

Available Online

JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/JSR

Publications J. Sci. Res. **4** (2), 349-356 (2012)

On Left Centralizers of Semiprime Γ**-Rings**

K. K. Dey[*](#page-0-0) and A. C. Paul

Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh

Received 5 October 2011, accepted in final revised form 23 January 2012

Abstract

Let M be a semiprime Γ-ring satisfying an assumption *x*α*y*β*z* = *x*β*y*α*z* for all *x, y, z*∈*M*, α, $\beta \in \Gamma$. In this paper, we prove that a mapping *T*: *M* \rightarrow *M* is a centralizer if and only if it is a centralizing left centralizer. We also show that if *T* and *S* are left centralizers of *M* such that $T(x)\alpha x + x\alpha S(x) \in Z(M)$ (the center of *M*) for all $x \in M$, $\alpha \in \Gamma$, then both *T* and *S* are centralizers.

Keywords: Semiprime Γ-ring; Left (right) centralizer; Centralizer; Commuting mapping; Centralizing mapping: Extended centroid.

doi: <http://dx.doi.org/10.3329/jsr.v4i2.8691>J. Sci. Res. **4** (2), 349-356 (2012) © 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.

1. Introduction and Preliminaries

Let *M* and Γ be additive abelian groups. *M* is called a Γ -ring if for all *x*, *y*, $z \in M$, α , $\beta \in \Gamma$ the following conditions are satisfied :

- (i) *x*β*y*∈*M*,
- (ii) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)y = x\alpha y + x\beta y$, $x\alpha(y + z) = x\alpha y + x\alpha z$,
- (iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$.

Every ring is a Γ -ring and many notions on the ring theory are generalized to Γ -rings. Let *M* be a Γ-ring. A subring *I* of *M* is an additive subgroup which is also a Γ-ring. A *right ideal* of *M* is a subring *I* such that $\Pi M \subset I$. Similarly a *left ideal* can be defined. If *I* is both a right and a left ideal then we say that *I* is an ideal.

Let *S* be a subset of *M*. If $x\alpha y + y\alpha x \in S$, for all $x, y \in S$, $\alpha \in \Gamma$, then *S* is called a Jordan subring of *M*.

The commutator *x*α*y* – *y*α*x* will be denoted by [*x, y*]_α. We know that [*x*β*y, z*]_α = $[x, z]_{\alpha}$ β*y* + *x*β[*y, z*]_α + *x*[β, α]_{*zy*} and [*x, y*β*z*]_α = *y*β[*x, z*]_α + [*x, y*]_αβ*z* + *y*[β,α]_{*x*}. We take an assumption (*) *x*β*z*α*y* = *x*α*z*β*y* for all *x*, *y*, *z*∈*M* and α, β∈Γ. Using the assumption the

 ^{*} *Corresponding author*: kkdmath@yahoo.com

basic commutator identities reduce to [*x*β*y*, *z*]_α = [*x*, *z*]_α β *y* + *xβ*[*y*, *z*]_α and [*x*, *y*β*z*]_α = *y*β[*x*, *z*]_α + [*x*, *y*]_αβ*z*.

Throughout, *M* denotes a Γ-ring with center *Z*(*M*). M is said to be semiprime if *x*Γ*M*Γ*x* = 0 implies *x* = 0, it is prime if *x*Γ*M*Γ*y* = 0 implies *x* = 0 or *y* = 0. An additive mapping *T*: $M \rightarrow M$ is called a left (right) centralizer if $T(x\alpha y) = T(x)\alpha y$ ($T(x\alpha y) = x\alpha T(y)$)) for all *x*, $y \in M$, $\alpha \in \Gamma$. If $a \in M$, then $L_a(x) = a\alpha x$ and $R_a(x) = x\alpha a$, $(x \in M, \alpha \in \Gamma)$ define a left centralizer and a right centralizer of *M*, respectively. An additive mapping *T*: $M \rightarrow M$ is called a centralizer if $T(x\alpha y) = T(x)\alpha y = x\alpha T(y)$ for all *x*, $y \in M$, $\alpha \in \Gamma$. A mapping *f* : *M* \rightarrow *M* is called centralizing (skew centralizing) if $[f(x), x]_{\alpha} \in Z(M)$ ($f(x)\alpha x + x\alpha f(x) \in Z(M)$) for all *x*∈*M*, α∈Γ, in particular, if [*f*(*x*), *x*]^α = 0 (*f*(*x*)α*x* + *x*α*f*(*x*) = 0) for all *x*∈*M*, α∈Γ, then it is called commuting (skew-commuting). Obviously every commuting (skewcommuting) mapping $f : M \to M$ is centralizing (skew centralizing). We recall if $f : M \to M$ *M* is commuting, then $[f(x), y]_{\alpha} = [x, f(y)]_{\alpha}$ for all *x*, $y \in M$, $\alpha \in \Gamma$. A mapping $f : M \to M$ is called central if $f(x) \in Z(M)$ for all $x \in M$.

The theory of centralizers in rings is well established. Many mathematicians worked on centralizers of rings and found out some remarkable results. The theories of Banach algebras and C^* -algebra with centralizers are established by many authors.

Bresar [1-3] studied centralizing mappings with derivation in prime rings. Mayne [4] worked on centralizing automorphisms of prime rings. Recently, Vukman [5-7] and Zalar [8] studied on centralizer of semiprime rings and 2-torsion free semiprime rings. Samman and Chaudhry [9] established the necessary and sufficient condition for a mapping to be a centralizer. If two left centralizers *T* and *S* of a semiprime ring *R* satisfying $T(x)x$ + *xS*(*x*)∈*Z*(*R*) for all *x*∈*R*, then they also prove that both *T* and *S* are centralizers. Haque and Paul [10] worked on Jordan centralizers on a Γ-ring with certain assumption. For the extended centroid we refer to [11, 12]. They proved that every Jordan left centralizer on a 2-torsion free semiprime Γ-ring is a left centralizer. They also proved that every Jordan centralizer on a 2-torsion free semiprime Γ-ring satisfying a certain condition is a centralizer.

In this paper, we develop the results of [9] in Gamma rings. Our results are the generalizations of the results of Samman and Chaudhry [9]. The results in this paper for left centralizers are also true for right centralizers because of left-right symmetry.

2. Left Centralizers on Semiprime Γ**-rings**

In this section, we prove our main results.

Theorem 2.1 Let *S* be a set and *M* be a semiprime Γ-ring. If the functions *f* and *g* of *S* into *M* satisfy

 $f(s) \alpha x \beta g(t) = g(s) \alpha x \beta f(t)$ for all *s*, $t \in S$, $x \in M$, $\alpha, \beta \in \Gamma$, (1) then there exist idempotent elements $e_1, e_2, e_3 \in C$, the extended centroid on M and an invertible $k \in C$ such that $e_i \alpha e_j = 0$ for $i \neq j$, $e_1 + e_2 + e_3 = 1$ and $e_1 \alpha f(s) = k \beta e_1 \alpha g(s)$, $e_2 \alpha g(s) = 0$, $e_3 \alpha f(s) = 0$ hold for all $s \in S$, $\alpha, \beta \in \Gamma$.

Proof. Obviously, the identity holds in case x is an element from $C(M)$, the central closure of *M*. Thus there is no loss of generality in assuming that *M* is centrally closed. Let $A =$ *M*Γ*f*(*s*)Γ*M* and *B* = *M*Γ*g*(*s*)Γ*M*. We have $A^{\perp} = p\Gamma M$ and $B^{\perp} = q\Gamma M$ for some idempotent elements *p*, $q \in C$. We set $e_1 = (1 - p)\alpha(1 - q)$, $e_2 = (1 - p)\alpha q$ and $e_3 = p$. Clearly e_i 's ($i = 1$, 2, 3) are mutually orthogonal idempotent elements with sum 1. Since $q\alpha g(s) \in B^{\perp}$, $s \in S$, $\alpha \in \Gamma$, we have $q\alpha g(s)\beta x \delta q\alpha g(s) = 0$, which implies $q\alpha g(s) = 0$. Hence $e_2 \alpha g(s) = 0$, $s \in S$, $\alpha \in \Gamma$. Similarly we see that $e_3 \alpha f(s) = 0$, $s \in S$, $\alpha \in \Gamma$.

We note that $(e_1αA)^{\perp} = (e_1αB)^{\perp} = (1 - e_1)αM$, that is, $(e_1αA)^{\perp} = (e_1αB)^{\perp} = (1 - e_1)ΓM$. Hence $E = e_2 \Gamma A \oplus (1 - e_1) \Gamma M$ is an essential ideal of *M*. Define $\phi: E \to M$ by $\phi(e_1\alpha(\sum_{i=1}^3$ 3 1 (s_i) *i*_{*i*} *i*_{*i*} *j f* (*s_i*) δy_i ^{*)*} + (1 − *e*₁)λ*r*) = *e*₁α($\sum_{i=1}^{3}$ 3 1 (s_i) $\sum_{i=1}^{3} x_i \beta g(s_i) \delta y_i$ [}] + (1− *e*₁)λ*r*.

In order to show that ϕ is well defined, we suppose that

$$
e_1\alpha(\sum_{i=1}^3 x_i\beta f(s_i)\delta y_i) = 0
$$
. Consequently $e_1\alpha(\sum_{i=1}^3 x_i\beta f(s_i)\delta y_i)\gamma z\lambda g(t) = 0$ holds for all

z∈*M*, *t*∈*S*, α, β, δ, γ, λ∈Γ.

Since by (1) we have $f(s_i)$ $\delta y_i \gamma z \lambda g(t) = g(s_i) \delta y_i \gamma z \lambda f(t)$, it follows that $e_1 \alpha \left(\sum_{i=1}^{\infty} \right)$ 3 1 (s_i) $\sum_{i=1}^{5} x_i \beta g(s_i) \delta y_i$ *γzλf*(*t*) = 0 for all *z*∈*M*, *t*∈*S*, α, β, δ, γ, λ∈Γ.

Thus the elements $e_1 \alpha(\sum_{i=1}^3$ 3 1 (s_i) $\sum_{i=1}^{3} x_i \beta g(s_i) \delta y_i$) lies in *A*[⊥]. Since *A*[⊥] = *p*Γ*M* and *e*₁ = (1 − *p*)α(1 − *q*), it follows that $e_1 \alpha(\sum_{i=1}^3$ 3 (s_i) $\sum_{i=1}^{3} x_i \beta g(s_i) \delta y_i$ ^{$) = 0$}. This proves that ϕ is well defined.

1 Clearly ϕ is an *M*_Γ-module homomorphism. Then there exist *k*∈*C* such that $\phi(u) = k\beta u$ for every *u*∈*E*, β∈Γ. Hence *e*1α*f*(*s*) = *k*β*e*1α*g*(*s*) for all *s*∈*S*, α,β∈Γ. It remains to prove that *k* is invertible. Note that $k\Gamma E = e_1 \Gamma B \oplus (1 - e_1) \Gamma M$. Since $e_1 \Gamma B \oplus (1 - e_1) \Gamma M$ is an essential ideal (namely $(e_1 \Gamma B)^{\perp} = (1 - e_1) \Gamma M$), *k* can not be a divisor of zero. Consequently, *C* is the extended centroid of *M*, *k* is invertible. The proof is complete.

Theorem 2.2. Let *M* be a 2-torsion free semiprime Γ-ring satisfying the condition (*) and *U* be a Jordan subring of *M*. If an additive mapping *F* of *M* into itself is centralizing on *U*, then *F* is commuting on *U*.

Proof: A linearization of $[F(x), x]_0 \in Z$ gives $[F(x), y]_0 + [F(y), x]_0 \in Z$ for all $x, y \in U, \alpha \in \Gamma$.

Replacing *y* by *x*β*x*,

$$
[F(x), x\beta x]_{\alpha} + [F(x\beta x), x]_{\alpha} \in Z. \text{ Since } [F(x), x]_{\alpha} \in Z, \text{ we have } [F(x), x\beta x]_{\alpha}
$$

$$
= x\beta [F(x), x]_{\alpha} + [F(x), x]_{\alpha}\beta x
$$

$$
= [F(x), x]_{\alpha}\beta x + [F(x), x]_{\alpha}\beta x = 2[F(x), x]_{\alpha}\beta x. \text{ Thus}
$$

$$
2[F(x), x]_{\alpha}\beta x + [F(x\beta x), x]_{\alpha} \in Z \text{ for all } x \in U, \alpha, \beta \in \Gamma.
$$
 (2)

By assumption $[F(xβ*x*), *x*β*x*]_α ∈ *Z*, for all *x* ∈ *U*, α, β ∈ Γ. That is$

$$
[F(x\beta x), x]_{\alpha}\beta x + x\beta [F(x\beta x), x]_{\alpha} \in \mathbb{Z}.
$$
\n(3)

Now fix $x \in U$ and let $z = [F(x), x]_{\alpha}$, $u = [F(x\beta x), x]_{\alpha}$. We must show that $z = 0$. By (2) we have

$$
0 = [F(x), 2z\beta x + u]_{\alpha}
$$

= 2z\beta [F(x), x]_{\alpha} + 2[F(x), z]_{\alpha}\beta x + [F(x), u]_{\alpha} = 2z\beta z + [F(x), u]_{\alpha}
Thus [F(x), u]_{\alpha} = -2z\beta z \qquad (4)

According to (3) we have $0 = [F(x), u\beta x + x\beta u]_{\alpha} = [F(x), u]_{\alpha}\beta x + u\beta [F(x), x]_{\alpha} + [F(x),$ $x]_{\alpha} \beta u + x \beta [F(x), u]_{\alpha}$ applying (4) we then get $-4z\beta z\beta x + 2z\beta u = 0$.

Thus $z\beta u = 2z\beta z\beta x$. Multiplying (4) by $z\beta$ and using the last relation we obtain

$$
-2z\beta z\beta z = z\beta [F(x), u]_{\alpha} = [F(x), z\beta u]_{\alpha} - [F(x), z]_{\alpha}\beta u = [F(x), z\beta u]_{\alpha}
$$

$$
= [F(x), 2z\beta z\beta x]_{\alpha} = 2z\beta z\beta [F(x), x]_{\alpha} + [F(x), 2z\beta z]_{\alpha}\beta x = 2z\beta z\beta z.
$$
Hence $z\beta z\beta z = 0$.

Since the center of a semiprime Γ-ring contains no nonzero nilpotent elements, we conclude that $z = 0$. This proves the theorem.

Theorem 2.3 Let *T* be a centralizing left centralizer of a semiprime Γ-ring *M* satisfying the condition (*). Then *T* is commuting.

Proof. If *M* is 2-torsion free, then *T* is commuting follows from Theorem 2.3 by taking $U = M$ in it. If M is not a 2-torsion free semiprime Γ -ring, then

$$
2[T(x), x]_{\alpha} = 0 \text{ for all } x \in M, \alpha \in \Gamma(5) \text{ and}
$$

2([T(x), y]_{\alpha} + [T(y), x]_{\alpha}) = 0 \text{ for all } x, y \in M, \alpha \in \Gamma. (6)

By assumption $[T(x), x]_{\alpha} \in Z(M)$. Linearizing this, we get

$$
[T(x), y]_{\alpha} + [T(y), x]_{\alpha} \in Z(M) \text{ for all } x, y \in M, \alpha \in \Gamma.
$$
 (7)

Using (5) – (7) and the hypothesis that $[T(x), x]_a \in Z(M)$, the following identity follows easily

$$
[T(x), x\beta y + y\beta x]_{\alpha} + [T(y), x\beta x]_{\alpha} = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.
$$
 (8)

Replacing *y* by *y*δ*x* in (8), we get $[T(x), x\beta y\delta x + y\delta x\beta x]_{\alpha} + [T(y\delta x), x\beta x]_{\alpha} = 0$, which gives $(x\beta y + y\beta x)\delta[T(x), x]_{\alpha} + [T(x), x\beta y + y\beta x]_{\alpha}\delta x + T(y)\delta[x, x\beta x]_{\alpha} + [T(y), x\beta x]_{\alpha}\delta x = 0$ for all *x*, *y*∈*M*, α, β, δ∈Γ. Combining this with (8), we get (*x*β*y* + *y*β*x*)δ[*T*(*x*), *x*]^α = 0 for all *x*, *y*∈*M*, α, β, δ∈Γ, which gives (*x*β*y* −*y*β*x* + 2*y*β*x*)δ[*T*(*x*), *x*]^α = 0, for all *x*, *y*∈*M*, α, β, δ∈Γ. Thus (*x*β*y* − *y*β*x*)δ[*T*(*x*), *x*]^α = 0 for all *x*, *y*∈*M*, α, β, δ∈Γ. In particular, (replacing y by *T*(*x*) and δ by α) (*x*β*T*(*x*) − *T*(*x*)β*x*)δ[*T*(*x*), *x*]^α = − [*T*(*x*), *x*]αβ[*T*(*x*), *x*]^α = 0 for all *x*∈*M*, α , β∈Γ. Since a semiprime Γ-ring has no nontrivial central nilpotents, therefore [*T*(*x*), *x*]_α $= 0$ for all $x \in M$, $\alpha \in \Gamma$.

Theorem 2.4 Let *T* be a centralizing left centralizer of a semiprime Γ-ring *M* satisfying the condition (*), then *T* is a centralizer of *M*.

Proof. We have $T(x\alpha y) = T(x)\alpha y$ for all $x, y \in M$ and $\alpha \in \Gamma$. We now show that $T(x\alpha y) = T(x)\alpha y$ *x*α*T*(*y*) for all *x*, *y*∈*M*, $\alpha \in \Gamma$. Since *T* is a centralizing left centralizer of *M*, therefore by Theorem 2.3, it is commuting. Thus $[T(x), x]_{\alpha} = 0$ for all $x \in M$, $\alpha \in \Gamma$. That is, $T(x)\alpha x$ − $x\alpha T(x) = 0$ for all $x \in M$, $\alpha \in \Gamma$. Linearizing this, we get $T(x)\alpha y + T(y)\alpha x - y\alpha T(x) - x\alpha T(y)$ $= 0$ for all *x*, $v \in M$, $\alpha \in \Gamma$.

Replacing *y* by *x*β*y* in the last identity, we get

$$
0 = T(x)\alpha x\beta y + T(x\beta y)\alpha x - x\beta y\alpha T(x) - x\alpha T(x\beta y) = T(x)\alpha x\beta y + T(x)\beta y\alpha x - x\beta y\alpha T(x) - x\alpha T(x)\beta y = (T(x)\alpha x - x\alpha T(x))\beta y + T(x)\beta y\alpha x - x\alpha y\beta T(x) = T(x)\beta y\alpha x - x\alpha y\beta T(x).
$$

That is,

$$
T(x)\beta y \alpha x - x \beta y \alpha T(x) = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.
$$
 (9)

Taking $S = M$, $s = t = x$, $f(x) = T(x)$ and $g(x) = x$ in (9) and applying Theorem 2.1 to (9) we conclude that there exist idempotent elements $e_1, e_2, e_3 \in C$ and an invertible $p \in C$ such that $e_i\alpha e_j = 0$ for $i \neq j$, $e_1 + e_2 + e_3 = 1$ and $e_1\alpha T(x) = p\beta e_1\alpha x$, $e_2\alpha x = 0$ and $e_3\alpha T(x) = 0$ for all $x \in M$, α , $\beta \in \Gamma$. Now $e_2 \alpha x = 0$ implies $x \alpha e_2 = 0$. Thus $T(x \alpha e_2) = T(0)$, which gives $T(x) \alpha e_2 = T(0) \alpha 0 = 0$. That is, $T(x) \alpha e_2 = 0$ or $e_2 \alpha T(x) = 0$. Thus

 $T(x) = e_1 + e_2 + e_3$) $\alpha T(x) = e_1 \alpha T(x) = p \beta e_1 \alpha x$.

That is, $T(x) = p\beta e_1 \alpha x$ for all $x \in M$, $\alpha \in \Gamma$. Thus $T(x)\alpha y - x\alpha T(y) = p\beta e_1 x \delta y - x\alpha p\beta e_1 \delta y$ = *p*β*e*1α*x*δ*y* − *p*β*e*1α*x*δ*y* = 0. That is,

$$
T(x)\alpha y = x\alpha T(y) \text{ for all } x, y \in M, \alpha \in \Gamma.
$$
 (10)

$$
(T(x\alpha y) - T(x)\alpha y)\beta z \gamma (T(x\alpha y) - T(x)\alpha y) = 0.
$$

By the semiprimeness of *M*, we have, $T(x\alpha y) - T(x)\alpha y = 0$. This implies $T(x\alpha y) =$ *T*(*x*)α*y*. Thus *T*(*x*α*y*) = *T*(*x*)α*y* = *x*α*T*(*y*). This shows that *T* is a centralizer.

Remark 2.5 Obviously every centralizer is commuting because $T(x\alpha x) = T(x)\alpha x = x\alpha T(x)$ for all $x \in M$, $\alpha \in \Gamma$, and hence is a centralizing left centralizer. Thus we have the following corollary.

Corollary 2.6 A mapping *T* of a semiprime Γ-ring *M* satisfying the condition (*) is a centralizer if and only if it is a centralizing left centralizer. Let *T* be a commuting left centralizer of a semiprime Γ-ring, then $T(x)\beta[x, y]_{\alpha} = x\beta[T(x), y]_{\alpha}$ holds for all *x*, *y*∈*M*, α, β∈Γ.

Proof. Since T is commuting, therefore
$$
[T(x), x]_{\alpha} = 0
$$
 for all $x \in M$, $\alpha \in \Gamma$. (11)

Linearizing (11), we get

$$
[T(x), y]_{\alpha} + [T(y), x]_{\alpha} = 0 \text{ for all } x, y \in M, \alpha \in \Gamma.
$$
 (12)

Replacing *y* by *x* βy in (12) and using (12), we get $0 = [T(x), x\beta y]_{\alpha} + [T(x\beta y), x]_{\alpha} =$ $[T(x), x\beta y]_{\alpha} + [T(x)\beta y, x]_{\alpha} = [T(x), x]_{\alpha}\beta y + x\beta [T(x), y]_{\alpha} + [T(x), x]_{\alpha}\beta y + T(x)\beta [y, x]_{\alpha} =$ $x\beta[T(x), y]$ _α − *T*(*x*)β[*x*, *y*]_α.

That is, $x\beta[T(x), y]_{\alpha} - T(x)\beta[x, y]_{\alpha} = 0$ for all $x, y \in M$, $\alpha, \beta \in \Gamma$.

Thus $T(x)\beta[x, y]_{\alpha} = x\beta[T(x), y]_{\alpha}$ for all $x, y \in M$, $\alpha, \beta \in \Gamma$.

Remark 2.7 If *T* is a central left centralizer of a prime Γ-ring *M*, then either *T* = 0 or *M* is commutative. This is because $T(x)\beta[x, y]_{\alpha} = x\beta[T(x), y]_{\alpha}$ gives $T(x)\beta[x, y]_{\alpha} = 0$. Replacing *y* by *y*δ*z* in the last identity and using it, we get $T(x)\beta y\delta[x, z]_\alpha = 0$ for all *x*, *y*, *z*∈*M*. Since *M* is prime, therefore $T(x) = 0$ or $[x, z]_a = 0$ for all $x, z \in M$, $\alpha \in \Gamma$. That is, $T = 0$ or *M* is commutative.

Theorem 2.8. Let *M* be a semiprime Γ-ring satisfying the condition (*) and *T* and *S* be left centralizers of *M* such that

 $T(x) \alpha x + x \alpha S(x) \in Z(M)$ for all $x \in M$, $\alpha \in \Gamma$. (13) Then *T* and *S* are both centralizers.

Proof. Linearizing (13), we get

$$
T(x)\alpha y + T(y)\alpha x + x\alpha S(y) + y\alpha S(x) \in Z(M) \text{ for all } x, y \in M, \alpha \in \Gamma.
$$
 (14)

Thus $[T(x)\alpha y + T(y)\alpha x + x\alpha S(y) + y\alpha S(x), x]_B = 0$, which gives

$$
[T(x)\alpha y + T(y)\alpha x + x\alpha S(y), x]_{\beta} = -[y\alpha S(x), x]_{\beta} \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.
$$
 (15)

Replacing *y* by *y* βx in (14), we get $T(x)\alpha y\beta x + T(y\beta x)\alpha x + x\alpha S(y\beta x) + y\beta x\alpha S(x) =$ $T(x)\alpha y\beta x + T(y)\beta x\alpha x + x\alpha S(y)\beta x + y\beta x\alpha S(x) = (T(x)\alpha y + T(y)\alpha x + x\alpha S(y))\beta x +$ *y*α*x*β*S*(*x*)∈*Z*(*M*).

Thus [(*T*(*x*)α*y* + *T*(*y*)α*x* + *x*α*S*(*y*))β*x* + *y*α*x*β*S*(*x*), *x*]^β = 0 for all *x*∈*M*, α, β∈Γ. This implies that

$$
[T(x)\alpha y + T(y)\alpha x + x\alpha S(y), x]_{\beta} \beta x + [y\beta x \alpha S(x), x]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.
$$
 (16)

Using (15) , from (16) we get

$$
- [y\alpha S(x), x]_{\beta} \beta x + [y\alpha x \beta S(x), x]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.
$$
 (17)

Since $[\text{γα}S(x)βx, x]_β = [\text{γα}S(x), x]_ββx$, therefore (17) gives $0 = -[\text{γα}S(x)βx, x]_β +$ $[\text{yox}\beta S(x), x]_{\beta} = [\text{y}\alpha(x\beta S(x) - S(x)\beta x), x]_{\beta} = [\text{y}\alpha[x, S(x)]_{\beta}, x]_{\beta} = \text{y}\alpha[[x, S(x)]_{\beta}, x]_{\beta} + [y,$ *x*]_β $\alpha[x, S(x)]$ _β.

Thus

$$
y\alpha[[x, S(x)]_{\beta}, x]_{\beta} + [y, x]_{\beta}\alpha[x, S(x)]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.
$$
 (18)

Replacing *y* by *z* λ *y* in (18) and using (18), we get $0 = z\lambda y \alpha [[x, S(x)]_{\beta}, x]_{\beta} + [z\lambda y,$ $x]_{\beta}\alpha[x, S(x)]_{\beta} = z\lambda y\alpha[[x, S(x)]_{\beta}, x]_{\beta} + z\lambda[y, x]_{\beta}\alpha[x, S(x)]_{\beta} + [z, x]_{\beta}\lambda y\alpha[x, S(x)]_{\beta} =$ $[z, x]_β$ λγα $[x, S(x)]_β$.

That is,
$$
[z, x]_{\beta} \lambda y \alpha [x, S(x)]_{\beta} = 0
$$
 for all $x, y, z \in M$, $\alpha, \beta, \lambda \in \Gamma$. (19)

In particular, $[S(x), x]_B \lambda y \alpha [x, S(x)]_B = 0$ which, by semiprimeness of *M*, implies $[S(x), x]_B = 0$. Thus *S* is a commuting left centralizer and, by Theorem 2.2, is a centralizer.

We now show that *T* is commuting. By hypothesis and by the assumption, we have

$$
0 = [T(x)\alpha x + x\alpha S(x), x]_{\beta} = [T(x), x]_{\beta}\alpha x + x\alpha[S(x), x]_{\beta} = [T(x), x]_{\beta}\alpha x.
$$
 That is

 $[T(x), x]_B \alpha x = 0$ for all *x*, $y \in M$, $\alpha, \beta \in \Gamma$. (20)

From (15), we get $[T(x)\alpha y + T(y)\alpha x, x]_\beta = [-x\alpha S(y) - y\alpha S(x), x]_\beta$. Thus $T(x)\alpha[y, x]_\beta$ + $[T(x), x]_βαy$ + $[T(y), x]_βαx$ = $-xα[S(y), x]_β$ – $yα[S(x), x]_β$ – $[y, x]_βαS(x)$ = $-x\alpha[y, S(x)]_β$ − [*y*, *x*]_βα*S*(*x*) = *x*α[*S*(*x*), *y*]_β + [*x*, *y*]_βα*S*(*x*). That is, for all *x*, $y \in M$, α , $\beta \in \Gamma$

$$
T(x)\alpha[y, x]_{\beta} + [T(x), x]_{\beta}\alpha y + [T(y), x]_{\beta}\alpha x = x\alpha[S(x), y]_{\beta} + [x, y]_{\beta}\alpha S(x).
$$
\n(21)

Again by hypothesis, we get

$$
0 = [T(x)\alpha x + x\alpha S(x), y]_{\beta} = T(x)\alpha [x, y]_{\beta} + [T(x), y]_{\beta}\alpha x + [x, y]_{\beta}\alpha S(x) + x\alpha [S(x), y]_{\beta}.
$$

That is, for all *x*, $y \in M$, α , $\beta \in \Gamma$

$$
-T(x)\alpha[y, x]_{\beta} + [T(x), y]_{\beta}\alpha x = -[x, y]_{\beta}\alpha S(x) - x\alpha[S(x), y]_{\beta}.
$$
\n(22)

Adding (21) and (22) , we get

$$
[T(x), x]_{\beta}\alpha y + [T(y), x]_{\beta}\alpha x + [T(x), y]_{\beta}\alpha x = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.
$$
 (23)

Replacing *y* by $y\beta T(x)$ in (23) and using (20), we get

$$
0 = [T(x), x]_{\beta}\alpha y\beta T(x) + [T(y\beta T(x)), x]_{\beta}\alpha x + [T(x), y\beta T(x)]_{\beta}\alpha x
$$

\n
$$
= [T(x), x]_{\beta}\alpha y\beta T(x) + [T(y)\beta T(x), x]_{\beta}\alpha x + [T(x), y\beta T(x)]_{\beta}\alpha x
$$

\n
$$
= [T(x), x]_{\beta}\alpha y\beta T(x) + T(y)\beta [T(x), x]_{\beta}\alpha x + [T(y), x]_{\beta}\beta T(x)\alpha x + [T(x), y]_{\beta}\beta T(x)\alpha x
$$

\n
$$
= -[T(y), x]_{\beta}\alpha x\beta T(x) - [T(x), y]_{\beta}\alpha x\beta T(x) + [T(y), x]_{\beta}\beta T(x)\alpha x + [T(x), y]_{\beta}\beta T(x)\alpha x
$$

\n
$$
= [T(y), x]_{\beta}\alpha [T(x), x]_{\beta} + [T(x), y]_{\beta}\alpha [T(x), x]_{\beta}.
$$

That is

$$
[T(y), x]_{\beta}\alpha[T(x), x]_{\beta} + [T(x), y]_{\beta}\alpha[T(x), x]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.
$$
 (24)

Replacing *y* by $y\lambda x$ in (24) and using (23), we get

$$
0 = [T(y\lambda x), x]_{\beta}\alpha[T(x), x]_{\beta} + [T(x), y\lambda x]_{\beta}\alpha[T(x), x]_{\beta}
$$

\n
$$
= [T(y)\lambda x, x]_{\beta}\alpha[T(x), x]_{\beta} + [T(x), y\lambda x]_{\beta}\alpha[T(x), x]_{\beta}
$$

\n
$$
= [T(y), x]_{\beta}\lambda x\alpha[T(x), x]_{\beta} + y\lambda[T(x), x]_{\beta}\alpha[T(x), x]_{\beta} + [T(x), y]_{\beta}\lambda x\alpha[T(x), x]_{\beta}
$$

\n
$$
= ([T(y), x]_{\beta}\lambda x + [T(x), y]_{\beta}\lambda x)\alpha[T(x), x]_{\beta} + y\lambda[T(x), x]_{\beta}\alpha[T(x), x]_{\beta}
$$

\n
$$
= -[T(x), x]_{\beta}\lambda y\alpha[T(x), x]_{\beta} + y\lambda[T(x), x]_{\beta}\alpha[T(x), x]_{\beta}.
$$

Thus

$$
[T(x), x]_{\beta}\lambda y \alpha [T(x), x]_{\beta} = y\lambda [T(x), x]_{\beta} \alpha [T(x), x]_{\beta} \text{ for all } x, y \in M, \alpha, \beta, \lambda \in \Gamma.
$$
 (25)

Replacing *y* by *x*α*y* in (25) and using (20), we get $x \alpha y \lambda [T(x), x]_{\beta} \alpha [T(x), x]_{\beta} = [T(x),$ *x*]_βα*xαy*λ[*T*(*x*), *x*]_β = 0.

That is,

$$
x\alpha y\lambda[T(x), x]_{\beta}\alpha[T(x), x]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta, \lambda \in \Gamma,
$$
\n(26)

which gives $T(x)$ β*xαy*λ[*T*(*x*), *x*]_β α [*T*(*x*), *x*]_β = 0.

Further, replacing *y* by *T*(*x*)β*y* in (26), we get $xαT(x)βyλ[T(x), x]βα[T(x), x]β = 0$. Combining the last two identities, we get $(T(x)\beta x - x\beta T(x))\alpha y\lambda[T(x), x]_B\alpha[T(x), x]_B = 0.$ That is, $[T(x), x]_B \gamma y \lambda [T(x), x]_B \alpha [T(x), x]_B = 0$, which gives $[T(x), x]_B \alpha [T(x), x]_B \alpha y \lambda [T(x), x]_B$ $x]_6 \alpha [T(x), x]_6 = 0$. Since *M* is semiprime, therefore,

 $[T(x), x]_{\beta} \alpha[T(x), x]_{\beta} = 0$ for all $x \in M$, $\alpha, \beta \in \Gamma$. (27)

Using (23), from (21) we get $[T(x), x]_B \alpha y \lambda [T(x), x]_B = 0$, which by semiprimeness of *M* implies $[T(x), x]_B = 0$. Thus *T* is a commuting left centralizer and hence by Theorem 2.2, *T* is a centralizer.

Taking $S = T$ in Theorem 2.7, we get the following corollary.

Corollary 2.9. Let *T* be a skew centralizing left centralizer of a semiprime Γ-ring *M* satisfying the condition (*). Then *T* is a centralizer. The following corollary is also obvious.

Corollary 2.10. Let *T* and *S* be left centralizers of a semiprime Γ-ring *M* satisfying the condition (*) such that $T(x)\alpha x + x\alpha S(x) = 0$ for all $x \in M$, $\alpha \in \Gamma$. Then both *T* and *S* are centralizers.

References

- 1. M. Brešar, Proc. Amer. Math. Soc. **114**, 641 (1992).
- 2. M. Brešsar, J. Algebra **156**, 385 (1993). <http://dx.doi.org/10.1006/jabr.1993.1080>
- 3. M. Brešsar, Proc. Amer. Math. Soc. **120**, 709 (1994).
- 4. J.H. Mayne, Canad. Math. Bull. **19**, 113 (1976). <http://dx.doi.org/10.4153/CMB-1976-017-1>
- 5. J. Vukman, Comment. Math. Univ. Carolinae **38**, 231 (1997).
- 6. J. Vukman, Comment. Math. Univ. Carolinae **40**, 447 (1999).
- 7. J. Vukman, Comment. Math. Univ. Carolinae **42**, 237 (2001).
- 8. B. Zalar, Comment. Math. Univ. Carolinae **34**, 609 (1991).
- 9. M. S. Samman, M. A. Chaudhry, Int. J. Pure Appl. Math. **20** (4) 487 (2005).
- 10. M. F. Hoque and A. C. Paul, Int. Math. Forum **6** (13), 627 (2011).
- 11. M. A. Ozturk and Y. B. Jun, Commun. Korean Math. Soc. **15 (**3**)**, 469 (2000).
- 12. M. A. Ozturk and Y. B. Jun, Turk. J. Math. **25**, 367 (2001).
- 13. K. K. Dey and A. C. Paul, J. Sci. Res. **3** (2), 331 **(**2011). <http://dx.doi.org/10.3329/jsr.v3i2.7278>
- 14. K. K. Dey and A. C. Paul, J. Sci. Res. **4 (**1**)**, 33 (2012). <http://dx.doi.org/10.3329/jsr.v4i1.7911>