𝜃𝑖𝑗, we get the variation of stress energy of perfect fluid as, 

𝜃𝑖𝑗 =  −2𝑇𝑖𝑗 − 𝑝𝑔𝑖𝑗                    (6) 

The different forms of matter distribution will yield different theoretical models of 𝑓(𝑅, 𝑇) 

gravity However, Harko et al. [50] have obtained three particular classes of 𝑓(𝑅, 𝑇) gravity 

models as  

𝑓(𝑅, 𝑇) = {

𝑅 + 2𝑓(𝑇)

𝑓1 (𝑅) + 𝑓2 (𝑇) 

𝑓1 (𝑅) + 𝑓2 (𝑅)𝑓3 (𝑇)
}               (7) 

Here we take,  

𝑓(𝑅, 𝑇) = 𝑅 + 2𝑓(𝑇)                  (8) 

For this particular choice of 𝑓(𝑅, 𝑇) , from (3), we get the field equation as  

𝑅𝑖𝑗 −
1

2
 𝑅 𝑔𝑖𝑗 = 8𝜋𝑇𝑖𝑗 − 2𝑓′(𝑇) 𝑇𝑖𝑗 − 2𝑓′(𝑇) 𝜃𝑖𝑗 + 𝑓(𝑇)𝑔𝑖𝑗                      (9) 

The value of 𝜃𝑖𝑗 given in Eq. (6) and above equation gives us a field equation in the form 

𝑅𝑖𝑗 −
1

2
 𝑅 𝑔𝑖𝑗 = 8𝜋𝑇𝑖𝑗 + 2𝑓′(𝑇) 𝑇𝑖𝑗 + 2𝑝𝑓′(𝑇) 𝑔𝑖𝑗 + 𝑓(𝑇)𝑔𝑖𝑗                        (10) 

where 𝑓′(𝑇) is the differentiation of 𝑓(𝑇) with respect to the argument 𝑇. 

 

3. Metric and Field Equation 

 

The Universe is considered to possess a spatially homogeneous and anisotropic geometry 

described by the Bianchi Type III metric of the form: 

𝑑𝑠2 = 𝑑𝑡2 − 𝐴2𝑑𝑥2 − 𝐵2𝑒2𝑥𝑑𝑦2 − 𝐶2𝑑𝑧2                                   (11) 

where 𝐴, 𝐵, and 𝐶 are the functions of cosmic time ′𝑡′ only. 
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3.1. Cosmic string 

 

The energy-momentum tensor for cosmic string (Letelier [51]) is given by, 

𝑇𝑖𝑗 = 𝜌 𝑢𝑖𝑢𝑗 − 𝜆 𝑥𝑖𝑥𝑗                                                              (12) 

 where, 𝜌 is the rest energy density of the system, 𝜆 is the tension density of the cosmic 

string,     

The component of comoving four velocity vector in cosmic fluid is 𝑢𝑖 = (0,0,0,1) with 

𝑢𝑖𝑢
𝑗 = 0 and 

𝑔𝑖𝑗𝑢𝑖𝑢𝑗  =  −𝑥𝑖𝑥𝑗 =  −1,  𝑢𝑖𝑥𝑖 = 0                                                        (13) 

Using comoving coordinates system and a particular choice of the function given by Harko 

et al. [50] we take the function f (T) as, 

 f (T) = μ T                                                                               (14) 

where, μ is constant. 

Now, by assuming the commoving coordinate system, the field Eq. (10) for the metric given 

by Eq. (11) using the Eqs. (12) - (14) the field equations become 
𝐵̈

𝐵
+

𝐶̈

𝐶
+

𝐵̇𝐶̇

𝐵𝐶
= −(2𝑝𝜇 + 𝜇𝜆 + 𝜇𝜌)                                            (15) 

𝐴̈

𝐴
+

𝐶̈

𝐶
+

𝐴̇𝐶̇

𝐴𝐶
= −(2𝑝𝜇 + 𝜇𝜆 + 𝜇𝜌)                                           (16) 

𝐴̈

𝐴
+

𝐵̈

𝐵
+

𝐵̇𝐴̇

𝐵𝐴
+

1

𝐴2 =  −(8𝜋𝜆 + 3𝜇𝜆 + 2𝑝𝜇 + 𝜇𝜌)                            (17) 

𝐴̇𝐵̇

𝐴𝐵
+

𝐴̇𝐶̇

𝐴𝐶
+

𝐵̇𝐶̇

𝐵𝐶
+

1

𝐴2 =  −(8𝜋𝜌 + 3𝜇𝜌 + 2𝑝𝜇 + 𝜇𝜆)                            (18) 

𝐵̇

𝐵
−

𝐴̇

𝐴
=  0                                                                                (19) 

An overhead dot (∙) shows the derivative with respect to cosmic time 𝑡.  

From Eq. (19) we get, 𝐴 = 𝑚𝐵 , for the sake of simplicity take 𝑚 = 1 , we get 

𝐴 = 𝐵                                                                                        (20) 

Using Eq. (20), Eq. (15) – (18) become 
𝐵̈

𝐵
+

𝐶̈

𝐶
+

𝐵̇𝐶̇

𝐵𝐶
=  −(2𝑝𝜇 + 𝜇𝜆 + 𝜇𝜌)                                             (21) 

𝐵̈

𝐵
−

𝐶̈

𝐶
+

𝐵̇2

𝐵2 −
𝐵̇𝐶̇

𝐵𝐶
+

1

𝐵2 = (−8𝜋 − 2𝜇)𝜆                                           (22) 

𝐵̇2

𝐵2 +
𝐵̇𝐶̇

𝐵𝐶
−

𝐵̈

𝐵
−

𝐶̈

𝐶
+

1

𝐵2 = (−8𝜋 − 2𝜇)𝜌                                           (23) 

 

3.2. Domain wall 

 

The energy-momentum tensor for Domain wall is given by 

𝑇𝑖𝑗 = 𝜌 (𝑔𝑖𝑗 + 𝜔𝑖𝜔𝑗) + 𝑝 𝜔𝑖𝜔𝑗               (24) 

where p and ρ are the pressure and density of the fluid respectively and 𝜔𝑖 is four velocity 

vectors satisfying 𝜔𝑖𝜔𝑗 = 0 and 𝜔𝑖𝜔
𝑖  = −1. 

Now, by assuming the commoving coordinate system, the field Eq. (10) for the metric given 

by Eq. (11) using the Eqs. (14) and (24) the field equations become 

− (
𝐵̈

𝐵
+

𝐶̈

𝐶
+

𝐵̇𝐶̇

𝐵𝐶
) = (8𝜋 + 5𝜇)𝜌 + 𝜇𝑝            (25) 

− (
𝐴̈

𝐴
+

𝐶̈

𝐶
+

𝐴̇𝐶̇

𝐴𝐶
) = (8𝜋 + 5𝜇)𝜌 + 𝜇𝑝            (26) 
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− (
𝐴̈

𝐴
+

𝐵̈

𝐵
+

𝐵̇𝐴̇

𝐵𝐴
+

1

𝐴2) =  −(8𝜋 + 𝜇)𝑝 + 3𝜇𝜌          (27) 

− (
𝐴̇𝐵̇

𝐴𝐵
+

𝐴̇𝐶̇

𝐴𝐶
+

𝐵̇𝐶̇

𝐵𝐶
+

1

𝐴2) =  (8𝜋 + 5𝜇)𝜌 + 𝜇𝑝         (28) 

𝐵̇

𝐵
−

𝐴̇

𝐴
=  0                 (29) 

An overhead dot (∙) shows the derivative with respect to cosmic time 𝑡.  

From Eq. (29) we get, we get, 𝐴 = 𝑚𝐵 , for the sake of simplicity take 𝑚 = 1 , yields 

𝐴 = 𝐵                    (30) 

Using Eq. (30), Eqs. (25) - (28) becomes 

− (
𝐵̈

𝐵
+

𝐶̈

𝐶
+

𝐵̇𝐶̇

𝐵𝐶
) = (8𝜋 + 5𝜇)𝜌 + 𝜇𝑝            (31) 

− (
2𝐵̈

𝐵
+

𝐵̇2

𝐵2 +
1

𝐵2) =  −(8𝜋 + 𝜇)𝑝 + 3𝜇𝜌           (32) 

− (
𝐵̇2

𝐵2 +
2𝐵̇𝐶̇

𝐵𝐶
+

1

𝐵2) =  (8𝜋 + 5𝜇)𝜌 + 𝜇𝑝           (33) 

 

4. Cosmological Solution for 𝒇(𝑹, 𝑻)Gravity with Some Parameters 

 

In both of the cases discussed above, a system of three equations is obtained involving four 

unknowns. To solve the system of equation we have to consider an additional plausible 

condition to find the explicit solution for this system of equations. 

In this particular study we use special form of deceleration parameter defined by Singh 

and Debnath [47] given by, 

𝑞 =
−𝑎𝑎̈

𝑎̇2 = −1 +
𝜂

1+𝑎𝜂                (34) 

The sign of the parameter q in the model indicates whether the Universe is expanding or 

inflating. When 𝑞 > 0, it corresponds to a standard decelerating model, while 𝑞 <  0 

suggests an accelerating expansion. It is important to mention that current observations, 

such as those from Type Ia Supernovae (SNe-Ia) and the CMBR, generally favor 

accelerating models with 𝑞 < 0, although neither observation alone fully determines this. 

Solving Eq. (34) the Hubble parameter (H) is obtained as:  

𝐻 =
𝑎̇

𝑎
= 𝜅(1 + 𝑎−𝜂)                                                                  (35) 

where, 𝜅 is constant of integration. 

The scale factor holds significant importance in cosmology, serving as a key element in 

understanding the late-time dynamics and ultimate fate of the Universe. It is essential for 

describing the Universe's expansion and its interaction with dark energy, forming the 

backbone of modern cosmological models. Furthermore, the scale factor provides critical 

insights into the evolution of cosmic structures and it helps to understand the different stages 

in the Universe's history, from the early inflationary phase to the current accelerated 

expansion. 

Therefore, integrating Eq. (35) we get the average scale factor (a) as 

𝑎 = (𝑒𝜂𝑡 − 1)
1

𝜂                 (36) 

Let us define some cosmologically important parameters, which are helpful for the physical 

and kinematical analysis of the solution.  

The average scale factor 𝑎(𝑡) of the Bianchi type III space-time is defined as 
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𝑎(𝑡) = (𝐴𝐵𝐶)
1

3                                                                                (37) 

The spatial volume V of the metric is given by  

𝑉 =  𝑎3(𝑡) = 𝐴𝐵𝐶 

𝑉 = (𝑒𝜂𝑡 − 1)
3

𝜂                 (38) 

The directional Hubble parameter is given by 

𝐻1 =
𝐴̇

𝐴
=

𝑒𝜂𝑡

2(𝑒𝜂𝑡−1)
 𝐻2 =

𝐵̇

𝐵
=

𝑒𝜂𝑡

2(𝑒𝜂𝑡−1)
 𝐻3 =

𝐶̇

𝐶
=

2𝑒𝜂𝑡

(𝑒𝜂𝑡−1)
                   (39) 

The average Hubble parameter H is given by 

𝐻 =
1

3
(𝐻1+ 𝐻2 + 𝐻3) =

1

3
(

𝐴̇

𝐴
+

𝐵̇

𝐵
+

𝐶̇

𝐶
)      

 𝐻(𝑡) =  
𝑒𝜂𝑡

(𝑒𝜂𝑡−1)
 &  𝐻(𝑧) =  

𝐻0

2
 (1 + (1 + 𝑧)𝜂)           (40) 

The scalar expansion θ is given by 

𝜃 =  3𝐻 = (
𝐴̇

𝐴
+

𝐵̇

𝐵
+

𝐶̇

𝐶
)        

𝜃 =
3𝑒𝜂𝑡

(𝑒𝜂𝑡−1)
=  

3𝐻0

2
 (1 + (1 + 𝑧)𝜂)                                                 (41) 

The deceleration parameter is given by,  

𝑞(𝑡) = −1 +
𝜂

𝑒𝜂𝑡  &  𝑞(𝑧) = −1 +
𝜂

1+(
1

1+𝑧
)

𝜂           (42) 

The mean anisotropic parameter ∆ is given by 

∆ =
1

3
  ∑ (

𝐻𝑖−𝐻

𝐻
 )23

𝑖=1    

 ∆ =
1

2
                 (43) 

The Shear scalar σ2 is given by  

𝜎2 =
1

2
 ( 

𝐴̇2

𝐴2 +
𝐵̇2

𝐵2 +
𝐶̇2

𝐶2) −
1

6
 𝜃2      

𝜎2 =
3

4
(

𝑒𝜂𝑡

(𝑒𝜂𝑡−1)
)

2

=  
3𝐻0

8
 (1 + (1 + 𝑧)𝜂)                         (44) 

Now by using the above equation and the relation between spatial volume in terms of 

average scale factor the corresponding metric potentials A and B are obtained as, 

𝐴 = 𝐵 = (𝑒𝜂𝑡 − 1)
1

2𝜂, 𝐶 = (𝑒𝜂𝑡 − 1)
2

𝜂            (45) 

Corresponding to above metric potentials, Eq. (11) yields 

𝑑𝑠2 =   𝑑𝑡2 − (𝑒𝜂𝑡 − 1)
1

𝜂𝑑𝑥2 −  (𝑒𝜂𝑡 − 1)
1

𝜂𝑒2𝑥𝑑𝑦2 −  (𝑒𝜂𝑡 − 1)
4

𝜂  𝑑𝑧2           (46) 

 

4.1. Jerk parameter 

 

In cosmology, the jerk parameter is a dimensionless quantity that measures how the 

acceleration of the universe's expansion changes over time. As a higher-order derivative of 

the scale factor 𝑎(𝑡), it goes beyond the Hubble parameter (which describes the expansion 

rate) and the deceleration parameter (which measures the change in the expansion rate) to 

provide a deeper understanding of the Universe's dynamics. The jerk parameter offers 

valuable insights into the dynamics of dark energy, the mysterious force driving the 

accelerated expansion of the Universe. By examining this parameter, researchers can 

explore potential transitions in the Universe's expansion phases, such as shifts between 
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acceleration and deceleration, shedding light on the evolution and future behavior of cosmic 

expansion. 

 The jerk parameter (𝑗), can be defined as follows: 

𝑗 =
𝑎

𝑎𝐻3                 (47) 

By using Eqs. (36) and (40) in above equation we get, 

𝑗 = 1 +
𝜂2

𝑒𝜂𝑡 +
𝜂2

𝑒2𝜂𝑡 −
3𝜂

𝑒𝜂𝑡             (48) 

𝑗 = 1 +
𝜂2

(
1

1+𝑧
)

𝜂
+1

+
𝜂2

((
1

1+𝑧
)

𝜂
+1)

2 −
3𝜂

(
1

1+𝑧
)

𝜂
+1

          (49) 

 

4.2. Statefinder parameter 

 

The statefinder parameters are dimensionless quantities designed to provide a deeper 

understanding of dark energy models and their influence on the Universe's expansion. These 

parameters enhance the analysis beyond the Hubble parameter (H) and the deceleration 

parameter (q), offering a more detailed picture of the expansion dynamics. By analyzing 

these parameters, researchers can gain deeper insights into the nature of dark energy and its 

impact on the evolution of the universe. Usually, the statefinder parameters are denoted as 

(𝑟, 𝑠). They are particularly useful for distinguishing between different cosmological 

models, such as the Cold Dark Matter with a Cosmological Constant (ΛCDM) model and 

the Standard Cold Dark Matter (SCDM) model, by identifying unique fixed points (r, s) = 

(1, 0) and (r, s) = (1, 1) respectively correspond to each model’s properties. They are defined 

in terms of higher-order derivatives of the scale factor a(t). 

𝑟 =
𝑎

𝑎𝐻3  and  𝑠 =
𝑟−1

3(𝑞−
1

2
)
                          (50) 

By using Eqs. (36) and (40) in above equation we get, 

𝑟 = 1 +
𝜂2

𝑒𝜂𝑡 +
𝜂2

𝑒2𝜂𝑡 −
3𝜂

𝑒𝜂𝑡  and  𝑠 =
2𝜂2(

1

𝑒𝜂𝑡+1)−6𝜂

6𝜂−9𝑒𝜂𝑡                 (51) 

𝑟 = 1 +
𝜂2

(
1

1+𝑧
)

𝜂
+1

+
𝜂2

((
1

1+𝑧
)

𝜂
+1)

2 −
3𝜂

(
1

1+𝑧
)

𝜂
+1

 and 𝑠 =

2𝜂2(
1

(
1

1+𝑧)
𝜂

+1

+1)−6𝜂

6𝜂−9(
1

1+𝑧
)

𝜂
+1

    (52) 

 

4.3. 𝑶𝒎(𝒛) Diagnostic parameter  

 

The 𝑂𝑚 diagnostic, combining the Hubble parameter and redshift, introduced by Sahni [52] 

serves as a valuable tool to distinguish between dark energy models and the standard 

ΛCDM framework. It is a model-independent diagnostic, making it particularly useful for 

distinguishing ΛCDM from alternative dark energy models.  

• ΛCDM: 𝑂𝑚(𝑧) remains constant across redshifts because dark energy behaves as a 

cosmological constant. 

• Quintessence: 𝑂𝑚(𝑧) decreases with redshift due to the dynamic nature of the scalar 

field driving dark energy. 
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•  Phantom Energy: 𝑂𝑚(𝑧) increases with redshift, reflecting the more extreme behavior 

of the equation of state (𝜔 < −1). 

The 𝑂𝑚(𝑧) diagnostic, in parallel with statefinder parameters (r, s), offers a robust 

framework for understanding the nature of dark energy and the cosmic expansion history. 

This diagnostic is particularly effective in probing the present matter density contrast and 

the evolution of dark energy. The 𝑂𝑚(𝑧) parameter is defined as: 

𝑂𝑚(𝑧) =
[
𝐻(𝑧)

𝐻0
]
2

−1

(1+𝑧)3−1
               (53) 

where 𝐻(𝑧) is the Hubble parameter at redshift z, and 𝐻0 is the current Hubble constant. 

From Eq. (40), Eq. (53) becomes, 

𝑂𝑚(𝑧) =  
[(1+𝑧)𝜂+3][(1+𝑧)𝜂−1]

4 [(1+𝑧)3−1]
             (54) 

 

5. Some Dynamical Properties 

 

5.1. Cosmic string 

 

From Eqs. (21), (22), and (23) the string tension density is obtained as: 

𝜆 =
−1

(8𝜋+2𝜇)
[

𝑒2𝜂𝑡

(𝑒𝜂𝑡−1)2 (
3𝜂

2
−

15𝑒𝜂𝑡

4
−

3

4
) +

1

(𝑒𝜂𝑡−1)
1
𝜂

]         (55) 

𝜆 =
−1

(8𝜋+2𝜇)
{(

1

1+𝑧
)

−2𝜂

((
1

1+𝑧
)

𝜂

+ 1)
2

(
3𝜂

2
−

15

4
(

1

1+𝑧
)

𝜂

−
9

2
) + (1 + 𝑧)}    (56) 

Energy density as, 

𝜌 =
−1

(8𝜋+2𝜇)
[

𝑒2𝜂𝑡

(𝑒𝜂𝑡−1)2 (
5𝜂

2
−

17𝑒𝜂𝑡

4
+

5

4
) +

1

(𝑒𝜂𝑡−1)
1
𝜂

]        (57) 

𝜌 =
−1

(8𝜋+2𝜇)
{(

1

1+𝑧
)

−2𝜂

((
1

1+𝑧
)

𝜂

+ 1)
2

(
5𝜂

2
−

17

4
(

1

1+𝑧
)

𝜂

− 3) + (1 + 𝑧)}    (58) 

Pressure as, 

𝑝 =
1

2𝜇

𝑒2𝜂𝑡

(𝑒𝜂𝑡−1)2 [(
5𝜂

2
−

17𝑒𝜂𝑡

4
− 1) +

𝜇

(8𝜋+2𝜇)
(4𝜂 − 8𝑒𝜂𝑡 +

1

2
)] +

1

(8𝜋+2𝜇)(𝑒𝜂𝑡−1)
1
𝜂

    (59) 

𝑝 =
1

2𝜇
(

1

1+𝑧
)

−2𝜂

((
1

1+𝑧
)

𝜂

+ 1)
2

{(
5𝜂

2
−

17

4
(

1

1+𝑧
)

𝜂

−
21

4
) +

𝜇

(8𝜋+2𝜇)
(4𝜂 − 8 (

1

1+𝑧
)

𝜂

−

                
15

2
)} +

1+𝑧

(8𝜋+2𝜇)
              (60) 

Equation of state parameter is given by, 

𝜔 =
𝑝

𝜌
   

𝜔 =

1

2𝜇

𝑒2𝜂𝑡

(𝑒𝜂𝑡−1)
2[(

5𝜂

2
−

17𝑒𝜂𝑡

4
−1)+

𝜇
(8𝜋+2𝜇)

(4𝜂−8𝑒𝜂𝑡+
1

2
)]+

1

(8𝜋+2𝜇)(𝑒𝜂𝑡−1)

1
𝜂

−1
(8𝜋+2𝜇)

[
𝑒2𝜂𝑡

(𝑒𝜂𝑡−1)
2(

5𝜂

2
−

17𝑒𝜂𝑡

4
+

5

4
)+

1

(𝑒𝜂𝑡−1)

1
𝜂

]

      (61) 

𝜔 =

1

2𝜇
(

1

1+𝑧
)

−2𝜂
((

1

1+𝑧
)

𝜂
+1)

2

{(
5𝜂

2
−

17

4
(

1

1+𝑧
)

𝜂
−

21

4
)+

𝜇

(8𝜋+2𝜇)
(4𝜂−8(

1

1+𝑧
)

𝜂
−

15

2
)}+

1+𝑧

(8𝜋+2𝜇)

−1

(8𝜋+2𝜇)
{(

1

1+𝑧
)

−2𝜂
((

1

1+𝑧
)

𝜂
+1)

2

(
5𝜂

2
−

17

4
(

1

1+𝑧
)

𝜂
−3)+(1+𝑧)}

     (62)  
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5.2. Domain wall 

 

Eqs. (31), (32), and (33) give the energy density and pressure by, 

𝜌 = 𝜒
𝑒2𝜂𝑡

(𝑒𝜂𝑡−1)2 [𝜋(34 𝑒𝜂𝑡 − 20𝜂 + 8) + 𝜇 (
19𝑒𝜂𝑡

4
−

7𝜂

2
+

5

4
)] + 𝜒

𝜇

(𝑒𝜂𝑡−1)
1
𝜂

    (63) 

𝜌 = 𝜒 (
1

1+𝑧
)

−2𝜂

((
1

1+𝑧
)

𝜂

+ 1)
2

[𝜋 (34 (
1

1+𝑧
)

𝜂

− 20𝜂 + 42) + 𝜇 (
19

4
(

1

1+𝑧
)

𝜂

−
7𝜂

2
+

               6)] + 𝜒𝜇(1 + 𝑧)                              (64) 

where, 𝜒 =
−1

(2𝜋+𝜇)(32𝜋+8𝜇)
 

Pressure, 

𝑝 =
𝑒2𝜂𝑡

𝜇(𝑒𝜂𝑡−1)2 {
−9

4
+ 𝜓 [𝜋(34 𝑒𝜂𝑡 − 20𝜂 + 8) + 𝜇 (

19𝑒𝜂𝑡

4
−

7𝜂

2
+

5

4
)]} +

(𝜓.𝜇−1)

𝜇(𝑒𝜂𝑡−1)
1
𝜂

   (65) 

𝑝 = (
1

1+𝑧
)

−2𝜂

((
1

1+𝑧
)

𝜂

+ 1)
2

1

𝜇
{

−9

4
+ 𝜓 [𝜋 (34 (

1

1+𝑧
)

𝜂

− 20𝜂 + 42) +

              𝜇 (
19

4
(

1

1+𝑧
)

𝜂

−
7𝜂

2
+ 6)]}    +    (1 + 𝑧)(𝜓 −

1

𝜇
)       (66) 

where, 𝜓 =
(8𝜋+5𝜇)

(2𝜋+𝜇)(32𝜋+8𝜇)
 

Equation of state parameter is given by, 

𝜔 =

𝑒2𝜂𝑡

𝜇(𝑒𝜂𝑡−1)2{
−9

4
+𝜓[𝜋(34 𝑒𝜂𝑡−20𝜂+8)+𝜇(

19𝑒𝜂𝑡

4
−

7𝜂

2
+

5

4
)]}+

(𝜓.𝜇−1)

𝜇(𝑒𝜂𝑡−1)

1
𝜂

 

𝜒
𝑒2𝜂𝑡

(𝑒𝜂𝑡−1)2[𝜋(34 𝑒𝜂𝑡−20𝜂+8)+𝜇(
19𝑒𝜂𝑡

4
−

7𝜂

2
+

5

4
)]+𝜒

𝜇

(𝑒𝜂𝑡−1)

1
𝜂

 
                    (67) 

𝜔 =
(

1

1+𝑧
)

−2𝜂
((

1

1+𝑧
)

𝜂
+1)

2
1

𝜇
{

−9

4
+𝜓[𝜋(34 (

1

1+𝑧
)

𝜂
−20𝜂+42)+𝜇(

19

4
(

1

1+𝑧
)

𝜂
−

7𝜂

2
+6)]}+(1+𝑧)(𝜓−

1

𝜇
) 

𝜒(
1

1+𝑧
)

−2𝜂
((

1

1+𝑧
)

𝜂
+1)

2

[𝜋(34 (
1

1+𝑧
)

𝜂
−20𝜂+42)+𝜇(

19

4
(

1

1+𝑧
)

𝜂
−

7𝜂

2
+6)]+𝜒𝜇(1+𝑧) 

  (68) 

6. Observations from Figures      

 
 

Fig. 1. Variations of average scale factor with 

respect to cosmic time. 

Fig. 2. Variations of Volume with respect to 

cosmic time. 
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Fig. 3. Variations of Hubble parameter with 

respect to Redshift. 

Fig. 4. Variations of deceleration parameter 

with respect to Redshift. 

  
Fig. 5. Variations of Shear scalar with 

respect to Redshift. 

Fig. 6. Variations of jerk parameter with respect 

to Redshift. 

  
Fig 7. Evolution trajectory of 𝑟 − 𝑠 plane Fig 8. Evolution of 𝑂𝑚(𝑧)  with respect to 

Redshift. 

  
Fig. 9. Variations of density (Cosmic String) 

with respect to Redshift. 

Fig. 10. Variations of pressure (Cosmic String) 

with respect to Redshift. 
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Fig. 11. Variations of density (Domain Wall) 

with respect to Redshift. 

Fig. 12. Variations of pressure (Domain Wall) 

with respect to Redshift.  

  

Figs. 1 and 2 clearly show that the average scale factor and spatial volume remain steady 

at the initial time (t = 0). However, as time progresses, both begin to steadily and 

consistently grow, eventually extending toward infinite values over extended period. This 

noteworthy observation highlights the present model exhibit continuous expansion. 

Fig. 3 illustrates that the Hubble parameter H decreases with the progression of cosmic 

time. Also, the expansion scalar (θ) is the decreasing function of time, i.e. increasing 

function with respect to redshift. The value of Hubble parameter is throughout positive. At 

the present time, the value of Hubble parameter is 𝐻0 ≈ 68 kms-1 Mpc-1. 

Fig. 4 demonstrates the transitional behavior of the deceleration parameter. Initially, 𝑞 ≥

0  during the early stages, indicating the decelerating phase of the Universe's expansion. 

However, as time progresses to the present and into the future, 𝑞 < 0, signifying a shift to 

an accelerating phase. This transition is consistent with the predictions of the ΛCDM model. 

Our model shows decelerating to accelerating phase.  Also, from graph we get the present 

value of the deceleration parameter is 𝑞0= −0.31 for η = 1.4, 𝑞0 = −0.21 for η = 1.6 and 𝑞0 

= −0.11 for η = 1.8 respectively 

Fig. 5 shows that the shear scalar increases with redshift i.e. shear scalar declines 

progressively with time and approaches zero for large time values. The shear scalar 

quantifies the degree of anisotropy in the cosmic expansion.  A decreasing shear scalar 

indicates that the anisotropy diminishes over time, suggesting that the Universe transitions 

toward a more isotropic state as it evolves. 

Fig. 6 illustrates that the jerk parameter (j) remains consistently positive across the entire 

redshift range for all values of η. This persistent positivity signifies the Universe's ongoing 

acceleration. As 𝑧 → −1, the values of j for each η converge towards the expected behavior 

of the ΛCDM model, highlighting the compatibility of the model with observational data. 

Fig. 7 represents the 𝑟 − 𝑠 plane serves as a valuable graphical tool for mapping and 

distinguishing between various dark energy models and cosmological scenarios. Each point 

on this plane represents a unique cosmological model, providing a visual framework for 

understanding their distinct characteristics. 

a. (r = 1, s = 0):  ΛCDM 

b. (r = 1, s = 1):  SCDM 

c. (r = 1, s =
2

3
):  Holographic dark energy 
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d. (r > 1, s < 0):  Phantom region 

e. (r < 1, s > 0):  Quintessence region 

The coordinates (1,0) on the 𝑟 − 𝑠 plane represent the standard ΛCDM model, where 

dark energy is described as a cosmological constant (Λ) and cold dark matter (CDM) 

constitutes the dominant matter component of the Universe. The 𝑟 − 𝑠 plane proves to be a 

highly effective tool for examining the trajectories of various dark energy models, offering 

valuable insights into their distinctive properties, such as evolutionary dynamics and 

deviations from the ΛCDM framework. For example, quintessence, a dynamic form of dark 

energy driven by a scalar field, is located to the right of the ΛCDM model at η=1.4 in the 

𝑟 − 𝑠 plane. This positioning highlights the unique evolutionary characteristics of 

quintessence, which may include a time-dependent equation of state and potential 

departures from the conventional ΛCDM model.  

A constant 𝑂𝑚(𝑧) indicates that dark energy is a cosmological constant, while a positive 

slope suggests phantom (𝜔 < −1) behaviour and negative slope suggest quintessence 

(𝜔 > −1) behavior respectively. Fig 8 shows that 𝑂𝑚(𝑧) increases as z decreases, i.e. 

𝑂𝑚(𝑧) decreases with redshift. The decreasing trend of 𝑂𝑚(𝑧) with redshift indicates a 

quintessence-like behavior of dark energy, characterized by an equation of state parameter 

(𝜔 > −1). Such a trend supports the notion of a time-dependent dark energy component 

driving the accelerated expansion of the Universe. 

Figs. 9 and 11 show the energy density in both cosmic string and domain wall 

respectively. From both the graphs we can say that the energy density starts with a 

significant value and displays the Fascinating trend and gradually decreases over time, 

eventually approaching zero in the present and future. This clear pattern provides strong 

evidence of the Universe's continuous expansion. 

Figs. 10 and 12 graph demonstrate the influence of topological defects (cosmic strings 

and domain walls) on the pressure evolution. From both the graphs we can say that the 

analysis reveals that the pressure transitions from significantly large negative values to 

slightly negative values over time, eventually approaching zero as t→∞. This persistent 

negativity in pressure highlights the presence of dark energy, a fundamental driver of the 

Universe's accelerated expansion. 

 

7. Conclusions 

 

The present study focuses on an accelerating model of the Universe formulated in the 

context of 𝑓(𝑅, 𝑇) gravity. In the course of our investigation, we establish field equations 

for anisotropic Bianchi type III cosmological model in the presence of Cosmic string and 

Domain wall. Utilizing a special form of deceleration parameter, we deduce cosmological 

solutions that exhibit remarkable similarity to the properties of the ΛCDM model influenced 

by dark energy. Our study findings lead to the following conclusions: 

Initially, at 𝑡 = 0 the average scale factor and spatial volume is finite but as 𝑡 →  ∞, 

both average scale factor and spatial volume become infinite. Here average scale factor and 

spatial volume show expanding model with time t. It has been noted that the Hubble 

parameter H remain positive and gradually approach zero as time progresses towards 
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infinity. The positivity of the Hubble parameter signifies the ongoing expansion of the 

Universe. Also, 
𝜎2

𝜃2 = Constant ≠ 0, and hence the model does not approach isotropy for large 

values of t. Our results demonstrate that, over time, the deceleration parameter (q), as 

defined in Eq. (42), transitions from positive to negative values and eventually approaches 

−1. This behavior aligns with the features of the dark energy-dominated ΛCDM model. As 

a result, our Universe model exhibits a shift from an initial decelerating phase to the present 

accelerating phase, a conclusion that is consistent with recent observational data.  

The cosmic jerk parameter remains positive throughout and converges to unity at late 

times, aligning with observational data and supporting the ΛCDM model. The analysis of 

statefinder parameters yields {𝑟, 𝑠}  =  {1, 0}, strongly supporting the ΛCDM model and its 

consistency with recent observations. Additionally, the ΛCDM model positions 

quintessence to the right in the {r, s} plane, highlighting its distinct evolutionary behavior. 

The decreasing trend of 𝑂𝑚(𝑧) with redshift indicates a quintessence-like behavior of dark 

energy, characterized by an equation of state parameter (𝜔 > −1). The density (ρ) 

increases with redshift (z) for both domain walls and cosmic strings, showing their stronger 

influence in the early Universe. Higher η values lead to steeper growth. Pressure decreases 

with redshift for all η, remaining negative-indicating a repulsive effect responsible for the 

Universe’s accelerated expansion due to dark energy or topological defects. 
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