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Abstract

In the present work, the Bianchi Type III spacetime is taken into account in the presence of a
cosmic string and a domain wall within the framework of f(R,T) theory of gravitation. A
specific form of the f(R, T), theory, namely f(R,T) = R + 2f(T), is taken into account in
this work. The modified field equations for cosmic string and domain wall models are solved
using a particular form of the deceleration parameter, and their physical behaviors are
analyzed. In addition, the EoS parameter, jerk parameter, statefinder pair, and Om(z)
diagnostic are utilized to analyze the evolutionary behavior of the Universe under the
considered modified gravity model, indicating a quintessence-type nature of the cosmic
expansion.This research offers significant insights into the anisotropic behaviour of the
Universe and effectively describes the cosmic acceleration observed during late times. Our
findings are then compared to recent observational data and are found to be in agreement with
the ACDM model.
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1. Introduction

The early Universe remains one of the most captivating subjects in cosmology, holding the
key to unravelling the mysteries of its origin and evolution. Einstein's General Theory of
Relativity, a cornerstone of modern physics, has profoundly shaped our understanding of
cosmic dynamics and the large-scale structure of the Universe. However, the complexities
of the early Universe, including the phase transitions that led to the formation of topological
defects such as cosmic strings and domain walls, demand deeper investigation. The last two
decades have marked a turning point in cosmology, as compelling observations from Type
Ia supernovae [1-3] and the cosmic microwave background (CMB) [4] reveal an
accelerating Universe. Moreover, studies on Baryon Acoustic Oscillations [5,6], Wilkinson
Microwave Anisotropy Probe [7], the large-scale structure of the universe [8,9],
assessments of galaxy redshifts [10], and examinations of the CMB radiation (CMBR)
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[11,12] all provide convincing empirical proof for this phenomenon. This revelation not
only challenges Einstein's original framework but also beckons us toward a deeper
understanding of the forces shaping our cosmic destiny.

The study of cosmic strings and domain walls has garnered significant interest in
cosmology due to their critical role in the formation of structures and the evolution of the
Universe. These entities are topological defects that come out as a result of spontaneous
symmetry breaking, typically during phase transitions in the early Universe. The
gravitational influences of cosmic strings have been extensively explored in works by
Vilenkin [13], Letelier [14], Satchel [15], and Adhav et al. [16, 17] within the framework
of general relativity.

Cosmic strings are one-dimensional topological defects that may have formed during
the early Universe's phase transitions. These are comparable to ‘cracks’ in spacetime
resulting from spontaneous symmetry breaking in a high-energy field. Cosmic strings tell
us about the observable effects of extreme energy densities and gravitational lensing, the
formation of large-scale structures like galaxies and clusters. It provides a testbed for
understanding the dynamics of symmetry-breaking mechanisms in the early Universe.
Some distinguishing features of cosmic strings are, they are extremely thin but incredibly
dense, with masses that could stretch across vast cosmic scales, Capable of producing
gravitational lensing effects, bending light from distant sources, their oscillations and decay
can generate gravitational waves, potentially detectable by modern observatories. Reddy
[18,19] has obtained string cosmological models in Brans-Dicke and Saez-Ballester scalar
tensor theories of gravitation when the sum of the energy density and the tension density of
the cosmic string source vanish. String cosmological models in alternative theories of
gravitation have been investigated by several authors [20-24]. Reddy and Naidu [25,26]
analysed the cosmic strings with f(R,T) gravity theory and their analysis revealed the
absence of viable cosmic string and perfect fluid configurations in this particular theory.
Pawar et al. [27] Examined the behaviour of string cosmological model incorporating a
massless scalar field within the framework of a modified theory of general relativity.
Bianchi type Vo space-time was investigated by Pawar [28] in the presence of a cloud of
strings coupled with a perfect fluid within the framework of f(R,T) gravity. Chirde ef al.
[29] investigated the LRS Bianchi type I metric with the source as barotropic perfect fluid
and cosmic string in the framework of f(T) gravity using three different functional forms
of f(T) gravity. Kantowaski-Sachs cosmological model with viscous cosmic string in the
quadratic form of teleparallel gravity for a particular choice of f(T) formalism was studied
by Bhoyar et al. [30].

Domain walls are two-dimensional topological defects that arise when a discrete
symmetry is spontaneously broken during a phase transition. They can be visualized as
‘boundaries’ separating regions with different vacuum states. Unlike cosmic strings,
domain walls are extended structures with large surface energy densities. Their gravitational
effects are significant, but their persistence could disrupt the observed Universe, requiring
mechanisms to limit their abundance. Their presence could manifest in gravitational waves,
CMB anisotropies, or deviations in galaxy distributions. While talking about Topological
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Stability of domain wall, Domain walls are stable due to their topological nature, arising
from the vacuum manifold's configuration during symmetry breaking. Hill et al. proposed
that domain walls are important in the formation of galaxies. Domain walls have gained
significant attention in recent years from a cosmological perspective, particularly due to
their role in newly proposed scenarios of galaxy formation. According to the researcher the
formation of galaxies is due to domain walls produced during phase transitions after the
time of recombination of matter and radiation. The study of Thick Domain Walls in Brans-
Dicke Theory of Gravitation was done by Pawar and Bayaskar [31]. Some authors have
investigated domain walls in alternative theories of gravitation, one can refer [32-35]. Rao
et.al. discussed Kantowski-Sachs Models with Domain Walls in f (R, T) Theory of Gravity
[36], Katore, Hatkar et.al. studied domain wall with different theories, f(R,T), f(Q)[37-
41]. “Comparative study of transition FLRW and axially symmetric cosmological structures
with domain walls in f (R, T) gravity” was done by Sharma et al. [42]. Pawde [43] studied
Anisotropic behavior of universe in f(R, L,,) gravity using special form of deceleration
parameter. Same form was used by other also [48,49]. Mete et al. [53,54] studied five-
dimensional cosmological model with one-dimensional cosmic string coupled with zero
mass scalar field in Lyra manifold and qualitative behavior of cosmological model with
cosmic strings and minimally interacting dark energy. Bayaskar et al. [55] studied
logarithmic f(Q) gravity with parametrization of deceleration parameter and energy
conditions. Ugale ef al. [56] studied anisotropic Bianchi Type VI, cosmological models in
a modified f(R,T) gravity.

Cosmic strings, with their linear structure, and domain walls, characterized by their two-
dimensional nature, are not merely theoretical constructs but are believed to have played a
pivotal role in shaping the Universe’s evolution. Both Cosmic string and domain wall was
discussed by several authors [44-46]. Inspired by the aforementioned motivations this study
concentrates on exploring these entities within the framework of f(R,T) theory. The
physical and geometrical aspects of the models are also studied with their graphical
behaviour.

The current manuscript is organised as follows: Section 2 provides the brief Overview
of f(R,T) gravity. In section 3 the metric and field equations of both cosmic string and
domain wall are derived. Cosmological Solution for f (R, T) gravity with some parameters
discussed in section 4. Some Dynamical properties are in section 5. Graphs and their
observation are given in section 6. In section 7 we conclude the present work.

2. Overview/ Formalism of f(R,T) Gravity

Harko et al. [50] proposed another modification of Einstein’s theory of gravitation which is
known as f(R,T) theory of gravity. Wherein the gravitational Lagrangian is given by an
arbitrary function of the Ricci scalar R and of the trace T of the stress energy tensor Tj;.
Using the Hilbert-Einstein approach, the field equations for f(R,T) gravity are derived
from the total action introduced by Harko et al. [50] as:

S= [ FRT) + L] =g d*x M
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where, k = 8mG, g is the determinant of the metric, L,, is the matter Lagrangian density,
f(R,T) is the arbitrary function of the scalar curvature R and the trace T of the energy
momentum tensor T;; .
The energy—momentum tensor T;; corresponding to the matter source is taken in the form:
-2 §(J=glL

where its trace is given by T = g”T

By differentiating the action Eq. (1) of the gravitational field with respect to the metric
tensor g;;, Consequently, the field equations governing f (R, T) gravity take the form:

frR, TR —% fR.Tgi; + (90— ViV;)fz(R,T) = kT;j — fr(R, T)T;; —
fr(R,T)6;; 3)
where, fx(R,T) = L8, £,(R.T) = LE2 | 6, = g S 0=V,
V;V; denotes the covarlant derivative.

Here c is the speed light in vacuum and the Newtonian gravitational constant is G. The
stress—energy tensor of the matter distribution is considered in the form:

T;j = (p + P)uw; — pgij 4)
In accordance with a basic statement of fluid mechanics, the matter Lagrangian density L,,
is related to the fluid pressure through the relation L,, = - p.

u'Vu; =0, uly; =1 (5)
By using the above value of 6;;, we get the variation of stress energy of perfect fluid as,
91] = —2T, l] — PYij (6)

The different forms of matter distribution will yield different theoretical models of f(R,T)
gravity However, Harko et al. [50] have obtained three particular classes of f(R, T) gravity
models as

R+ 2f(T)
fRT) =4 fiR)+f(D) (7)
fiR) + f, (R)f5 (T)

Here we take,

fR,T) =R +2f(T) @®)
For this particular choice of f(R,T) , from (3), we get the field equation as

R;; —i R gij = 8nTy; — 2f'(T) Ty — 2f'(T) 6y + f(T) gyj )
The value of 6;; given in Eq. (6) and above equation gives us a field equation in the form

Ry R 9ij = 8uTy; + 2f'(T) Ty + 2pf'(T) gij + f (T gij (10

where f (T) is the dlfferentlatlon of f (T) with respect to the argument T.
3. Metric and Field Equation

The Universe is considered to possess a spatially homogeneous and anisotropic geometry
described by the Bianchi Type III metric of the form:

ds? = dt? — A%dx? — B?e?*dy? — C%dz? (11)
where A4, B, and C are the functions of cosmic time 't’ only.
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3.1. Cosmic string

The energy-momentum tensor for cosmic string (Letelier [51]) is given by,

Tij = puiuj —lxixj (12)
where, p is the rest energy density of the system, A is the tension density of the cosmic
string,

The component of comoving four velocity vector in cosmic fluid is u* = (0,0,0,1) with
wu/ = 0 and

giju'yy = —x'xj = -1, ulx; =0 (13)
Using comoving coordinates system and a particular choice of the function given by Harko
et al. [50] we take the function f'(T) as,

f(M=uT (14)
where, L is constant.
Now, by assuming the commoving coordinate system, the field Eq. (10) for the metric given
by Eq. (11) using the Egs. (12) - (14) the field equations become

B ¢ BC_

B+ S 0e= —pu+ ik +up) (15)
A c AC

2Tt o= ~@putpd+pp) (16)
24 B L = _(8mA + 3ud + 2pp + up) (17)

A B BA A?
AB =~ AC . BC 1

EEfE+EE+;=-{&m+3MT+hW+HD (18)
E_4_ 9 (19)
B A

An overhead dot (+) shows the derivative with respect to cosmic time t.
From Eq. (19) we get, A = mB , for the sake of simplicity take m = 1, we get

A=B (20)
Using Eq. (2Q)., Eq. (15) - (18) become

Z4S+I0 = —(2pu+pA+ pp) 1)

gz— gBC i—jé— % + % = (—8m — 21)A 22)

it 5 ot = (=81 —2wp (23)

3.2. Domain wall

The energy-momentum tensor for Domain wall is given by

Tij=p (gl-j + wiwj) +p w;w; (24)
where p and p are the pressure and density of the fluid respectively and w; is four velocity
vectors satisfying w;w’ = 0 and w;w’ =—1.
Now, by assuming the commoving coordinate system, the field Eq. (10) for the metric given
by Eq. (11) using the Eqgs. (14) and (24) the field equations become

C c
—(§+E+§§==@n+SMP+MP (25)

A ¢ AC
—(G+5+55) = B+ 5mp +up (26)
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A, B BA 1
_(Z+E+E+A_2)=_(8n+#)p+3‘up (27)
AB  AC | BC 1
- (E et ;) = (8w +5wp +up (28)
% — % =0 (29)
An overhead dot (+) shows the derivative with respect to cosmic time t.
From Eq. (29) we get, we get, A = mB , for the sake of simplicity take m = 1, yields

A=B (30)
Using Eq. (30), Egs. (25) - (28) becomes

B € , BC

_(§+E+§—C)=(8ﬂ+5H)P+HP (31

—(§+B—2+i)——(8 +p +3 32
s T ) S m+uwp +3up (32)
B 2BC

—(G+ZE+2) = Br+S5mp+mp (33)

4. Cosmological Solution for f(R, T)Gravity with Some Parameters

In both of the cases discussed above, a system of three equations is obtained involving four
unknowns. To solve the system of equation we have to consider an additional plausible
condition to find the explicit solution for this system of equations.

In this particular study we use special form of deceleration parameter defined by Singh
and Debnath [47] given by,

—ad n

1= = "1+og (34)
The sign of the parameter q in the model indicates whether the Universe is expanding or

inflating. When g > 0, it corresponds to a standard decelerating model, while ¢ < 0
suggests an accelerating expansion. It is important to mention that current observations,
such as those from Type Ia Supernovae (SNe-lIa) and the CMBR, generally favor
accelerating models with g < 0, although neither observation alone fully determines this.
Solving Eq. (34) the Hubble parameter (H) is obtained as:

H= g =k(l+a™) (35)
where, k is constant of integration.

The scale factor holds significant importance in cosmology, serving as a key element in
understanding the late-time dynamics and ultimate fate of the Universe. It is essential for
describing the Universe's expansion and its interaction with dark energy, forming the
backbone of modern cosmological models. Furthermore, the scale factor provides critical
insights into the evolution of cosmic structures and it helps to understand the different stages
in the Universe's history, from the early inflationary phase to the current accelerated
expansion.

Therefore, integrating Eq. (35) we get the average scale factor (a) as

1
a=(e™—1) (36)
Let us define some cosmologically important parameters, which are helpful for the physical
and kinematical analysis of the solution.
The average scale factor a(t) of the Bianchi type III space-time is defined as
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1
a(t) = (ABC)3 37)
The spatial volume V of the metric is given by
V = a3(t) = ABC
3

V= (e"—1)n (38)
The directional Hubble parameter is given by
A et B et ¢ 2eMt
H,=7= 2(eMt—1) 27 B 2@m- Hy == (eNt-1) (39)

The average Hubble parameter H is given by
1 1(A B  C
H =5yt Hy o+ Hy) =:G+3+9)
n
Ht) = —— & H(z) = 2 (1+ (1 +2)") (40)

(ent-1)
The scalar expansion 0 is given by
6 =3H=(;+2+5)
Y 3HB c
_ _3e™ _ 3Ho 1
==, A+t@+27) (41)

The deceleration parameter is given by,

)=-1+—8&q(z)=-1+—-— 42
q( ) ent q( ) 1+(1L+Z)TI ( )
The mean anisotropic parameter A is given by
1 H;—H
A=< ¥ ()?
A== (43)
The Shear scalar 62 is given by
2 _ 1 (A2 B2 % _ 12
7 =3 (A2+322+C2) 6 0
2 _3(_e" — 3Ho n
o _4((em_1)) =201+ 1+ (44)

Now by using the above equation and the relation between spatial volume in terms of
average scale factor the corresponding metric potentials A and B are obtained as,
1 2

A=B=(e" 1), C=(e"— 1) (45)
Corresponding to above metric potentials, Eq. (11) yields
1 1 4
ds? = dt? — (e" — 1)ndx? — (e" — 1)ne?*dy? — (e — 1)n dz? (46)

4.1. Jerk parameter

In cosmology, the jerk parameter is a dimensionless quantity that measures how the
acceleration of the universe's expansion changes over time. As a higher-order derivative of
the scale factor a(t), it goes beyond the Hubble parameter (which describes the expansion
rate) and the deceleration parameter (which measures the change in the expansion rate) to
provide a deeper understanding of the Universe's dynamics. The jerk parameter offers
valuable insights into the dynamics of dark energy, the mysterious force driving the
accelerated expansion of the Universe. By examining this parameter, researchers can
explore potential transitions in the Universe's expansion phases, such as shifts between
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acceleration and deceleration, shedding light on the evolution and future behavior of cosmic

expansion.

The jerk parameter (j), can be defined as follows:

j==— (47)
By using Eqs. (36) and (40) in above equation we get,

: n?  n* _ 3n

]=1+W+ﬁ—m (48)

2 2
jElt et — = (49)

4.2. Statefinder parameter

The statefinder parameters are dimensionless quantities designed to provide a deeper
understanding of dark energy models and their influence on the Universe's expansion. These
parameters enhance the analysis beyond the Hubble parameter (H) and the deceleration
parameter (q), offering a more detailed picture of the expansion dynamics. By analyzing
these parameters, researchers can gain deeper insights into the nature of dark energy and its
impact on the evolution of the universe. Usually, the statefinder parameters are denoted as
(r,s). They are particularly useful for distinguishing between different cosmological
models, such as the Cold Dark Matter with a Cosmological Constant (ACDM) model and
the Standard Cold Dark Matter (SCDM) model, by identifying unique fixed points (r, s) =
(1,0) and (r, s) = (1, 1) respectively correspond to each model’s properties. They are defined
in terms of higher-order derivatives of the scale factor a(t).

r—1

-2 = il
r=— and s = 3(q 1) (50)

By using Egs. (36) and (40) in above equation we get,

1
_ 2 2 3y _ ZWZ(W'H)_M
T—l+m+m—m ands—W (51)
21;2(;,,“)—61;
2 2 1
S RPN NI G| RS P |- (52)

61;—9(1%2)11“

(1%2)71“ ((ﬁ)nﬂ)z (%—I—Z)n-'—l
4.3. 0,,(z) Diagnostic parameter

The 0,,, diagnostic, combining the Hubble parameter and redshift, introduced by Sahni [52]

serves as a valuable tool to distinguish between dark energy models and the standard

ACDM framework. It is a model-independent diagnostic, making it particularly useful for

distinguishing ACDM from alternative dark energy models.

e ACDM: 0,,(z) remains constant across redshifts because dark energy behaves as a
cosmological constant.

o Quintessence: 0,,(z) decreases with redshift due to the dynamic nature of the scalar
field driving dark energy.
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e Phantom Energy: O,,(z) increases with redshift, reflecting the more extreme behavior

of the equation of state (w < —1).

The 0,,(z) diagnostic, in parallel with statefinder parameters (r, s), offers a robust
framework for understanding the nature of dark energy and the cosmic expansion history.
This diagnostic is particularly effective in probing the present matter density contrast and
the evolution of dark energy. The 0, (z) parameter is defined as:

Om(2) = 2 (53)

(1+z)3-1
where H(z) is the Hubble parameter at redshift z, and H, is the current Hubble constant.
From Eq. (40), Eq. (53) becomes,
_ [(+2)"43][(1+2)"-1]
Om(2) = 4[(1+2)3-1] (54

5. Some Dynamical Properties

5.1. Cosmic string

From Egs. (21), (22), and (23) the string tension density is obtained as:

-1 e2mt  r3p  15eM 3 1
= — (T -==2)+ 55
(8m+2u) _(e’7f—1)2 ( 2 4 4) (e"t—l)% (55)
1 1 \~2" 1 \" 23n 1571\ o
Fm et () 1) B-3G) - +ax+ Z)} (56)
Energy density as,
-1 e2mt 5y 17eMt 5 1
= - - +-)+ 57
P (8m+2u) _(e"f—l)z ( 2 4 4) (em_l)%l (57)
-1 1\ 721 \1 Zrsn 17 1 \1
Pl () +1) G-7(E) -3)+a “)} (58)
Pressure as,
1 e2nt s5n 17eMt u e, 1 1
p=——"—=lm—""-1)+ an —8eM + - )|+ ————= (59)
2u (eMt-1)2 [( 2 4 ) (8m+2u) ( 2)] (871:+2u)(e’7t—1)ﬁ

- 2
p=u(m) (@) ) G- 76 - e (-8(2)' -

15 1+z
7)} + (8m+2u) (60)
Equation of state parameter is given by,
w==,
’ 2nt nt
1 e [(5m 17e N S U T 1
2u(enr_1)2l(2 n )T(8n+2u)\4" 8e +2)]+ i
w = (8m+2p)(eMt-1) (61)
-1 e2nt  (sy 17e'lf,5), 1
Erem| ™\ 2 & T
e'l*—1
11 \"20( 1 \T, \?((sn 17/ 1\ 21 u 1\7 15 14z
m(m) ((m) +1) {(T‘T(l—ﬂ) ‘r)+(8n+zm(4’7‘8(m) ‘7)}+(8n+zm (62)

w = — -2 2
() () (2 o)
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5.2. Domain wall

Egs. (31), (32) and (33) give the energy density and pressure by,

p= )((em e [7'[(34 e —20n+8)+u (199" - 72—77 + Z)] +x T (63)
(ent-1)7
p=r(5) () 1) [r(34 () - 20m+ 42) ¢ (2() -2+
6)] + )m(l +2) (64)
Where = (211:+,u)(3211:+8,u)
Pressure,
p=—t{Zyp[rcaer —20n+8) +u (2 -4 Ef LD (6s)
1\ 71\ 21 (-9 1\" ey
p=() (@) +1) T +vlr(3e (5) —20m+42)+
VB B} ¢ asa-d <66>
where, i = (211:-52?(22?4—8#)
Equation of state parameter is given by,
o2t

nt
e e 1)2{ +1p[n(34e’7t 20n+8)+#(19: 1y 5>) Wpmt)

_ n(ent- 1)"
w = e2Mmt 19eMt 77 s " (67)

XW[H(M e"t—2017+8)+u( R .4>]+x T
(e’lt—1)7l
_ 2
) s ) oo e

x(ﬁ)_zn((ﬁ)nH)z[n(u () —zon+42)+u(29(112)"-7—”+6)]+xu(1+z)

6. Observations from Figures

Graph of a vs t for different values of n - Graph of V/ vs ¢ for Different n
he1s ] — e ]
n=16 f 3 =16 |
n=18 / =18 [
/ ;"‘
P / ) ] /
) / I
% 7 / 101 y ; |
- S/ L /
[ e sl o) /
Fig. 1. Variations of average scale factor with Fig. 2. Variations of Volume with respect to

respect to cosmic time. cosmic time.
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Graph of H vs 2 for different values of n
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Graph of g vs 2 for Different Values of
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Fig. 3. Variations of Hubble parameter with

respect to Redshift.
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Fig. 4. Variations of deceleration parameter
with respect to Redshift.
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Fig. 5. Variations of Shear scalar with
respect to Redshift.
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Fig 7. Evolution trajectory of r — s plane

Graph of density vs z (Cesmic String)

Fig 8. Evolution of 0,,(z) with respect to
Redshift.

Graph of pressure vs 2 (Cosmic String}
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Fig. 9. Variations of density (Cosmic String)

with respect to Redshift.
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Fig. 10. Variations of pressure (Cosmic String)
with respect to Redshift.
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Graph of density vs 2 (Domain Wall) Graph of Pressure vs 2 (Domain Wall)

25 —n=14
n=18
n=18

e — =14
I n=16
28] e =18

0 2 1 6 8 1 ©

Fig. 11. Variations of density (Domain Wall) Fig. 12. Variations of pressure (Domain Wall)
with respect to Redshift. with respect to Redshift.

Figs. 1 and 2 clearly show that the average scale factor and spatial volume remain steady
at the initial time (t = 0). However, as time progresses, both begin to steadily and
consistently grow, eventually extending toward infinite values over extended period. This
noteworthy observation highlights the present model exhibit continuous expansion.

Fig. 3 illustrates that the Hubble parameter H decreases with the progression of cosmic
time. Also, the expansion scalar (8) is the decreasing function of time, i.e. increasing
function with respect to redshift. The value of Hubble parameter is throughout positive. At
the present time, the value of Hubble parameter is H, = 68 kms™' Mpc™..

Fig. 4 demonstrates the transitional behavior of the deceleration parameter. Initially, g =
0 during the early stages, indicating the decelerating phase of the Universe's expansion.
However, as time progresses to the present and into the future, g < 0, signifying a shift to
an accelerating phase. This transition is consistent with the predictions of the ACDM model.
Our model shows decelerating to accelerating phase. Also, from graph we get the present
value of the deceleration parameter is go=—0.31 forn=1.4, go = —0.21 forn=1.6 and q,
=-0.11 for n = 1.8 respectively

Fig. 5 shows that the shear scalar increases with redshift i.e. shear scalar declines
progressively with time and approaches zero for large time values. The shear scalar
quantifies the degree of anisotropy in the cosmic expansion. A decreasing shear scalar
indicates that the anisotropy diminishes over time, suggesting that the Universe transitions
toward a more isotropic state as it evolves.

Fig. 6 illustrates that the jerk parameter (j) remains consistently positive across the entire
redshift range for all values of . This persistent positivity signifies the Universe's ongoing
acceleration. As z = —1, the values of j for each 1 converge towards the expected behavior
of the ACDM model, highlighting the compatibility of the model with observational data.

Fig. 7 represents the v — s plane serves as a valuable graphical tool for mapping and
distinguishing between various dark energy models and cosmological scenarios. Each point
on this plane represents a unique cosmological model, providing a visual framework for
understanding their distinct characteristics.

a. (r=1,s=0): ACDM
b. (r=1,s=1): SCDM
c. (r=1,s :g): Holographic dark energy
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d. (r>1,s<0): Phantom region
e. (r<1,s>0): Quintessence region

The coordinates (1,0) on the r — s plane represent the standard ACDM model, where
dark energy is described as a cosmological constant (A) and cold dark matter (CDM)
constitutes the dominant matter component of the Universe. The r — s plane proves to be a
highly effective tool for examining the trajectories of various dark energy models, offering
valuable insights into their distinctive properties, such as evolutionary dynamics and
deviations from the ACDM framework. For example, quintessence, a dynamic form of dark
energy driven by a scalar field, is located to the right of the ACDM model at n=1.4 in the
r —s plane. This positioning highlights the unique evolutionary characteristics of
quintessence, which may include a time-dependent equation of state and potential
departures from the conventional ACDM model.

A constant 0,,(z) indicates that dark energy is a cosmological constant, while a positive
slope suggests phantom (w < —1) behaviour and negative slope suggest quintessence
(w > —1) behavior respectively. Fig 8 shows that 0,,(z) increases as z decreases, i.c.
0,,(z) decreases with redshift. The decreasing trend of O,,(z) with redshift indicates a
quintessence-like behavior of dark energy, characterized by an equation of state parameter
(w > —1). Such a trend supports the notion of a time-dependent dark energy component
driving the accelerated expansion of the Universe.

Figs. 9 and 11 show the energy density in both cosmic string and domain wall
respectively. From both the graphs we can say that the energy density starts with a
significant value and displays the Fascinating trend and gradually decreases over time,
eventually approaching zero in the present and future. This clear pattern provides strong
evidence of the Universe's continuous expansion.

Figs. 10 and 12 graph demonstrate the influence of topological defects (cosmic strings
and domain walls) on the pressure evolution. From both the graphs we can say that the
analysis reveals that the pressure transitions from significantly large negative values to
slightly negative values over time, eventually approaching zero as t—oo. This persistent
negativity in pressure highlights the presence of dark energy, a fundamental driver of the
Universe's accelerated expansion.

7. Conclusions

The present study focuses on an accelerating model of the Universe formulated in the
context of f(R, T) gravity. In the course of our investigation, we establish field equations
for anisotropic Bianchi type III cosmological model in the presence of Cosmic string and
Domain wall. Utilizing a special form of deceleration parameter, we deduce cosmological
solutions that exhibit remarkable similarity to the properties of the ACDM model influenced
by dark energy. Our study findings lead to the following conclusions:

Initially, at t = 0 the average scale factor and spatial volume is finite but as t — oo,
both average scale factor and spatial volume become infinite. Here average scale factor and
spatial volume show expanding model with time t. It has been noted that the Hubble
parameter H remain positive and gradually approach zero as time progresses towards
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infinity. The positivity of the Hubble parameter signifies the ongoing expansion of the
2
Universe. Also, g—z = Constant # 0, and hence the model does not approach isotropy for large

values of t. Our results demonstrate that, over time, the deceleration parameter (q), as
defined in Eq. (42), transitions from positive to negative values and eventually approaches
—1. This behavior aligns with the features of the dark energy-dominated ACDM model. As
a result, our Universe model exhibits a shift from an initial decelerating phase to the present
accelerating phase, a conclusion that is consistent with recent observational data.

The cosmic jerk parameter remains positive throughout and converges to unity at late
times, aligning with observational data and supporting the ACDM model. The analysis of
statefinder parameters yields {r, s} = {1, 0}, strongly supporting the ACDM model and its
consistency with recent observations. Additionally, the ACDM model positions
quintessence to the right in the {r, s} plane, highlighting its distinct evolutionary behavior.
The decreasing trend of 0, (z) with redshift indicates a quintessence-like behavior of dark
energy, characterized by an equation of state parameter (w > —1). The density (p)
increases with redshift (z) for both domain walls and cosmic strings, showing their stronger
influence in the early Universe. Higher 1 values lead to steeper growth. Pressure decreases
with redshift for all n, remaining negative-indicating a repulsive effect responsible for the
Universe’s accelerated expansion due to dark energy or topological defects.
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