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Abstract 

Dermatological diseases affect a significant portion of the global population. Traditional 

diagnostic methods such as visual inspection and biopsies are subjective, invasive, and time-

consuming. To address these limitations, this study proposes an entropy-based texture 

analysis framework combined with Gray Level Co-occurrence Matrix (GLCM) features for 

the automated identification and classification of skin diseases using standard color 

dermatological images. The methodology involves pre-processing the input images through 

normalization and resizing, followed by the extraction of five key texture features: contrast, 

correlation, energy, homogeneity, and entropy. A comparative evaluation across four 

dermatological conditions Morgellons, Dermatitis, Psoriasis, and Vitiligo demonstrates that 

entropy and homogeneity are the most effective features in capturing disease-specific 

textures, whereas contrast, correlation, and energy exhibit limited discriminative capability. 

Furthermore, the study examines the impact of varying window sizes (5, 15, and 25) for 

texture extraction and identifies a 5×5 window as the optimal configuration for preserving 

critical lesion details. The proposed approach provides a lightweight, interpretable, and non-

invasive solution that can serve as a valuable component in clinical decision-support systems. 

This work contributes to the advancement of AI-driven dermatological diagnostics by offering 

a cost-effective and accessible methodology for automated skin disease identification. 
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Matrix (GLCM); Image preprocessing; Automated diagnosis; AI in Dermatology. 

© 2026 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.  
doi: https://dx.doi.org/10.3329/jsr.v18i1.82694                 J. Sci. Res. 18 (1), 123-135 (2026) 

 

 

1.   Introduction 

Dermatological diseases are among the most prevalent health conditions worldwide, 

affecting individuals across all age groups. Despite their widespread occurrence, diagnosing 

these diseases remains a complex challenge requiring significant expertise. Studies indicate 

that approximately 24 % of the population consult their general practitioner (GP) with a 

skin-related issue at least once a year. However, inconsistent dermatological education at 

the undergraduate level suggests that medical trainees must continuously reassess their 

knowledge and skills in this field [1]. Furthermore, skin diseases have been identified as the 

 
 Corresponding author: Anshumca2@gmail.com  

Available Online 

J. Sci. Res. 18 (1), 123-135 (2026) 

JOURNAL OF  

SCIENTIFIC RESEARCH 

www.banglajol.info/index.php/JSR  Publications 

 

https://dx.doi.org/10.3329/jsr.v18i1.82694
mailto:Anshumca2@gmail.com


124 Identification of Dermatological Diseases using AI-Driven Entropy 

 

fourth leading cause of nonfatal disease burden globally, with three of the most common 

diseases being dermatological conditions [2]. In countries like India, particularly in rural 

and small towns, skin diseases are often overlooked, and individuals may not seek timely 

consultation with dermatologists. The scarcity of dermatologists in these areas further 

exacerbates the problem, leaving primary healthcare providers, paramedical staff, and 

community health centers as the primary sources of treatment. Many dermatological 

diseases, such as bacterial infections, fungal infections, eczema, and scabies, exhibit similar 

characteristics, making early diagnosis by non-specialists particularly difficult. The impact 

of skin diseases extends beyond physical discomfort; they can significantly affect a patient’s 

quality of life [3]. Common symptoms include lesions, scales, plaques, and pigmentation, 

leading to chronic pain, disfigurement, and psychological distress, especially when the 

condition affects visible areas such as the face [4]. Studies suggest that patients suffering 

from primary skin diseases like psoriasis, alopecia areata, and vitiligo are more susceptible 

to mental health issues, including anxiety and depression [5]. According to the 2018 English 

Skin Establishment Report, an estimated 5.4 million new cases of skin diseases are reported 

annually in the United States, with one in five individuals at risk of developing a lifelong 

cutaneous disorder. Additionally, 60 % of the English population reportedly suffers from a 

skin condition. These disorders not only impact physical health but also affect daily 

activities, interpersonal relationships, and even internal organs. In severe cases, untreated 

skin diseases may lead to fatal complications or trigger maladaptive behaviors such as social 

withdrawal, depression, and even suicidal tendencies [6]. Therefore, there is a pressing need 

for both effective diagnostic methods and greater awareness in underserved regions. 

The skin, as the largest organ in the human body, serves as a protective barrier for 

muscles, bones, and internal organs. It also functions as a sensor to environmental changes, 

making it highly vulnerable to external factors such as pollution, climate change, and 

ultraviolet (UV) radiation. A mere 1% reduction in ozone levels may increase cancer 

incidence by 2-3 %. In India, photosensitive and infectious skin disorders are highly 

prevalent, highlighting the urgent need for early intervention to prevent complications 

beyond the skin. Given the country’s rapidly growing population, there is a pressing need 

for efficient and high-quality dermatological care. Certain skin conditions mimic severe 

diseases such as AIDS and tuberculosis, which can become life-threatening if not treated 

promptly. Additionally, even mild skin disorders pose a financial burden, limiting treatment 

options for many patients. Therefore, it is crucial to develop cost-effective and efficient 

approaches for diagnosing skin diseases. In recent years, automated technologies have 

largely replaced traditional manual methods across various fields, including healthcare. 

However, diagnosing skin diseases remains a challenge due to the structural complexity of 

the skin and the similarities between different conditions. Many skin disorders share 

overlapping symptoms, making differentiation difficult. Moreover, segmentation and 

analysis of skin lesions are complicated by factors such as hair, sweat, and uneven 

pigmentation. The reliance on color images for diagnosis introduces additional challenges, 

as variations in lighting, image resolution, and noise can impact accuracy [7-11]. 
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Conventional skin disease detection methods have several limitations. Visual inspection 

by healthcare professionals is subject to subjective interpretation, and diagnostic accuracy 

depends on the provider’s expertise. Additionally, biopsies, often required for definitive 

diagnoses, are invasive and may not always capture the full extent of a skin condition. 

Imaging techniques typically provide only surface-level information, making it difficult to 

detect abnormalities within deeper skin layers. Furthermore, seasonal variations and 

evolving disease presentations complicate accurate tracking and diagnosis. Automated 

detection systems, particularly those based on machine learning, face challenges in handling 

the complexity and variability of skin conditions. The performance of machine learning 

models is highly dependent on the quality and diversity of training data, and the availability 

of large-scale datasets remains a critical bottleneck. 

To address these challenges, we propose an entropy-based texture analysis approach for 

automated skin disease identification and classification. This technique utilizes Gray Level 

Co-occurrence Matrices (GLCM) and entropy-based texture features to analyze spatial 

relationships between pixel intensities in dermatological images. Entropy-based analysis 

provides a quantitative measure of disorder and randomness in skin texture, helping 

distinguish between different dermatological conditions. By combining GLCM features 

with CNN-based classification, this method aims to enhance disease detection accuracy 

while reducing reliance on large annotated datasets. Traditional Convolutional Neural 

Networks (CNNs) require extensive datasets, which are often unavailable for specific 

dermatological conditions. However, leveraging entropy-based texture analysis allows for 

the extraction of meaningful features, enabling more accurate predictions even with limited 

training data. CNNs have demonstrated remarkable success in skin disease classification, 

with reported validation accuracies reaching up to 97.1 % [12]. Additionally, CNN-based 

models have been effective in detecting and classifying skin cancer, achieving performance 

accuracies ranging from 76 % to 99 % [13].  

Recent advancements in deep learning have demonstrated significant potential in 

transforming dermatological disease diagnosis by offering non-invasive, efficient, and 

scalable solutions. In particular, Convolutional Neural Networks (CNNs) form the 

backbone of most deep learning models used in medical imaging. The process begins by 

feeding raw skin images into the network, where successive convolutional layers 

automatically extract hierarchical features. Low-level features such as edges, color 

variations, and textures are learned first, followed by mid-level features like shapes, 

boundaries, and local patterns, and finally high-level abstract representations that capture 

lesion-specific characteristics. These progressively refined features are then passed through 

fully connected layers or classifiers to differentiate between normal and diseased skin 

conditions. CNNs perform end-to-end learning, thereby reducing subjectivity, minimizing 

manual intervention, and improving diagnostic scalability and accuracy. 

This paper addresses the limitations of conventional approaches by proposing a 

lightweight alternative that integrates entropy-based texture analysis with Gray Level Co-

occurrence Matrix (GLCM) features for automated identification and classification of skin 

diseases using standard color images. The proposed method emphasizes the extraction of 
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statistically meaningful texture descriptors particularly entropy and homogeneity which 

have shown superior capability in capturing disease-specific patterns compared to other 

features like contrast, correlation, and energy. Furthermore, the study introduces a 

systematic evaluation of different window sizes for texture computation and identifies the 

5×5 window as the most effective for preserving fine lesion details. Unlike deep learning 

models that typically require large annotated datasets, this lightweight and interpretable 

approach is capable of delivering accurate results even with limited data, making it 

particularly suitable for deployment in resource-constrained healthcare settings. By 

bridging statistical image analysis with machine learning, the proposed framework offers a 

practical and accessible solution for enhancing early dermatological diagnosis. The 

remainder of this paper is structured as follows: Section 2 reviews the related literature, 

Section 3 presents the proposed methodology, Section 4 discusses the experimental results, 

and Section 5 concludes the paper while outlining future research directions.  

 

2. Literature Review 

 

Researchers have proposed comprehensive automated methods for dermatological disease 

identification using color image processing. Unlike traditional diagnosis, which relies on 

medical personnel, these approaches introduce computer-based intervention. The system 

employs color image processing algorithms, k-means clustering, and color gradient 

techniques to detect affected skin areas, achieving a skin disease detection accuracy of 99.99 

% and an illness identification accuracy of 94.016 % [14]. Convolutional Neural Networks 

(CNNs), a class of deep learning algorithms, have significantly advanced machine learning 

applications, particularly in image processing. They have been widely used in diverse fields, 

including agriculture, aerial image classification [15,16], medical imaging, and 

dermatological diagnostics. For example, CNNs have been applied in agriculture to detect 

and classify wheat leaf diseases such as spot blotch, stripe rust, brown rust, and powdery 

mildew across the plant’s life cycle [17].  

Convolutional Neural Networks (CNNs) have also been widely applied in image 

classification, object detection, and predictive modeling. Their ability to extract complex 

spatial features makes them effective for classification tasks. CNN-based automatic image 

enhancement has been tested for skin lesion diagnosis, particularly in resource-limited 

settings [18]. The implementation of a ResNet-152-based technique improved classification 

accuracy from 87.40 % to 95.85 % when GA-enhanced images were used [19]. CNNs have 

also been used for classifying dermatological conditions such as dermatitis, eczema, lichen 

simplex, and ulcers, achieving a precision of 73 % on the DermNet dataset containing 500 

images [20]. To enhance skin disease classification, a deep CNN model incorporating a 

triplet loss function was implemented. For facial skin disease identification, fine-tuning of 

ResNet-152 and InceptionResNet-V2 was performed, employing moment-based techniques 

such as Legendre, Zernike, and pseudo-Zernike moments for pattern recognition [21]. 

Automated techniques for early skin lesion diagnosis have been developed, 

incorporating color-based lesion segmentation followed by global thresholding. Feature 
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extraction methods using two-dimensional Discrete Cosine Transform (DCT) and Fast 

Fourier Transform (FFT) have been evaluated using the PH2 dataset [22]. Another approach 

integrates color and texture features, utilizing statistical moments (mean, variance, standard 

deviation, and asymmetry) and textural features such as Local Binary Patterns (LBP) and 

Grey Level Co-occurrence Matrices (GLCM), with classification performed using Support 

Vector Machines (SVM) [23]. Similarly, hybrid frameworks have been applied for 

automatic dementia diagnosis from T1-weighted MRI scans, combining GLCM-based 

texture feature extraction with adaptive neuro-fuzzy inference systems (ANFIS). This 

approach achieved 82.5 % accuracy, outperforming existing machine learning methods 

[24]. Further advancements in skin lesion classification have been achieved through a 

probabilistic lesion detection method, followed by feature selection using Bhattacharyya 

distance and an entropy-controlled variance-based approach. The selected features were 

then classified using a multi-class SVM [25]. A three-phase automated dermatological 

disease recognition system was also proposed, incorporating data collection and 

augmentation, model design, and prediction. This system integrated CNNs and SVMs with 

advanced image processing techniques for improved accuracy [26]. Machine learning 

classifier comparisons have been conducted for dermatological diagnosis, evaluating 

images of lichen planus, plaque psoriasis, and persistent eczema using RGB color features 

and texture descriptors such as GLCM. The performance of classifiers was assessed using 

different machine learning techniques with varied feature combinations [27]. Research on 

skin disease classification has explored differences in color and texture between healthy and 

affected skin. Texture features such as regularity, smoothness, and coarseness have been 

leveraged for accurate identification. Maximum histogram values, variance, and entropy of 

Hue-Saturation-Value (HSV) features were utilized in classification models based on SVMs 

and Decision Trees (DT) [28]. An advanced pre-trained deep CNN-based automated system 

for facial skin disease diagnosis has also been developed. To expand the dataset, pre-

processing techniques were applied to images collected from various sources, followed by 

resizing for compatibility with the network. The model successfully classified eight facial 

skin diseases with an accuracy of 88%, including normal skin and no-face categories [29]. 

These studies collectively demonstrate the evolution of AI-driven dermatological diagnosis, 

highlighting the effectiveness of CNNs, texture-based feature extraction, and hybrid 

machine learning frameworks in automating disease detection and classification across 

multiple domains, including agriculture and medical imaging. 

3. Methodology 

The overall methodology of the proposed investigation is presented in the form of a block 

diagram, as illustrated in Fig. 1. The process is systematically divided into four main 

subtasks, each constituting a critical phase in the skin disease identification pipeline. These 

include: (i) image acquisition, (ii) image pre-processing, where the acquired images are 

prepared through operations such as resizing, normalization, and noise reduction to ensure 

consistency and enhance quality; (iii) feature extraction using Gray-Level Co-occurrence 
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Matrix (GLCM) and entropy, where statistical texture features are computed to represent 

the structural variations in diseased and healthy skin regions; and (iv) result analysis. Each 

of these subtasks contributes to building a reliable and interpretable framework for 

automated skin disease detection and is discussed in detail in the subsequent sections. 

 

Fig. 1. Block diagram of proposed investigations 

 

a) Image acquisition 

A database containing images of skin patches affected by diseases such as Morgellons, 

Dermatitis, Vitiligo, Melanoma, and Psoriasis was acquired from the DermNet NZ [30], 

For analysis, an image of normal human skin is used as a reference.  

 

b) Pre-processing 

Image pre-processing plays a vital role in enhancing the quality of input images and 

ensuring consistency for accurate analysis. Raw dermatological images often contain 

unwanted artifacts such as hair, air bubbles, and noise, which can adversely affect feature 

extraction and classification. To address these challenges, we applied normalization and 

resizing techniques. Normalization standardizes pixel intensity values, improving image 

contrast and reducing variations caused by different lighting conditions. This ensures a 

uniform intensity distribution across all images, allowing the model to focus on relevant 

features while minimizing inconsistencies. The normalization process is performed using 

the following equation: 

𝐼𝑛𝑜𝑟𝑚 =
𝐼− 𝐼𝑚𝑖𝑛

  𝐼max −𝐼𝑚𝑖𝑛
                      (1)                

where I is the original pixel intensity, Imin and Imax are the minimum and maximum intensity 

values in the image, and Inorm is the normalized pixel intensity scaled to the range [0,1]. 

Additionally, resizing is performed to maintain a uniform image dimension, standardizing 

all images to a fixed size, which facilitates efficient processing and consistent feature 

extraction. In this study, all images were resized to 256×256 pixels, preserving essential 

structural details while reducing computational complexity. By implementing these pre-

processing steps, we ensure a high-quality and uniform dataset, which directly contributes 

to improved performance in feature extraction and classification. 
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c) GLCM and entropy parameter extraction 

 

Statistical texture analysis plays a crucial role in extracting meaningful patterns from 

images by analyzing the spatial distribution of pixel intensities. This approach computes 

texture features based on the statistical distribution of intensity combinations at specific 

relative positions within the image. Depending on the number of intensity points (pixels) 

involved, statistical methods are categorized into first-order, second-order, and higher-order 

statistics. Among these, the Gray Level Co-occurrence Matrix (GLCM) is one of the most 

widely used second-order techniques, as it provides valuable insights into spatial 

relationships between pixel intensities. 

In this study, we employed the Gray Level Co-occurrence Matrix (GLCM), a widely 

used second-order statistical method, to characterize the textural properties of 

dermatological images. Since GLCM operates on grayscale data, all color images were first 

converted into grayscale. The GLCM was constructed by defining a pixel pair distance d 

and orientation θ, where d represents the number of pixels between the pair, and θ represents 

the direction of displacement. Commonly used orientation angles include 0°, 45°, 90° and 

135° while the distance d can be varied depending on the scale of texture analysis. For each 

pixel in the image, the frequency of co-occurring intensity pairs (i, j) separated by the 

specified displacement (d, θ) was counted, resulting in a co-occurrence matrix C (i, j∣ d, θ). 

Mathematically, it is expressed as in Equation (2): 

𝐶(𝑖, 𝑗|𝑑, 𝜃) =  ∑ ∑ {
1,
0,

𝑁
𝑦=1

𝑀
𝑥=1  𝑖𝑓 𝐼 (𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝐼(𝑥 + 𝑑𝑥 , 𝑦 + 𝑑𝑦) = 𝑗       (2) 

where I (x, y) denote the intensity of the pixel at position (x, y), M and N are the image 

dimensions, and (dx, dy) are determined by the displacement d and orientation θ. The co-

occurrence matrix was then normalized to transform the frequency counts into probabilities 

as given in Equation (3):  

        𝑃(𝑖, 𝑗) =  
𝐶(𝑖,𝑗)

∑ ∑ 𝐶(𝑖,𝑗)𝐿−1
𝑗=0

𝐿−1
𝑖=0

                  (3) 

where L represents the number of gray levels in the image. Each element P (i, j) thus denotes 

the probability of occurrence of the pixel pair (i, j). From the normalized GLCM, several 

texture descriptors were derived, namely contrast, correlation, energy, and homogeneity. 

The mathematical formulations of these features are presented in Equations (4)-(7).  

Contrast: It measures local intensity variation between a pixel and its neighbor 

Contrast =   ∑ ∑ 𝑖 − 𝑗2𝐿−1
𝑗=0

𝐿−1
𝑖=0 𝑃(𝑖, 𝑗)                  (4) 

Correlation: It evaluates the linear dependency of gray levels between pairs of pixels 

        Correlation =  
∑ ∑ (𝑖−𝜇𝑖 )(𝑗− 𝜇𝑗 )𝑃(𝑖,𝑗)𝐿−1

𝑗=0
𝐿−1
𝑖=0

𝜎𝑖𝜎𝑗
                                                                         (5) 

where μi, μj are the means and σi, σj are the standard deviations of the marginal distributions 

of P (i, j). 

Energy: It measures textural uniformity or smoothness 

          Energy =  ∑ ∑ 𝑃(𝑖, 𝑗)𝐿−1
𝑗=0

𝐿−1
𝑖=0                         (6) 

Homogeneity: It assesses the closeness of distribution to the diagonal, giving more weight 

to near-diagonal elements 
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          Homogeneity =  ∑ ∑
𝑷(𝑖,𝑗)

𝟏+|𝒊−𝒋|

𝐿−1
𝑗=0

𝐿−1
𝑖=0                                                                              (7) 

These descriptors effectively capture the structural and spatial properties of images, making 

them highly suitable for disease identification and classification.  

Entropy-based analysis quantifies the disorder or randomness present in the pixel 

intensity distribution of an image, thereby providing insights into its information content, 

complexity, and visual characteristics. In this context, disorder reflects the irregular 

distribution of pixel values, where diseased skin typically exhibits higher entropy compared 

to healthy skin due to increased randomness in texture patterns. To compute entropy, the 

probability distribution of pixel intensities is first determined. For 8-bit grayscale images, 

intensity values range from 0 to 255, while for color images, each pixel consists of red, 

green, and blue (RGB) channel values, allowing entropy to be calculated independently for 

each channel. For each intensity level i, the probability P(i) is computed as the frequency 

of occurrence of that intensity divided by the total number of pixels in the image. This 

probability distribution forms the basis for entropy analysis, which quantifies the degree of 

randomness in the image. Mathematically, the entropy H of the image is given by in 

Equation (8): 

       𝐻 = − ∑ 𝑃 (𝑖)𝐿−1
𝑖=0 𝑙𝑜𝑔2𝑃(i)                (8) 

where, P(i) represents the probability of occurrence of intensity level i, while L denotes the 

total number of intensity levels. A higher entropy (H) indicates greater irregularity in the 

pixel intensity distribution, reflecting increased disorder within the image. Conversely, low 

entropy suggests a more ordered and predictable structure, where certain intensity levels 

dominate the image. 

 

4. Results and Discussion 

 

The analysis of four dermatological diseases Morgellons, Dermatitis, Psoriasis, and Vitiligo 

was performed using Gray Level Co-occurrence Matrix (GLCM) and entropy-based texture 

analysis. The results, presented in Figs. 2 and 3, illustrate the effectiveness of different 

texture parameters in capturing disease-specific patterns. Each figure consists of multiple 

subplots, where the leftmost image shows the original dermatological photograph, followed 

by processed outputs representing different texture attributes. The first column includes the 

grayscale image along with correlation and homogeneity, while the second column presents 

contrast, energy, and entropy parameters derived from the grayscale images. These 

processed feature maps clearly demonstrate how various texture measures highlight 

different lesion characteristics such as smoothness, irregularity, randomness, and intensity 

variation providing insights into disease-specific patterns. To further assess the robustness 

of the framework, the analysis was conducted with varying window sizes of 5, 15, and 25. 

4.1. Morgellons and Dermatitis  

The experimental findings for Morgellons disease indicate that entropy and homogeneity 

are particularly effective in capturing the complex and irregular texture patterns 
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characteristic of diseased skin regions. These features enable a distinct visual and statistical 

separation between affected lesions and surrounding healthy tissue. Entropy, which 

measures the randomness or complexity within an image, effectively identifies the chaotic 

and fibrous structures typical of Morgellons. Homogeneity, which assesses the uniformity 

of pixel intensities, helps differentiate the non-uniform texture of lesions from the smoother 

patterns of normal skin. In contrast, features such as contrast, correlation, and energy are 

less effective in highlighting the distinguishing characteristics of Morgellons. Contrast, 

which is intended to emphasize intensity variation, shows limited sensitivity to subtle 

differences within the lesions. Correlation, measuring the linear dependency of gray levels 

between neighboring pixels, fails to adequately capture the disorderly patterns in affected 

regions. Energy, which typically reflects texture uniformity, also lacks sensitivity to the 

scattered and fibrous structures. Therefore, these parameters are considered less reliable for 

characterizing Morgellons disease. 

 

 
 

Fig. 2. GLCM and entropy analysis of Morgellons and Dermatitis (a) grayscale, (b) contrast, (c) 

correlation, (d) energy, (e) homogeneity, and (f) entropy. 
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A similar pattern is observed for Dermatitis. Entropy and homogeneity successfully 

capture the inflamed, rough, and disrupted texture associated with this condition. Entropy 

increases due to the randomness introduced by inflammation, while homogeneity decreases, 

reflecting the uneven texture of affected skin. In comparison, contrast, correlation, and 

energy remain less capable of distinguishing diseased regions from healthy tissue. These 

observations reinforce that entropy and homogeneity-based analysis provides a more 

reliable and effective framework for accurately identifying dermatological abnormalities 

such as Dermatitis. 

 

4.2. Psoriasis and Vitiligo 

 

For Psoriasis, entropy and homogeneity were the most effective in capturing the texture 

patterns of thickened, scaly skin, clearly highlighting the roughness and plaque like 

structures characteristic of psoriatic lesions. In comparison, contrast, correlation, and 

energy provided less pronounced representations of these patterns and were relatively less 

reliable for psoriasis detection. Similarly, in Vitiligo, entropy and homogeneity accurately 

delineated the depigmented patches and irregular skin tone typical of the disease, whereas 

contrast, correlation, and energy captured these features to a lesser extent, making them 

comparatively less useful. 

 
 

Fig. 3. GLCM and entropy analysis of Psoriasis and Vitiligo (a) grayscale, (b) contrast, (c) correlation, 

(d) energy, (e) homogeneity, and (f) entropy. 
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The analysis also revealed that the choice of window size significantly influences texture 

extraction. Increasing the window size to 15×15 or 25×25 resulted in less distinct texture 

patterns, reducing classification precision. A smaller window size of 5×5 consistently 

allowed entropy and homogeneity to capture detailed, disease-relevant textures. Across all 

four examined skin conditions, these two features demonstrated the strongest discriminative 

ability for disease identification and classification, while contrast, correlation, and energy 

contributed to a lesser degree. 

Therefore, combining entropy and homogeneity with a 5×5 window size emerges as the 

most effective approach in this study for distinguishing dermatological diseases. These 

results underscore the potential of entropy-based texture analysis to enhance automated skin 

disease detection and provide a solid foundation for developing machine learning–driven 

diagnostic systems. 

 

5.  Conclusions 

 

This study proposed an entropy-based texture analysis framework combined with GLCM 

features for the automated identification and classification of dermatological diseases. Five 

statistical descriptors contrast, correlation, energy, homogeneity, and entropy were 

evaluated across multiple skin conditions, including Morgellons, Dermatitis, Psoriasis, and 

Vitiligo. The results consistently showed that entropy and homogeneity provided the most 

reliable diagnostic cues, while contrast, correlation, and energy offered limited 

discriminative value. A key outcome of this work is the identification of the 5×5 window 

size as the optimal configuration for texture extraction, as it preserves fine lesion details 

while avoiding the blurring effects of larger windows. This finding highlights the 

importance of spatial resolution in medical image analysis, an aspect often overlooked in 

texture-based studies. Unlike deep learning models that require large annotated datasets, the 

proposed framework is lightweight, interpretable, and adaptable, making it well-suited for 

clinical decision-support systems in resource-constrained environments. By bridging 

statistical image analysis with AI-driven methodologies, this work lays the foundation for 

cost-effective and accessible diagnostic tools. Future research will focus on integrating 

these features with deep learning architectures such as CNNs and hybrid classifiers to 

further improve accuracy and enable real-time clinical deployment. 
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