

Available Online

JOURNAL OF SCIENTIFIC RESEARCH

J. Sci. Res. 4 (2), 349-356 (2012)

www.banglajol.info/index.php/JSR

On Left Centralizers of Semiprime Γ-Rings

K. K. Dey^{*} and A. C. Paul

Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh

Received 5 October 2011, accepted in final revised form 23 January 2012

Abstract

Let M be a semiprime Γ -ring satisfying an assumption $x\alpha y\beta z = x\beta y\alpha z$ for all $x, y, z \in M, \alpha$, $\beta \in \Gamma$. In this paper, we prove that a mapping $T: M \to M$ is a centralizer if and only if it is a centralizing left centralizer. We also show that if T and S are left centralizers of M such that $T(x)\alpha x + x\alpha S(x) \in Z(M)$ (the center of M) for all $x \in M, \alpha \in \Gamma$, then both T and S are centralizers.

Keywords: Semiprime Γ -ring; Left (right) centralizer; Centralizer; Commuting mapping; Centralizing mapping: Extended centroid.

© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: <u>http://dx.doi.org/10.3329/jsr.v4i2.8691</u> J. Sci. Res. **4** (2), 349-356 (2012)

1. Introduction and Preliminaries

Let *M* and Γ be additive abelian groups. *M* is called a Γ -ring if for all *x*, *y*, $z \in M$, α , $\beta \in \Gamma$ the following conditions are satisfied :

- (i) $x\beta y \in M$,
- (ii) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)y = x\alpha y + x\beta y$, $x\alpha(y + z) = x\alpha y + x\alpha z$,
- (iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$.

Every ring is a Γ -ring and many notions on the ring theory are generalized to Γ -rings. Let *M* be a Γ -ring. A subring *I* of *M* is an additive subgroup which is also a Γ -ring. A *right ideal* of *M* is a subring *I* such that $I\Gamma M \subset I$. Similarly a *left ideal* can be defined. If *I* is both a right and a left ideal then we say that *I* is an ideal.

Let *S* be a subset of *M*. If $x\alpha y + y\alpha x \in S$, for all *x*, $y \in S$, $\alpha \in \Gamma$, then *S* is called a Jordan subring of *M*.

The commutator $x\alpha y - y\alpha x$ will be denoted by $[x, y]_{\alpha}$. We know that $[x\beta y, z]_{\alpha} = [x, z]_{\alpha}\beta y + x\beta[y, z]_{\alpha} + x[\beta, \alpha]_{Z}y$ and $[x, y\beta z]_{\alpha} = y\beta[x, z]_{\alpha} + [x, y]_{\alpha}\beta z + y[\beta, \alpha]_{x}z$. We take an assumption (*) $x\beta z\alpha y = x\alpha z\beta y$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Using the assumption the

^{*} *Corresponding author*: kkdmath@yahoo.com

basic commutator identities reduce to $[x\beta y, z]_{\alpha} = [x, z]_{\alpha}\beta y + x\beta[y, z]_{\alpha}$ and $[x, y\beta z]_{\alpha} = y\beta[x, z]_{\alpha} + [x, y]_{\alpha}\beta z$.

Throughout, *M* denotes a Γ -ring with center *Z*(*M*). M is said to be semiprime if $x\Gamma M\Gamma x = 0$ implies x = 0, it is prime if $x\Gamma M\Gamma y = 0$ implies x = 0 or y = 0. An additive mapping *T*: $M \to M$ is called a left (right) centralizer if $T(x\alpha y) = T(x)\alpha y$ ($T(x\alpha y) = x\alpha T(y)$) for all $x, y \in M$, $\alpha \in \Gamma$. If $a \in M$, then $L_a(x) = a\alpha x$ and $R_a(x) = x\alpha a$, $(x \in M, \alpha \in \Gamma)$ define a left centralizer and a right centralizer of *M*, respectively. An additive mapping *T*: $M \to M$ is called a centralizer if $T(x\alpha y) = T(x)\alpha y = x\alpha T(y)$ for all $x, y \in M$, $\alpha \in \Gamma$. A mapping $f : M \to M$ is called centralizing (skew centralizing) if $[f(x), x]_{\alpha} \in Z(M)$ ($f(x)\alpha x + x\alpha f(x) \in Z(M)$) for all $x \in M$, $\alpha \in \Gamma$, in particular, if $[f(x), x]_{\alpha} = 0$ ($f(x)\alpha x + x\alpha f(x) = 0$) for all $x \in M$, $\alpha \in \Gamma$, then it is called commuting (skew-commuting). Obviously every commuting (skew-commuting) mapping $f : M \to M$ is centralizing (skew centralizing). We recall if $f : M \to M$ is commuting, then $[f(x), y]_{\alpha} = [x, f(y)]_{\alpha}$ for all $x, y \in M$, $\alpha \in \Gamma$. A mapping $f : M \to M$ is called central if $f(x) \in Z(M)$ for all $x \in M$.

The theory of centralizers in rings is well established. Many mathematicians worked on centralizers of rings and found out some remarkable results. The theories of Banach algebras and C^* -algebra with centralizers are established by many authors.

Bresar [1-3] studied centralizing mappings with derivation in prime rings. Mayne [4] worked on centralizing automorphisms of prime rings. Recently, Vukman [5-7] and Zalar [8] studied on centralizer of semiprime rings and 2-torsion free semiprime rings. Samman and Chaudhry [9] established the necessary and sufficient condition for a mapping to be a centralizer. If two left centralizers *T* and *S* of a semiprime ring *R* satisfying $T(x)x + xS(x) \in Z(R)$ for all $x \in R$, then they also prove that both *T* and *S* are centralizers. Haque and Paul [10] worked on Jordan centralizers on a Γ -ring with certain assumption. For the extended centroid we refer to [11, 12]. They proved that every Jordan left centralizer on a 2-torsion free semiprime Γ -ring satisfying a certain condition is a centralizer.

In this paper, we develop the results of [9] in Gamma rings. Our results are the generalizations of the results of Samman and Chaudhry [9]. The results in this paper for left centralizers are also true for right centralizers because of left-right symmetry.

2. Left Centralizers on Semiprime Γ-rings

In this section, we prove our main results.

Theorem 2.1 Let *S* be a set and *M* be a semiprime Γ -ring. If the functions *f* and *g* of *S* into *M* satisfy

 $f(s)\alpha x\beta g(t) = g(s)\alpha x\beta f(t)$ for all $s, t \in S, x \in M, \alpha, \beta \in \Gamma$, (1) then there exist idempotent elements $e_1, e_2, e_3 \in C$, the extended centroid on M and an invertible $k \in C$ such that $e_i \alpha e_j = 0$ for $i \neq j$, $e_1 + e_2 + e_3 = 1$ and $e_1 \alpha f(s) = k\beta e_1 \alpha g(s)$, $e_2 \alpha g(s) = 0, e_3 \alpha f(s) = 0$ hold for all $s \in S, \alpha, \beta \in \Gamma$. **Proof.** Obviously, the identity holds in case *x* is an element from *C*(*M*), the central closure of *M*. Thus there is no loss of generality in assuming that *M* is centrally closed. Let $A = M\Gamma f(s)\Gamma M$ and $B = M\Gamma g(s)\Gamma M$. We have $A^{\perp} = p\Gamma M$ and $B^{\perp} = q\Gamma M$ for some idempotent elements $p, q \in C$. We set $e_1 = (1 - p)\alpha(1 - q), e_2 = (1 - p)\alpha q$ and $e_3 = p$. Clearly e_i 's (*i* = 1, 2, 3) are mutually orthogonal idempotent elements with sum 1. Since $q\alpha g(s) \in B^{\perp}$, $s \in S$, $\alpha \in \Gamma$, we have $q\alpha g(s)\beta x\delta q\alpha g(s) = 0$, which implies $q\alpha g(s) = 0$. Hence $e_2\alpha g(s) = 0, s \in S$, $\alpha \in \Gamma$.

We note that $(e_1 \alpha A)^{\perp} = (e_1 \alpha B)^{\perp} = (1 - e_1) \alpha M$, that is, $(e_1 \alpha A)^{\perp} = (e_1 \alpha B)^{\perp} = (1 - e_1) \Gamma M$. Hence $E = e_2 \Gamma A \oplus (1 - e_1) \Gamma M$ is an essential ideal of M. Define $\phi: E \to M$ by $\phi(e_1 \alpha(\sum_{i=1}^3 x_i \beta f(s_i) \delta y_i) + (1 - e_1) \lambda r) = e_1 \alpha(\sum_{i=1}^3 x_i \beta g(s_i) \delta y_i) + (1 - e_1) \lambda r$.

In order to show that ϕ is well defined, we suppose that

$$e_1\alpha(\sum_{i=1}^{3} x_i \beta f(s_i) \delta y_i) = 0$$
. Consequently $e_1\alpha(\sum_{i=1}^{3} x_i \beta f(s_i) \delta y_i) \gamma z \lambda g(t) = 0$ holds for all

 $z \in M, t \in S, \alpha, \beta, \delta, \gamma, \lambda \in \Gamma.$

Since by (1) we have
$$f(s_i) \, \delta y_i \, \gamma z \lambda \, g(t) = g(s_i) \, \delta y_i \, \gamma z \, \lambda f(t)$$
, it follows that $e_1 \alpha(\sum_{i=1}^3 x_i \beta g(s_i) \, \delta y_i) \, \gamma z \lambda f(t) = 0$ for all $z \in M, t \in S, \alpha, \beta, \delta, \gamma, \lambda \in \Gamma$.

Thus the elements $e_1 \alpha(\sum_{i=1}^{3} x_i \beta g(s_i) \delta y_i)$ lies in A^{\perp} . Since $A^{\perp} = p \Gamma M$ and $e_1 = (1 - p)\alpha(1 - q)$, it follows that $e_1 \alpha(\sum_{i=1}^{3} x_i \rho_{\alpha}(s_i) \delta y_i) = 0$. This proves that ϕ is well defined.

q), it follows that $e_1 \alpha(\sum_{i=1}^{3} x_i \beta g(s_i) \delta y_i) = 0$. This proves that ϕ is well defined.

Clearly ϕ is an M_{Γ} -module homomorphism. Then there exist $k \in C$ such that $\phi(u) = k\beta u$ for every $u \in E$, $\beta \in \Gamma$. Hence $e_1 \alpha f(s) = k\beta e_1 \alpha g(s)$ for all $s \in S$, $\alpha, \beta \in \Gamma$. It remains to prove that k is invertible. Note that $k\Gamma E = e_1\Gamma B \oplus (1 - e_1)\Gamma M$. Since $e_1\Gamma B \oplus (1 - e_1)\Gamma M$ is an essential ideal (namely $(e_1\Gamma B)^{\perp} = (1 - e_1)\Gamma M$), k can not be a divisor of zero. Consequently, C is the extended centroid of M, k is invertible. The proof is complete.

Theorem 2.2. Let *M* be a 2-torsion free semiprime Γ -ring satisfying the condition (*) and *U* be a Jordan subring of *M*. If an additive mapping *F* of *M* into itself is centralizing on *U*, then *F* is commuting on *U*.

Proof: A linearization of $[F(x), x]_{\alpha} \in Z$ gives $[F(x), y]_{\alpha} + [F(y), x]_{\alpha} \in Z$ for all $x, y \in U, \alpha \in \Gamma$.

Replacing *y* by $x\beta x$,

$$[F(x), x\beta x]_{\alpha} + [F(x\beta x), x]_{\alpha} \in \mathbb{Z}. \text{ Since } [F(x), x]_{\alpha} \in \mathbb{Z}, \text{ we have } [F(x), x\beta x]_{\alpha}$$

= $x\beta [F(x), x]_{\alpha} + [F(x), x]_{\alpha}\beta x$
= $[F(x), x]_{\alpha}\beta x + [F(x), x]_{\alpha}\beta x = 2[F(x), x]_{\alpha}\beta x. \text{ Thus}$
 $2[F(x), x]_{\alpha}\beta x + [F(x\beta x), x]_{\alpha} \in \mathbb{Z} \text{ for all } x \in U, \alpha, \beta \in \Gamma.$ (2)

By assumption $[F(x\beta x), x\beta x]_{\alpha} \in \mathbb{Z}$, for all $x \in U$, α , $\beta \in \Gamma$. That is

$$[F(x\beta x), x]_{\alpha}\beta x + x\beta[F(x\beta x), x]_{\alpha} \in \mathbb{Z}.$$
(3)

Now fix $x \in U$ and let $z = [F(x), x]_{\alpha}$, $u = [F(x\beta x), x]_{\alpha}$. We must show that z = 0. By (2) we have

$$0 = [F(x), 2z\beta x + u]_{\alpha}$$

= $2z\beta[F(x), x]_{\alpha} + 2[F(x), z]_{\alpha}\beta x + [F(x), u]_{\alpha} = 2z\beta z + [F(x), u]_{\alpha}$
Thus $[F(x), u]_{\alpha} = -2z\beta z$ (4)

According to (3) we have $0 = [F(x), u\beta x + x\beta u]_{\alpha} = [F(x), u]_{\alpha}\beta x + u\beta[F(x), x]_{\alpha} + [F(x), x]_{\alpha}\beta u + x\beta[F(x), u]_{\alpha}$ applying (4) we then get $-4z\beta z\beta x + 2z\beta u = 0$.

Thus $z\beta u = 2z\beta z\beta x$. Multiplying (4) by $z\beta$ and using the last relation we obtain

$$-2z\beta z\beta z = z\beta [F(x), u]_{\alpha} = [F(x), z\beta u]_{\alpha} - [F(x), z]_{\alpha}\beta u = [F(x), z\beta u]_{\alpha}$$
$$= [F(x), 2z\beta z\beta x]_{\alpha} = 2z\beta z\beta [F(x), x]_{\alpha} + [F(x), 2z\beta z]_{\alpha}\beta x = 2z\beta z\beta z. \text{ Hence } z\beta z\beta z = 0.$$

Since the center of a semiprime Γ -ring contains no nonzero nilpotent elements, we conclude that z = 0. This proves the theorem.

Theorem 2.3 Let *T* be a centralizing left centralizer of a semiprime Γ -ring *M* satisfying the condition (*). Then *T* is commuting.

Proof. If *M* is 2-torsion free, then *T* is commuting follows from Theorem 2.3 by taking U = M in it. If M is not a 2-torsion free semiprime Γ -ring, then

$$2[T(x), x]_{\alpha} = 0 \text{ for all } x \in M, \ \alpha \in \Gamma \ (5) \text{ and}$$
$$2([T(x), y]_{\alpha} + [T(y), x]_{\alpha}) = 0 \text{ for all } x, y \in M, \ \alpha \in \Gamma.$$
(6)

By assumption $[T(x), x]_{\alpha} \in Z(M)$. Linearizing this, we get

$$[T(x), y]_{\alpha} + [T(y), x]_{\alpha} \in Z(M) \text{ for all } x, y \in M, \alpha \in \Gamma.$$
(7)

Using (5) – (7) and the hypothesis that $[T(x), x]_{\alpha} \in Z(M)$, the following identity follows easily

$$[T(x), x\beta y + y\beta x]_{\alpha} + [T(y), x\beta x]_{\alpha} = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$$
(8)

Replacing *y* by *y* δx in (8), we get $[T(x), x\beta y\delta x + y\delta x\beta x]_{\alpha} + [T(y\delta x), x\beta x]_{\alpha} = 0$, which gives $(x\beta y + y\beta x)\delta[T(x), x]_{\alpha} + [T(x), x\beta y + y\beta x]_{\alpha}\delta x + T(y)\delta[x, x\beta x]_{\alpha} + [T(y), x\beta x]_{\alpha}\delta x = 0$ for all *x*, $y \in M$, α , β , $\delta \in \Gamma$. Combining this with (8), we get $(x\beta y + y\beta x)\delta[T(x), x]_{\alpha} = 0$ for all *x*, $y \in M$, α , β , $\delta \in \Gamma$, which gives $(x\beta y - y\beta x + 2y\beta x)\delta[T(x), x]_{\alpha} = 0$, for all *x*, $y \in M$, α , β , $\delta \in \Gamma$. Thus $(x\beta y - y\beta x)\delta[T(x), x]_{\alpha} = 0$ for all *x*, $y \in M$, α , β , $\delta \in \Gamma$. In particular, (replacing y by *T*(*x*) and δ by α) $(x\beta T(x) - T(x)\beta x)\delta[T(x), x]_{\alpha} = -[T(x), x]_{\alpha}\beta[T(x), x]_{\alpha} = 0$ for all $x \in M$, $\alpha, \beta \in \Gamma$. Since a semiprime Γ -ring has no nontrivial central nilpotents, therefore $[T(x), x]_{\alpha}$ = 0 for all $x \in M$, $\alpha \in \Gamma$.

Theorem 2.4 Let *T* be a centralizing left centralizer of a semiprime Γ -ring *M* satisfying the condition (*), then *T* is a centralizer of *M*.

Proof. We have $T(x\alpha y) = T(x)\alpha y$ for all $x, y \in M$ and $\alpha \in \Gamma$. We now show that $T(x\alpha y) = x\alpha T(y)$ for all $x, y \in M$, $\alpha \in \Gamma$. Since T is a centralizing left centralizer of M, therefore by Theorem 2.3, it is commuting. Thus $[T(x), x]_{\alpha} = 0$ for all $x \in M$, $\alpha \in \Gamma$. That is, $T(x)\alpha x - x\alpha T(x) = 0$ for all $x \in M$, $\alpha \in \Gamma$. Linearizing this, we get $T(x)\alpha y + T(y)\alpha x - y\alpha T(x) - x\alpha T(y) = 0$ for all $x, y \in M$, $\alpha \in \Gamma$.

Replacing *y* by $x\beta y$ in the last identity, we get

 $0 = T(x)\alpha x\beta y + T(x\beta y)\alpha x - x\beta y\alpha T(x) - x\alpha T(x\beta y) = T(x)\alpha x\beta y + T(x)\beta y\alpha x - x\beta y\alpha T(x)$ $- x\alpha T(x)\beta y = (T(x)\alpha x - x\alpha T(x))\beta y + T(x)\beta y\alpha x - x\alpha y\beta T(x) = T(x)\beta y\alpha x - x\alpha y\beta T(x).$

That is,

$$T(x)\beta y\alpha x - x\beta y\alpha T(x) = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$$
(9)

Taking S = M, s = t = x, f(x) = T(x) and g(x) = x in (9) and applying Theorem 2.1 to (9) we conclude that there exist idempotent elements e_1 , e_2 , $e_3 \in C$ and an invertible $p \in C$ such that $e_i \alpha e_j = 0$ for $i \neq j$, $e_1 + e_2 + e_3 = 1$ and $e_1 \alpha T(x) = p\beta e_1 \alpha x$, $e_2 \alpha x = 0$ and $e_3 \alpha T(x) = 0$ for all $x \in M$, α , $\beta \in \Gamma$. Now $e_2 \alpha x = 0$ implies $x\alpha e_2 = 0$. Thus $T(x\alpha e_2) = T(0)$, which gives $T(x)\alpha e_2 = T(0)\alpha 0 = 0$. That is, $T(x)\alpha e_2 = 0$ or $e_2\alpha T(x) = 0$. Thus

 $T(x) = e_1 + e_2 + e_3)\alpha T(x) = e_1\alpha T(x) = p\beta e_1\alpha x.$

That is, $T(x) = p\beta e_1 \alpha x$ for all $x \in M$, $\alpha \in \Gamma$. Thus $T(x)\alpha y - x\alpha T(y) = p\beta e_1 x \delta y - x\alpha p\beta e_1 \delta y$ = $p\beta e_1 \alpha x \delta y - p\beta e_1 \alpha x \delta y = 0$. That is,

$$T(x)\alpha y = x\alpha T(y) \text{ for all } x, y \in M, \alpha \in \Gamma.$$
(10)

$$(T(x\alpha y) - T(x)\alpha y)\beta z\gamma(T(x\alpha y) - T(x)\alpha y) = 0.$$

By the semiprimeness of *M*, we have, $T(x\alpha y) - T(x)\alpha y = 0$. This implies $T(x\alpha y) = T(x)\alpha y$. Thus $T(x\alpha y) = T(x)\alpha y = x\alpha T(y)$. This shows that *T* is a centralizer.

Remark 2.5 Obviously every centralizer is commuting because $T(x\alpha x) = T(x)\alpha x = x\alpha T(x)$ for all $x \in M$, $\alpha \in \Gamma$, and hence is a centralizing left centralizer. Thus we have the following corollary.

Corollary 2.6 A mapping *T* of a semiprime Γ -ring *M* satisfying the condition (*) is a centralizer if and only if it is a centralizing left centralizer. Let *T* be a commuting left centralizer of a semiprime Γ -ring, then $T(x)\beta[x, y]_{\alpha} = x\beta[T(x), y]_{\alpha}$ holds for all $x, y \in M$, α , $\beta \in \Gamma$.

Proof. Since *T* is commuting, therefore $[T(x), x]_{\alpha} = 0$ for all $x \in M, \alpha \in \Gamma$. (11)

Linearizing (11), we get

$$[T(x), y]_{\alpha} + [T(y), x]_{\alpha} = 0 \text{ for all } x, y \in M, \alpha \in \Gamma.$$
(12)

Replacing y by $x\beta y$ in (12) and using (12), we get $0 = [T(x), x\beta y]_{\alpha} + [T(x\beta y), x]_{\alpha} = [T(x), x\beta y]_{\alpha} + [T(x)\beta y, x]_{\alpha} = [T(x), x]_{\alpha}\beta y + x\beta[T(x), y]_{\alpha} + [T(x), x]_{\alpha}\beta y + T(x)\beta[y, x]_{\alpha} = x\beta[T(x), y]_{\alpha} - T(x)\beta[x, y]_{\alpha}.$

That is, $x\beta[T(x), y]_{\alpha} - T(x)\beta[x, y]_{\alpha} = 0$ for all $x, y \in M, \alpha, \beta \in \Gamma$.

Thus $T(x)\beta[x, y]_{\alpha} = x\beta[T(x), y]_{\alpha}$ for all $x, y \in M, \alpha, \beta \in \Gamma$.

Remark 2.7 If *T* is a central left centralizer of a prime Γ -ring *M*, then either T = 0 or *M* is commutative. This is because $T(x)\beta[x, y]_{\alpha} = x\beta[T(x), y]_{\alpha}$ gives $T(x)\beta[x, y]_{\alpha} = 0$. Replacing *y* by $y\delta z$ in the last identity and using it, we get $T(x)\beta y\delta[x, z]_{\alpha} = 0$ for all *x*, *y*, $z \in M$. Since *M* is prime, therefore T(x) = 0 or $[x, z]_{\alpha} = 0$ for all *x*, $z \in M$, $\alpha \in \Gamma$. That is, T = 0 or *M* is commutative.

Theorem 2.8. Let *M* be a semiprime Γ -ring satisfying the condition (*) and *T* and *S* be left centralizers of *M* such that

 $T(x)\alpha x + x\alpha S(x) \in Z(M) \text{ for all } x \in M, \ \alpha \in \Gamma.$ (13)
Then T and S are both centralizers.

Proof. Linearizing (13), we get

$$T(x)\alpha y + T(y)\alpha x + x\alpha S(y) + y\alpha S(x) \in Z(M) \text{ for all } x, y \in M, \alpha \in \Gamma.$$
(14)

Thus $[T(x)\alpha y + T(y)\alpha x + x\alpha S(y) + y\alpha S(x), x]_{\beta} = 0$, which gives

$$[T(x)\alpha y + T(y)\alpha x + x\alpha S(y), x]_{\beta} = -[y\alpha S(x), x]_{\beta} \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$$
(15)

Replacing y by $y\beta x$ in (14), we get $T(x)\alpha y\beta x + T(y\beta x)\alpha x + x\alpha S(y\beta x) + y\beta x\alpha S(x) = T(x)\alpha y\beta x + T(y)\beta x\alpha x + x\alpha S(y)\beta x + y\beta x\alpha S(x) = (T(x)\alpha y + T(y)\alpha x + x\alpha S(y))\beta x + y\alpha x\beta S(x) \in \mathbb{Z}(M).$

Thus $[(T(x)\alpha y + T(y)\alpha x + x\alpha S(y))\beta x + y\alpha x\beta S(x), x]_{\beta} = 0$ for all $x \in M$, $\alpha, \beta \in \Gamma$. This implies that

$$[T(x)\alpha y + T(y)\alpha x + x\alpha S(y), x]_{\beta}\beta x + [y\beta x\alpha S(x), x]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$$
(16)

Using (15), from (16) we get

$$-[y\alpha S(x), x]_{\beta}\beta x + [y\alpha x\beta S(x), x]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$$
(17)

Since $[y\alpha S(x)\beta x, x]_{\beta} = [y\alpha S(x), x]_{\beta}\beta x$, therefore (17) gives $0 = -[y\alpha S(x)\beta x, x]_{\beta} + [y\alpha x\beta S(x), x]_{\beta} = [y\alpha (x\beta S(x) - S(x)\beta x), x]_{\beta} = [y\alpha [x, S(x)]_{\beta}, x]_{\beta} = y\alpha [[x, S(x)]_{\beta}, x]_{\beta} + [y, x]_{\beta}\alpha [x, S(x)]_{\beta}$.

Thus

 $y\alpha[[x, S(x)]_{\beta}, x]_{\beta} + [y, x]_{\beta}\alpha[x, S(x)]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$ (18)

Replacing y by $z\lambda y$ in (18) and using (18), we get $0 = z\lambda y\alpha[[x, S(x)]_{\beta}, x]_{\beta} + [z\lambda y, x]_{\beta}\alpha[x, S(x)]_{\beta} = z\lambda y\alpha[[x, S(x)]_{\beta}, x]_{\beta} + z\lambda[y, x]_{\beta}\alpha[x, S(x)]_{\beta} + [z, x]_{\beta}\lambda y\alpha[x, S(x)]_{\beta} = [z, x]_{\beta}\lambda y\alpha[x, S(x)]_{\beta}.$

That is,
$$[z, x]_{\beta} \lambda y \alpha [x, S(x)]_{\beta} = 0$$
 for all $x, y, z \in M, \alpha, \beta, \lambda \in \Gamma.$ (19)

In particular, $[S(x), x]_{\beta}\lambda y\alpha[x, S(x)]_{\beta} = 0$ which, by semiprimeness of *M*, implies $[S(x), x]_{\beta} = 0$. Thus *S* is a commuting left centralizer and, by Theorem 2.2, is a centralizer.

We now show that *T* is commuting. By hypothesis and by the assumption, we have

$$0 = [T(x)\alpha x + x\alpha S(x), x]_{\beta} = [T(x), x]_{\beta}\alpha x + x\alpha [S(x), x]_{\beta} = [T(x), x]_{\beta}\alpha x.$$
 That is

 $[T(x), x]_{\beta} \alpha x = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$ (20)

From (15), we get $[T(x)\alpha y + T(y)\alpha x, x]_{\beta} = [-x\alpha S(y) - y\alpha S(x), x]_{\beta}$. Thus $T(x)\alpha[y, x]_{\beta}$ + $[T(x), x]_{\beta}\alpha y + [T(y), x]_{\beta}\alpha x = -x\alpha[S(y), x]_{\beta} - y\alpha[S(x), x]_{\beta} - [y, x]_{\beta}\alpha S(x) =$ $-x\alpha[y, S(x)]_{\beta} - [y, x]_{\beta}\alpha S(x) = x\alpha[S(x), y]_{\beta} + [x, y]_{\beta}\alpha S(x)$. That is, for all $x, y \in M, \alpha, \beta \in \Gamma$

$$T(x)\alpha[y, x]_{\beta} + [T(x), x]_{\beta}\alpha y + [T(y), x]_{\beta}\alpha x = x\alpha[S(x), y]_{\beta} + [x, y]_{\beta}\alpha S(x).$$
(21)

Again by hypothesis, we get

$$0 = [T(x)\alpha x + x\alpha S(x), y]_{\beta} = T(x)\alpha[x, y]_{\beta} + [T(x), y]_{\beta}\alpha x + [x, y]_{\beta}\alpha S(x) + x\alpha[S(x), y]_{\beta}.$$

That is, for all *x*, $y \in M$, α , $\beta \in \Gamma$

$$-T(x)\alpha[y, x]_{\beta} + [T(x), y]_{\beta}\alpha x = -[x, y]_{\beta}\alpha S(x) - x\alpha[S(x), y]_{\beta}.$$
(22)

Adding (21) and (22), we get

$$[T(x), x]_{\beta}\alpha y + [T(y), x]_{\beta}\alpha x + [T(x), y]_{\beta}\alpha x = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$$
(23)

Replacing y by $y\beta T(x)$ in (23) and using (20), we get

$$0 = [T(x), x]_{\beta}\alpha y\beta T(x) + [T(y\beta T(x)), x]_{\beta}\alpha x + [T(x), y\beta T(x)]_{\beta}\alpha x$$

= $[T(x), x]_{\beta}\alpha y\beta T(x) + [T(y)\beta T(x), x]_{\beta}\alpha x + [T(x), y\beta T(x)]_{\beta}\alpha x$
= $[T(x), x]_{\beta}\alpha y\beta T(x) + T(y)\beta [T(x), x]_{\beta}\alpha x + [T(y), x]_{\beta}\beta T(x)\alpha x + [T(x), y]_{\beta}\beta T(x)\alpha x$
= $-[T(y), x]_{\beta}\alpha x\beta T(x) - [T(x), y]_{\beta}\alpha x\beta T(x) + [T(y), x]_{\beta}\beta T(x)\alpha x + [T(x), y]_{\beta}\beta T(x)\alpha x$

$$= [T(y), x]_{\beta} \alpha [T(x), x]_{\beta} + [T(x), y]_{\beta} \alpha [T(x), x]_{\beta}.$$

That is

$$[T(y), x]_{\beta}\alpha[T(x), x]_{\beta} + [T(x), y]_{\beta}\alpha[T(x), x]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$$
(24)

Replacing y by $y\lambda x$ in (24) and using (23), we get

$$0 = [T(y\lambda x), x]_{\beta}\alpha[T(x), x]_{\beta} + [T(x), y\lambda x]_{\beta}\alpha[T(x), x]_{\beta}$$

$$= [T(y)\lambda x, x]_{\beta}\alpha[T(x), x]_{\beta} + [T(x), y\lambda x]_{\beta}\alpha[T(x), x]_{\beta}$$

$$= [T(y), x]_{\beta}\lambda x\alpha[T(x), x]_{\beta} + y\lambda[T(x), x]_{\beta}\alpha[T(x), x]_{\beta} + [T(x), y]_{\beta}\lambda x\alpha[T(x), x]_{\beta}$$

$$= ([T(y), x]_{\beta}\lambda x + [T(x), y]_{\beta}\lambda x)\alpha[T(x), x]_{\beta} + y\lambda[T(x), x]_{\beta}\alpha[T(x), x]_{\beta}$$

$$= -[T(x), x]_{\beta}\lambda y\alpha[T(x), x]_{\beta} + y\lambda[T(x), x]_{\beta}\alpha[T(x), x]_{\beta}.$$

Thus

$$[T(x), x]_{\beta} \lambda y \alpha [T(x), x]_{\beta} = y \lambda [T(x), x]_{\beta} \alpha [T(x), x]_{\beta} \text{ for all } x, y \in M, \alpha, \beta, \lambda \in \Gamma.$$
(25)

Replacing y by xay in (25) and using (20), we get $x \alpha y \lambda[T(x), x]_{\beta} \alpha[T(x), x]_{\beta} = [T(x), x]_{\beta} \alpha x \alpha y \lambda[T(x), x]_{\beta} = 0.$

That is,

$$x\alpha y\lambda[T(x), x]_{\beta}\alpha[T(x), x]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta, \lambda \in \Gamma,$$
(26)

which gives $T(x)\beta x\alpha y\lambda[T(x), x]_{\beta}\alpha[T(x), x]_{\beta} = 0$.

Further, replacing *y* by $T(x)\beta y$ in (26), we get $x\alpha T(x)\beta y\lambda[T(x), x]_{\beta}\alpha[T(x), x]_{\beta} = 0$. Combining the last two identities, we get $(T(x)\beta x - x\beta T(x))\alpha y\lambda[T(x), x]_{\beta}\alpha[T(x), x]_{\beta} = 0$. That is, $[T(x), x]_{\beta}\gamma y\lambda[T(x), x]_{\beta}\alpha[T(x), x]_{\beta} = 0$, which gives $[T(x), x]_{\beta}\alpha[T(x), x]_{\beta}\alpha y\lambda[T(x), x]_{\beta}\alpha x\lambda[T(x), x$

 $[T(x), x]_{\beta} \alpha [T(x), x]_{\beta} = 0 \text{ for all } x \in M, \alpha, \beta \in \Gamma.$ (27)

Using (23), from (21) we get $[T(x), x]_{\beta} \alpha y \lambda[T(x), x]_{\beta} = 0$, which by semiprimeness of *M* implies $[T(x), x]_{\beta} = 0$. Thus *T* is a commuting left centralizer and hence by Theorem 2.2, *T* is a centralizer.

Taking S = T in Theorem 2.7, we get the following corollary.

Corollary 2.9. Let *T* be a skew centralizing left centralizer of a semiprime Γ -ring *M* satisfying the condition (*). Then *T* is a centralizer. The following corollary is also obvious.

Corollary 2.10. Let *T* and *S* be left centralizers of a semiprime Γ -ring *M* satisfying the condition (*) such that $T(x)\alpha x + x\alpha S(x) = 0$ for all $x \in M$, $\alpha \in \Gamma$. Then both *T* and *S* are centralizers.

References

- 1. M. Brešar, Proc. Amer. Math. Soc. 114, 641 (1992).
- 2. M. Brešsar, J. Algebra 156, 385 (1993). http://dx.doi.org/10.1006/jabr.1993.1080
- 3. M. Brešsar, Proc. Amer. Math. Soc. 120, 709 (1994).
- 4. J.H. Mayne, Canad. Math. Bull. 19, 113 (1976). <u>http://dx.doi.org/10.4153/CMB-1976-017-1</u>
- 5. J. Vukman, Comment. Math. Univ. Carolinae 38, 231 (1997).
- 6. J. Vukman, Comment. Math. Univ. Carolinae 40, 447 (1999).
- 7. J. Vukman, Comment. Math. Univ. Carolinae 42, 237 (2001).
- 8. B. Zalar, Comment. Math. Univ. Carolinae **34**, 609 (1991).
- 9. M. S. Samman, M. A. Chaudhry, Int. J. Pure Appl. Math. 20 (4) 487 (2005).
- 10. M. F. Hoque and A. C. Paul, Int. Math. Forum 6 (13), 627 (2011).
- 11. M. A. Ozturk and Y. B. Jun, Commun. Korean Math. Soc. 15 (3), 469 (2000).
- 12. M. A. Ozturk and Y. B. Jun, Turk. J. Math. 25, 367 (2001).
- 13. K. K. Dey and A. C. Paul, J. Sci. Res. 3 (2), 331 (2011). http://dx.doi.org/10.3329/jsr.v3i2.7278
- 14. K. K. Dey and A. C. Paul, J. Sci. Res. 4 (1), 33 (2012). http://dx.doi.org/10.3329/jsr.v4i1.7911