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Abstract

Dermatological diseases affect a significant portion of the global population. Traditional
diagnostic methods such as visual inspection and biopsies are subjective, invasive, and time-
consuming. To address these limitations, this study proposes an entropy-based texture
analysis framework combined with Gray Level Co-occurrence Matrix (GLCM) features for
the automated identification and classification of skin diseases using standard color
dermatological images. The methodology involves pre-processing the input images through
normalization and resizing, followed by the extraction of five key texture features: contrast,
correlation, energy, homogeneity, and entropy. A comparative evaluation across four
dermatological conditions Morgellons, Dermatitis, Psoriasis, and Vitiligo demonstrates that
entropy and homogeneity are the most effective features in capturing disease-specific
textures, whereas contrast, correlation, and energy exhibit limited discriminative capability.
Furthermore, the study examines the impact of varying window sizes (5, 15, and 25) for
texture extraction and identifies a 5x5 window as the optimal configuration for preserving
critical lesion details. The proposed approach provides a lightweight, interpretable, and non-
invasive solution that can serve as a valuable component in clinical decision-support systems.
This work contributes to the advancement of Al-driven dermatological diagnostics by offering
a cost-effective and accessible methodology for automated skin disease identification.
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1. Introduction

Dermatological diseases are among the most prevalent health conditions worldwide,
affecting individuals across all age groups. Despite their widespread occurrence, diagnosing
these diseases remains a complex challenge requiring significant expertise. Studies indicate
that approximately 24 % of the population consult their general practitioner (GP) with a
skin-related issue at least once a year. However, inconsistent dermatological education at
the undergraduate level suggests that medical trainees must continuously reassess their
knowledge and skills in this field [1]. Furthermore, skin diseases have been identified as the
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fourth leading cause of nonfatal disease burden globally, with three of the most common
diseases being dermatological conditions [2]. In countries like India, particularly in rural
and small towns, skin diseases are often overlooked, and individuals may not seek timely
consultation with dermatologists. The scarcity of dermatologists in these areas further
exacerbates the problem, leaving primary healthcare providers, paramedical staff, and
community health centers as the primary sources of treatment. Many dermatological
diseases, such as bacterial infections, fungal infections, eczema, and scabies, exhibit similar
characteristics, making early diagnosis by non-specialists particularly difficult. The impact
of skin diseases extends beyond physical discomfort; they can significantly affect a patient’s
quality of life [3]. Common symptoms include lesions, scales, plaques, and pigmentation,
leading to chronic pain, disfigurement, and psychological distress, especially when the
condition affects visible areas such as the face [4]. Studies suggest that patients suffering
from primary skin diseases like psoriasis, alopecia areata, and vitiligo are more susceptible
to mental health issues, including anxiety and depression [5]. According to the 2018 English
Skin Establishment Report, an estimated 5.4 million new cases of skin diseases are reported
annually in the United States, with one in five individuals at risk of developing a lifelong
cutaneous disorder. Additionally, 60 % of the English population reportedly suffers from a
skin condition. These disorders not only impact physical health but also affect daily
activities, interpersonal relationships, and even internal organs. In severe cases, untreated
skin diseases may lead to fatal complications or trigger maladaptive behaviors such as social
withdrawal, depression, and even suicidal tendencies [6]. Therefore, there is a pressing need
for both effective diagnostic methods and greater awareness in underserved regions.

The skin, as the largest organ in the human body, serves as a protective barrier for
muscles, bones, and internal organs. It also functions as a sensor to environmental changes,
making it highly vulnerable to external factors such as pollution, climate change, and
ultraviolet (UV) radiation. A mere 1% reduction in ozone levels may increase cancer
incidence by 2-3 %. In India, photosensitive and infectious skin disorders are highly
prevalent, highlighting the urgent need for early intervention to prevent complications
beyond the skin. Given the country’s rapidly growing population, there is a pressing need
for efficient and high-quality dermatological care. Certain skin conditions mimic severe
diseases such as AIDS and tuberculosis, which can become life-threatening if not treated
promptly. Additionally, even mild skin disorders pose a financial burden, limiting treatment
options for many patients. Therefore, it is crucial to develop cost-effective and efficient
approaches for diagnosing skin diseases. In recent years, automated technologies have
largely replaced traditional manual methods across various fields, including healthcare.
However, diagnosing skin diseases remains a challenge due to the structural complexity of
the skin and the similarities between different conditions. Many skin disorders share
overlapping symptoms, making differentiation difficult. Moreover, segmentation and
analysis of skin lesions are complicated by factors such as hair, sweat, and uneven
pigmentation. The reliance on color images for diagnosis introduces additional challenges,
as variations in lighting, image resolution, and noise can impact accuracy [7-11].
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Conventional skin disease detection methods have several limitations. Visual inspection
by healthcare professionals is subject to subjective interpretation, and diagnostic accuracy
depends on the provider’s expertise. Additionally, biopsies, often required for definitive
diagnoses, are invasive and may not always capture the full extent of a skin condition.
Imaging techniques typically provide only surface-level information, making it difficult to
detect abnormalities within deeper skin layers. Furthermore, seasonal variations and
evolving disease presentations complicate accurate tracking and diagnosis. Automated
detection systems, particularly those based on machine learning, face challenges in handling
the complexity and variability of skin conditions. The performance of machine learning
models is highly dependent on the quality and diversity of training data, and the availability
of large-scale datasets remains a critical bottleneck.

To address these challenges, we propose an entropy-based texture analysis approach for
automated skin disease identification and classification. This technique utilizes Gray Level
Co-occurrence Matrices (GLCM) and entropy-based texture features to analyze spatial
relationships between pixel intensities in dermatological images. Entropy-based analysis
provides a quantitative measure of disorder and randomness in skin texture, helping
distinguish between different dermatological conditions. By combining GLCM features
with CNN-based classification, this method aims to enhance disease detection accuracy
while reducing reliance on large annotated datasets. Traditional Convolutional Neural
Networks (CNNs) require extensive datasets, which are often unavailable for specific
dermatological conditions. However, leveraging entropy-based texture analysis allows for
the extraction of meaningful features, enabling more accurate predictions even with limited
training data. CNNs have demonstrated remarkable success in skin disease classification,
with reported validation accuracies reaching up to 97.1 % [12]. Additionally, CNN-based
models have been effective in detecting and classifying skin cancer, achieving performance
accuracies ranging from 76 % to 99 % [13].

Recent advancements in deep learning have demonstrated significant potential in
transforming dermatological disease diagnosis by offering non-invasive, efficient, and
scalable solutions. In particular, Convolutional Neural Networks (CNNs) form the
backbone of most deep learning models used in medical imaging. The process begins by
feeding raw skin images into the network, where successive convolutional layers
automatically extract hierarchical features. Low-level features such as edges, color
variations, and textures are learned first, followed by mid-level features like shapes,
boundaries, and local patterns, and finally high-level abstract representations that capture
lesion-specific characteristics. These progressively refined features are then passed through
fully connected layers or classifiers to differentiate between normal and diseased skin
conditions. CNNs perform end-to-end learning, thereby reducing subjectivity, minimizing
manual intervention, and improving diagnostic scalability and accuracy.

This paper addresses the limitations of conventional approaches by proposing a
lightweight alternative that integrates entropy-based texture analysis with Gray Level Co-
occurrence Matrix (GLCM) features for automated identification and classification of skin
diseases using standard color images. The proposed method emphasizes the extraction of
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statistically meaningful texture descriptors particularly entropy and homogeneity which
have shown superior capability in capturing disease-specific patterns compared to other
features like contrast, correlation, and energy. Furthermore, the study introduces a
systematic evaluation of different window sizes for texture computation and identifies the
5x5 window as the most effective for preserving fine lesion details. Unlike deep learning
models that typically require large annotated datasets, this lightweight and interpretable
approach is capable of delivering accurate results even with limited data, making it
particularly suitable for deployment in resource-constrained healthcare settings. By
bridging statistical image analysis with machine learning, the proposed framework offers a
practical and accessible solution for enhancing early dermatological diagnosis. The
remainder of this paper is structured as follows: Section 2 reviews the related literature,
Section 3 presents the proposed methodology, Section 4 discusses the experimental results,
and Section 5 concludes the paper while outlining future research directions.

2. Literature Review

Researchers have proposed comprehensive automated methods for dermatological disease
identification using color image processing. Unlike traditional diagnosis, which relies on
medical personnel, these approaches introduce computer-based intervention. The system
employs color image processing algorithms, k-means clustering, and color gradient
techniques to detect affected skin areas, achieving a skin disease detection accuracy of 99.99
% and an illness identification accuracy of 94.016 % [14]. Convolutional Neural Networks
(CNNps), a class of deep learning algorithms, have significantly advanced machine learning
applications, particularly in image processing. They have been widely used in diverse fields,
including agriculture, aerial image classification [15,16], medical imaging, and
dermatological diagnostics. For example, CNNs have been applied in agriculture to detect
and classify wheat leaf diseases such as spot blotch, stripe rust, brown rust, and powdery
mildew across the plant’s life cycle [17].

Convolutional Neural Networks (CNNs) have also been widely applied in image
classification, object detection, and predictive modeling. Their ability to extract complex
spatial features makes them effective for classification tasks. CNN-based automatic image
enhancement has been tested for skin lesion diagnosis, particularly in resource-limited
settings [18]. The implementation of a ResNet-152-based technique improved classification
accuracy from 87.40 % to 95.85 % when GA-enhanced images were used [19]. CNNs have
also been used for classifying dermatological conditions such as dermatitis, eczema, lichen
simplex, and ulcers, achieving a precision of 73 % on the DermNet dataset containing 500
images [20]. To enhance skin disease classification, a deep CNN model incorporating a
triplet loss function was implemented. For facial skin disease identification, fine-tuning of
ResNet-152 and InceptionResNet-V2 was performed, employing moment-based techniques
such as Legendre, Zernike, and pseudo-Zernike moments for pattern recognition [21].

Automated techniques for early skin lesion diagnosis have been developed,
incorporating color-based lesion segmentation followed by global thresholding. Feature
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extraction methods using two-dimensional Discrete Cosine Transform (DCT) and Fast
Fourier Transform (FFT) have been evaluated using the PH2 dataset [22]. Another approach
integrates color and texture features, utilizing statistical moments (mean, variance, standard
deviation, and asymmetry) and textural features such as Local Binary Patterns (LBP) and
Grey Level Co-occurrence Matrices (GLCM), with classification performed using Support
Vector Machines (SVM) [23]. Similarly, hybrid frameworks have been applied for
automatic dementia diagnosis from T1-weighted MRI scans, combining GLCM-based
texture feature extraction with adaptive neuro-fuzzy inference systems (ANFIS). This
approach achieved 82.5 % accuracy, outperforming existing machine learning methods
[24]. Further advancements in skin lesion classification have been achieved through a
probabilistic lesion detection method, followed by feature selection using Bhattacharyya
distance and an entropy-controlled variance-based approach. The selected features were
then classified using a multi-class SVM [25]. A three-phase automated dermatological
disease recognition system was also proposed, incorporating data collection and
augmentation, model design, and prediction. This system integrated CNNs and SVMs with
advanced image processing techniques for improved accuracy [26]. Machine learning
classifier comparisons have been conducted for dermatological diagnosis, evaluating
images of lichen planus, plaque psoriasis, and persistent eczema using RGB color features
and texture descriptors such as GLCM. The performance of classifiers was assessed using
different machine learning techniques with varied feature combinations [27]. Research on
skin disease classification has explored differences in color and texture between healthy and
affected skin. Texture features such as regularity, smoothness, and coarseness have been
leveraged for accurate identification. Maximum histogram values, variance, and entropy of
Hue-Saturation-Value (HSV) features were utilized in classification models based on SVMs
and Decision Trees (DT) [28]. An advanced pre-trained deep CNN-based automated system
for facial skin disease diagnosis has also been developed. To expand the dataset, pre-
processing techniques were applied to images collected from various sources, followed by
resizing for compatibility with the network. The model successfully classified eight facial
skin diseases with an accuracy of 88%, including normal skin and no-face categories [29].
These studies collectively demonstrate the evolution of Al-driven dermatological diagnosis,
highlighting the effectiveness of CNNs, texture-based feature extraction, and hybrid
machine learning frameworks in automating disease detection and classification across
multiple domains, including agriculture and medical imaging.

3. Methodology

The overall methodology of the proposed investigation is presented in the form of a block
diagram, as illustrated in Fig. 1. The process is systematically divided into four main
subtasks, each constituting a critical phase in the skin disease identification pipeline. These
include: (i) image acquisition, (ii) image pre-processing, where the acquired images are
prepared through operations such as resizing, normalization, and noise reduction to ensure
consistency and enhance quality; (iii) feature extraction using Gray-Level Co-occurrence
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Matrix (GLCM) and entropy, where statistical texture features are computed to represent
the structural variations in diseased and healthy skin regions; and (iv) result analysis. Each
of these subtasks contributes to building a reliable and interpretable framework for
automated skin disease detection and is discussed in detail in the subsequent sections.

' Result
analysis

Pre-processing

extraction
Entropy parameter
extraction

5
%
5
H
-
=
<
5

Fig. 1. Block diagram of proposed investigations

a) Image acquisition

A database containing images of skin patches affected by diseases such as Morgellons,
Dermatitis, Vitiligo, Melanoma, and Psoriasis was acquired from the DermNet NZ [30],
For analysis, an image of normal human skin is used as a reference.

b) Pre-processing

Image pre-processing plays a vital role in enhancing the quality of input images and
ensuring consistency for accurate analysis. Raw dermatological images often contain
unwanted artifacts such as hair, air bubbles, and noise, which can adversely affect feature
extraction and classification. To address these challenges, we applied normalization and
resizing techniques. Normalization standardizes pixel intensity values, improving image
contrast and reducing variations caused by different lighting conditions. This ensures a
uniform intensity distribution across all images, allowing the model to focus on relevant
features while minimizing inconsistencies. The normalization process is performed using
the following equation:

— I~ Imin (1)

Imax -Imin
where / is the original pixel intensity, /i, and I,q are the minimum and maximum intensity

values in the image, and 7.« is the normalized pixel intensity scaled to the range [0,1].
Additionally, resizing is performed to maintain a uniform image dimension, standardizing
all images to a fixed size, which facilitates efficient processing and consistent feature
extraction. In this study, all images were resized to 256x256 pixels, preserving essential
structural details while reducing computational complexity. By implementing these pre-
processing steps, we ensure a high-quality and uniform dataset, which directly contributes
to improved performance in feature extraction and classification.

Inorm
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¢) GLCM and entropy parameter extraction

Statistical texture analysis plays a crucial role in extracting meaningful patterns from
images by analyzing the spatial distribution of pixel intensities. This approach computes
texture features based on the statistical distribution of intensity combinations at specific
relative positions within the image. Depending on the number of intensity points (pixels)
involved, statistical methods are categorized into first-order, second-order, and higher-order
statistics. Among these, the Gray Level Co-occurrence Matrix (GLCM) is one of the most
widely used second-order techniques, as it provides valuable insights into spatial
relationships between pixel intensities.

In this study, we employed the Gray Level Co-occurrence Matrix (GLCM), a widely
used second-order statistical method, to characterize the textural properties of
dermatological images. Since GLCM operates on grayscale data, all color images were first
converted into grayscale. The GLCM was constructed by defining a pixel pair distance d
and orientation 6, where d represents the number of pixels between the pair, and 6 represents
the direction of displacement. Commonly used orientation angles include 0°, 45°, 90° and
135° while the distance d can be varied depending on the scale of texture analysis. For each
pixel in the image, the frequency of co-occurring intensity pairs (i, j) separated by the
specified displacement (d, 6) was counted, resulting in a co-occurrence matrix C (i, j/d, 6).
Mathematically, it is expressed as in Equation (2):

CGi,jld,0) = yzlzyzl{é: if [ (x,y) =iand I(x + dy,y +d,) = 2)
where I (x, y) denote the intensity of the pixel at position (%, y), M and N are the image
dimensions, and (dx, dy) are determined by the displacement d and orientation 6. The co-
occurrence matrix was then normalized to transform the frequency counts into probabilities
as given in Equation (3):

)
P@,j) = SEIREIE e .

where L represents the number of gray levels in the image. Each element P (7, j) thus denotes
the probability of occurrence of the pixel pair (i, j). From the normalized GLCM, several
texture descriptors were derived, namely contrast, correlation, energy, and homogeneity.
The mathematical formulations of these features are presented in Equations (4)-(7).
Contrast: It measures local intensity variation between a pixel and its neighbor

Contrast = Y} ¥hzdi—j% P(i,)) @)
Correlation: It evaluates the linear dependency of gray levels between pairs of pixels
Yoo Sy - (- )P 5)

0i0;
where 1, p; are the means and g;, g; are the standard deviations of the marginal distributions
of P (i, j).
Energy: It measures textural uniformity or smoothness
Energy = Y23 Y423 P(i, ) (6)

Homogeneity: It assesses the closeness of distribution to the diagonal, giving more weight
to near-diagonal elements

Correlation =
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These descriptors effectively capture the structural and spatial properties of images, making
them highly suitable for disease identification and classification.

Entropy-based analysis quantifies the disorder or randomness present in the pixel
intensity distribution of an image, thereby providing insights into its information content,
complexity, and visual characteristics. In this context, disorder reflects the irregular
distribution of pixel values, where diseased skin typically exhibits higher entropy compared
to healthy skin due to increased randomness in texture patterns. To compute entropy, the
probability distribution of pixel intensities is first determined. For 8-bit grayscale images,
intensity values range from 0 to 255, while for color images, each pixel consists of red,
green, and blue (RGB) channel values, allowing entropy to be calculated independently for
each channel. For each intensity level i, the probability P(i) is computed as the frequency
of occurrence of that intensity divided by the total number of pixels in the image. This
probability distribution forms the basis for entropy analysis, which quantifies the degree of
randomness in the image. Mathematically, the entropy H of the image is given by in
Equation (8):

H ==Y P (i) log,P(D) ®)
where, P(i) represents the probability of occurrence of intensity level i, while L denotes the
total number of intensity levels. A higher entropy (H) indicates greater irregularity in the
pixel intensity distribution, reflecting increased disorder within the image. Conversely, low
entropy suggests a more ordered and predictable structure, where certain intensity levels
dominate the image.

Homogeneity = Y 4

4. Results and Discussion

The analysis of four dermatological diseases Morgellons, Dermatitis, Psoriasis, and Vitiligo
was performed using Gray Level Co-occurrence Matrix (GLCM) and entropy-based texture
analysis. The results, presented in Figs. 2 and 3, illustrate the effectiveness of different
texture parameters in capturing disease-specific patterns. Each figure consists of multiple
subplots, where the leftmost image shows the original dermatological photograph, followed
by processed outputs representing different texture attributes. The first column includes the
grayscale image along with correlation and homogeneity, while the second column presents
contrast, energy, and entropy parameters derived from the grayscale images. These
processed feature maps clearly demonstrate how various texture measures highlight
different lesion characteristics such as smoothness, irregularity, randomness, and intensity
variation providing insights into disease-specific patterns. To further assess the robustness
of the framework, the analysis was conducted with varying window sizes of 5, 15, and 25.

4.1. Morgellons and Dermatitis

The experimental findings for Morgellons disease indicate that entropy and homogeneity
are particularly effective in capturing the complex and irregular texture patterns
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characteristic of diseased skin regions. These features enable a distinct visual and statistical
separation between affected lesions and surrounding healthy tissue. Entropy, which
measures the randomness or complexity within an image, effectively identifies the chaotic
and fibrous structures typical of Morgellons. Homogeneity, which assesses the uniformity
of pixel intensities, helps differentiate the non-uniform texture of lesions from the smoother
patterns of normal skin. In contrast, features such as contrast, correlation, and energy are
less effective in highlighting the distinguishing characteristics of Morgellons. Contrast,
which is intended to emphasize intensity variation, shows limited sensitivity to subtle
differences within the lesions. Correlation, measuring the linear dependency of gray levels
between neighboring pixels, fails to adequately capture the disorderly patterns in affected
regions. Energy, which typically reflects texture uniformity, also lacks sensitivity to the
scattered and fibrous structures. Therefore, these parameters are considered less reliable for
characterizing Morgellons disease.

Fig. 2. GLCM and entropy analysis of Morgellons and Dermatitis (a) grayscale, (b) contrast, (c)
correlation, (d) energy, (¢) homogeneity, and (f) entropy.
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A similar pattern is observed for Dermatitis. Entropy and homogeneity successfully
capture the inflamed, rough, and disrupted texture associated with this condition. Entropy
increases due to the randomness introduced by inflammation, while homogeneity decreases,
reflecting the uneven texture of affected skin. In comparison, contrast, correlation, and
energy remain less capable of distinguishing diseased regions from healthy tissue. These
observations reinforce that entropy and homogeneity-based analysis provides a more
reliable and effective framework for accurately identifying dermatological abnormalities
such as Dermatitis.

4.2. Psoriasis and Vitiligo

For Psoriasis, entropy and homogeneity were the most effective in capturing the texture
patterns of thickened, scaly skin, clearly highlighting the roughness and plaque like
structures characteristic of psoriatic lesions. In comparison, contrast, correlation, and
energy provided less pronounced representations of these patterns and were relatively less
reliable for psoriasis detection. Similarly, in Vitiligo, entropy and homogeneity accurately
delineated the depigmented patches and irregular skin tone typical of the disease, whereas
contrast, correlation, and energy captured these features to a lesser extent, making them
comparatively less useful.

Fig. 3. GLCM and entropy analysis of Psoriasis and Vitiligo (a) grayscale, (b) contrast, (c) correlation,
(d) energy, (e) homogeneity, and (f) entropy.
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The analysis also revealed that the choice of window size significantly influences texture
extraction. Increasing the window size to 15x15 or 25%25 resulted in less distinct texture
patterns, reducing classification precision. A smaller window size of 5x5 consistently
allowed entropy and homogeneity to capture detailed, disease-relevant textures. Across all
four examined skin conditions, these two features demonstrated the strongest discriminative
ability for disease identification and classification, while contrast, correlation, and energy
contributed to a lesser degree.

Therefore, combining entropy and homogeneity with a 5x5 window size emerges as the
most effective approach in this study for distinguishing dermatological diseases. These
results underscore the potential of entropy-based texture analysis to enhance automated skin
disease detection and provide a solid foundation for developing machine learning—driven
diagnostic systems.

5. Conclusions

This study proposed an entropy-based texture analysis framework combined with GLCM
features for the automated identification and classification of dermatological diseases. Five
statistical descriptors contrast, correlation, energy, homogeneity, and entropy were
evaluated across multiple skin conditions, including Morgellons, Dermatitis, Psoriasis, and
Vitiligo. The results consistently showed that entropy and homogeneity provided the most
reliable diagnostic cues, while contrast, correlation, and energy offered limited
discriminative value. A key outcome of this work is the identification of the 5x5 window
size as the optimal configuration for texture extraction, as it preserves fine lesion details
while avoiding the blurring effects of larger windows. This finding highlights the
importance of spatial resolution in medical image analysis, an aspect often overlooked in
texture-based studies. Unlike deep learning models that require large annotated datasets, the
proposed framework is lightweight, interpretable, and adaptable, making it well-suited for
clinical decision-support systems in resource-constrained environments. By bridging
statistical image analysis with Al-driven methodologies, this work lays the foundation for
cost-effective and accessible diagnostic tools. Future research will focus on integrating
these features with deep learning architectures such as CNNs and hybrid classifiers to
further improve accuracy and enable real-time clinical deployment.
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