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Abstract 
 

Let M be a semiprime Γ-ring satisfying an assumption xαyβz = xβyαz for all x, y, z∈M, α, 
β∈Γ. In this paper, we prove that a mapping T: M → M is a centralizer if and only if it is a 
centralizing left centralizer. We also show that if T and S are left centralizers of M such that 
T(x)αx + xαS(x)∈Z(M) (the center of M) for all x∈M, α∈Γ, then both T and S are 
centralizers. 
 

Keywords: Semiprime Γ-ring; Left (right) centralizer; Centralizer; Commuting mapping; 
Centralizing mapping: Extended centroid. 
 
© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. 
 

http://dx.doi.org/10.3329/jsr.v4i2.8691    J. Sci. Res. 4 (2), 349-356 (2012) 
 

 
 

 
1. Introduction and Preliminaries 
 
Let M and Γ be additive abelian groups. M is called a Γ-ring if for all x, y, z∈M, α, β∈Γ 
the following conditions are satisfied :  
  

(i) xβy∈M,  
(ii) (x + y)αz = xαz + yαz,  x(α + β)y = xαy + xβy,  xα(y + z) = xαy + xαz,  
(iii) (xαy)βz = xα(yβz). 
 

Every ring is a Γ-ring and many notions on the ring theory are generalized to Γ-rings. 
Let M be a Γ-ring. A subring I of M is an additive subgroup which is also a Γ-ring. A right 
ideal of M is a subring I such that IΓM ⊂ I. Similarly a left ideal can be defined. If I is 
both a right and a left ideal then we say that I is an ideal.  

Let S be a subset of M. If xαy+ yαx∈S, for all x, y∈S, α∈Γ, then S is called a Jordan 
subring of M. 

The commutator xαy − yαx will be denoted by [x, y]α. We know that [xβy, z]α =         
[x, z]αβy + xβ[y, z]α + x[β, α]Zy and [x, yβz]α = yβ[x, z]α + [x, y]αβz + y[β,α]xz. We take an 
assumption (*) xβzαy = xαzβy for all x, y, z∈M and α, β∈Γ. Using the assumption the 
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basic commutator identities reduce to [xβy, z]α = [x, z]αβy + xβ[y, z]α and [x, yβz]α =    
yβ[x, z]α + [x, y]αβz. 

 Throughout, M denotes a Γ-ring with center Z(M). M is said to be semiprime if 
xΓMΓx = 0 implies x = 0, it is prime if xΓMΓy = 0 implies x = 0 or y = 0. An additive 
mapping T: M→ M is called a left (right) centralizer if T(xαy) = T(x)αy ( T(xαy) =  xαT(y) 
) for all x, y∈M, α∈Γ. If a∈M, then La(x) = aαx and Ra(x) = xαa, (x∈M, α∈Γ) define a 
left centralizer and a right centralizer of M, respectively. An additive mapping T: M → M 
is called a centralizer if T(xαy) = T(x)αy = xαT(y) for all x, y∈M, α∈Γ. A mapping f : M 
→ M is called centralizing (skew centralizing) if [f(x), x]α∈Z(M) ( f(x)αx + xαf(x)∈Z(M) ) 
for all x∈M, α∈Γ, in particular, if [f(x), x]α = 0 ( f(x)αx + xαf(x) = 0 ) for all x∈M, α∈Γ, 
then it is called commuting (skew-commuting). Obviously every commuting (skew-
commuting) mapping f : M → M is centralizing (skew centralizing). We recall if f : M → 
M is commuting, then [f(x), y]α = [x, f(y)]α for all x, y∈M, α∈Γ. A mapping f : M → M is 
called central if f(x)∈Z(M) for all x∈M.  

The theory of centralizers in rings is well established. Many mathematicians worked 
on centralizers of rings and found out some remarkable results. The theories of Banach 
algebras and C*-algebra with centralizers are established by many authors. 

Bresar [1-3] studied centralizing mappings with derivation in prime rings. Mayne [4] 
worked on centralizing automorphisms of prime rings. Recently, Vukman [5-7] and  Zalar 
[8] studied on centralizer of semiprime rings and 2-torsion free semiprime rings. Samman 
and Chaudhry [9] established the necessary and sufficient condition for a mapping to be a 
centralizer. If two left centralizers T and S of a semiprime ring R satisfying T(x)x + 
xS(x)∈Z(R) for all x∈R, then they also prove that both T and S are centralizers. Haque and 
Paul [10] worked on Jordan centralizers on a Γ-ring with certain assumption. For the 
extended centroid we refer to [11, 12]. They proved that every Jordan left centralizer on a 
2-torsion free semiprime Γ-ring is a left centralizer. They also proved that every Jordan 
centralizer on a 2-torsion free semiprime Γ-ring satisfying a certain condition is a 
centralizer.   

In this paper, we develop the results of [9] in Gamma rings. Our results are the 
generalizations of the results of Samman and Chaudhry [9]. The results in this paper for 
left centralizers are also true for right centralizers because of left-right symmetry. 
 
2. Left Centralizers on Semiprime Γ-rings 
 
In this section, we prove our main results. 
 

Theorem 2.1 Let S be a set and M be a semiprime Γ-ring. If the functions f and g of S into 
M satisfy  

 

f(s)αxβg(t) = g(s)αxβf(t) for all s, t∈S, x∈M, α, β∈Γ,                                                 (1) 

then there exist idempotent elements e1, e2, e3∈C, the extended centroid on M and an 
invertible k∈C such that eiαej = 0 for i ≠ j, e1 + e2 + e3 = 1 and e1αf(s) = kβe1αg(s), 
e2αg(s) = 0, e3αf(s) = 0 hold for all s∈S, α, β∈Γ. 
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Proof. Obviously, the identity holds in case x is an element from C(M), the central closure 
of M. Thus there is no loss of generality in assuming that M is centrally closed. Let A = 
MΓf(s)ΓM  and B = MΓg(s)ΓM. We have A⊥ = pΓM and B⊥ = qΓM for some idempotent 
elements p, q∈C. We set e1 = (1 − p)α(1 − q), e2 = (1 − p)αq and e3 = p. Clearly ei’s ( i =1, 
2, 3 ) are mutually orthogonal idempotent elements with sum 1. Since qαg(s)∈B⊥,  s∈S, 
α∈Γ, we have qαg(s)βxδqαg(s) = 0, which implies qαg(s) = 0. Hence e2αg(s) = 0, s∈S, 
α∈Γ. Similarly we see that e3αf(s) = 0, s∈S, α∈Γ. 

We note that (e1αA)⊥ = (e1αB)⊥ = (1 − e1)αM, that is, (e1αA)⊥ = (e1αB)⊥ = (1 − e1)ΓM. 
Hence E = e2ΓA⊕(1 − e1)ΓM is an essential ideal of M. Define φ: E → M by  
φ(e1α(∑

=

3

1
)(

i
iii ysfx δβ ) + (1 − e1)λr) = e1α(∑

=

3

1
)(

i
iii ysgx δβ ) + (1− e1)λr. 

 In order to show that φ is well defined, we suppose that  

e1α(∑
=

3

1
)(

i
iii ysfx δβ ) = 0. Consequently e1α(∑

=

3

1
)(

i
iii ysfx δβ )γzλg(t) = 0 holds for all 

z∈M, t∈S, α, β, δ, γ, λ∈Γ. 
Since by (1) we have f(si) δyi γzλ g(t) = g(si) δyi γz λf(t), it follows that  

e1α(∑
=

3

1
)(

i
iii ysgx δβ )γzλf(t) = 0 for all z∈M, t∈S, α, β, δ, γ, λ∈Γ. 

Thus the elements e1α(∑
=

3

1
)(

i
iii ysgx δβ ) lies in A⊥. Since A⊥ = pΓM and e1 = (1 − p)α(1 − 

q), it follows that e1α(∑
=

3

1
)(

i
iii ysgx δβ ) = 0. This proves that φ is well defined.  

Clearly φ is an MΓ-module homomorphism. Then there exist k∈C such that φ(u) = kβu 
for every u∈E, β∈Γ. Hence e1αf(s) = kβe1αg(s) for all s∈S, α,β∈Γ. It remains to prove 
that k is invertible. Note that kΓE = e1ΓB⊕(1 − e1)ΓM. Since e1ΓB⊕(1 − e1)ΓM is an 
essential ideal (namely (e1ΓB)⊥ = (1 − e1)ΓM), k can not be a divisor of zero. 
Consequently, C is the extended centroid of M, k is invertible. The proof is complete. 
 
Theorem 2.2. Let M be a 2-torsion free semiprime Γ-ring satisfying the condition (*) and 
U be a Jordan subring of M. If an additive mapping F of M into itself is centralizing on U, 
then F is commuting on U. 
Proof: A linearization of [F(x), x]α∈Z gives [F(x), y]α + [F(y), x]α∈Z for all x, y∈U, α∈Γ.  
 

Replacing y by xβx, 
 

 [F(x), xβx]α + [F(xβx), x]α∈Z. Since [F(x), x]α∈Z, we have [F(x), xβx]α  
 

= xβ[F(x), x]α + [F(x), x]αβx  
 

= [F(x), x]αβx + [F(x), x]αβx = 2[F(x), x]αβx. Thus  
 

2[F(x), x]αβx + [F(xβx), x]α∈Z for all x∈U, α, β∈Γ.                                                   (2) 
 

By assumption [F(xβx), xβx]α∈Z, for all x∈U, α, β∈Γ. That is  
 

[F(xβx), x]αβx + xβ[F(xβx), x]α∈Z.                                                                              (3) 
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Now fix x∈U and let z = [F(x), x]α, u = [F(xβx), x]α. We must show that z = 0. By (2) 
we have  

0 = [F(x), 2zβx + u]α   
    

= 2zβ[F(x), x]α+ 2[F(x), z]αβx + [F(x), u]α  = 2zβz + [F(x), u]α 
 

Thus    [F(x), u]α = −2zβz                                                                                             (4) 
  

According to (3) we have 0 = [F(x), uβx + xβu]α = [F(x), u]αβx + uβ[F(x), x]α + [F(x), 
x]αβu + xβ[F(x), u]α, applying (4) we then get  − 4zβzβx + 2zβu = 0.  

Thus zβu = 2zβzβx. Multiplying (4) by zβ and using the last relation we obtain  
 

−2zβzβz = zβ[F(x), u]α = [F(x), zβu]α − [F(x), z]αβu = [F(x), zβu]α  
 

= [F(x), 2zβzβx]α = 2zβzβ[F(x), x]α + [F(x), 2zβz]αβx =  2zβzβz. Hence zβzβz = 0.  
 

Since the center of a semiprime Γ-ring contains no nonzero nilpotent elements, we 
conclude that z = 0. This proves the theorem. 
 

Theorem 2.3 Let T be a centralizing left centralizer of a semiprime Γ-ring M satisfying 
the condition (*). Then T is commuting. 
 

Proof. If M is 2-torsion free, then T is commuting follows from Theorem 2.3 by taking    
U = M in it. If M is not a 2-torsion free semiprime Γ-ring, then  

 

2[T(x), x]α = 0 for all x∈M, α∈Γ (5) and 
 

2([T(x), y]α + [T(y), x]α) = 0 for all x, y∈M, α∈Γ.                                                       (6) 
 

By assumption [T(x), x]α∈Z(M). Linearizing this, we get 
 

[T(x), y]α + [T(y), x]α∈Z(M) for all x, y∈M, α∈Γ.                                                       (7) 
 

Using (5) – (7) and the hypothesis that [T(x), x]α∈Z(M), the following identity follows 
easily 
 

[T(x), xβy + yβx]α + [T(y), xβx]α = 0 for all x, y∈M, α, β∈Γ.                                      (8) 
 

Replacing y by yδx in (8), we get [T(x), xβyδx + yδxβx]α + [T(yδx), xβx]α = 0, which 
gives (xβy + yβx)δ[T(x), x]α + [T(x), xβy + yβx]αδx + T(y)δ[x, xβx]α + [T(y), xβx]αδx = 0 
for all x, y∈M, α, β, δ∈Γ. Combining this with (8), we get (xβy + yβx)δ[T(x), x]α = 0 for 
all x, y∈M, α, β, δ∈Γ, which gives (xβy −yβx + 2yβx)δ[T(x), x]α = 0, for all x, y∈M, α, β, 
δ∈Γ. Thus (xβy − yβx)δ[T(x), x]α = 0 for all x, y∈M, α, β, δ∈Γ. In particular, (replacing y 
by T(x) and δ by α) (xβT(x) − T(x)βx)δ[T(x), x]α = − [T(x), x]αβ[T(x), x]α = 0 for all x∈M, 
α, β∈Γ. Since a semiprime Γ-ring has no nontrivial central nilpotents, therefore [T(x), x]α 
= 0 for all x∈M, α∈Γ. 
 

Theorem 2.4 Let T be a centralizing left centralizer of a semiprime Γ-ring M satisfying 
the condition (*), then T is a centralizer of M. 
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Proof.  We have T(xαy) = T(x)αy for all x, y∈M and α∈Γ. We now show that T(xαy) = 
xαT(y) for all x, y∈M, α∈Γ. Since T is a centralizing left centralizer of M, therefore by 
Theorem 2.3, it is commuting. Thus [T(x), x]α = 0 for all x∈M, α∈Γ. That is, T(x)αx − 
xαT(x) = 0 for all x∈M, α∈Γ. Linearizing this, we get T(x)αy + T(y)αx − yαT(x) − xαT(y) 
= 0 for all x, y∈M, α∈Γ.  

Replacing y by xβy in the last identity, we get  
 

0 = T(x)αxβy + T(xβy)αx − xβyαT(x) − xαT(xβy) = T(x)αxβy + T(x)βyαx − xβyαT(x) 
− xαT(x)βy = (T(x)αx − xαT(x))βy + T(x)βyαx − xαyβT(x) = T(x)βyαx − xαyβT(x).  

 

That is,  
 

T(x)βyαx − xβyαT(x) = 0 for all x, y∈M, α, β∈Γ.                                                        (9) 
 

Taking S = M, s = t = x, f(x) = T(x) and g(x) = x in (9) and applying Theorem 2.1 to (9) 
we conclude that there exist idempotent elements e1, e2, e3∈C and an invertible p∈C such 
that eiαej = 0 for i ≠ j, e1 + e2 + e3 = 1 and e1αT(x) = pβe1αx, e2αx = 0 and e3αT(x) = 0 for 
all x∈M, α, β∈Γ. Now e2αx = 0 implies xαe2 = 0. Thus T(xαe2) = T(0), which gives 
T(x)αe2 = T(0)α0 = 0. That is, T(x)αe2 = 0 or e2αT(x) = 0. Thus  

 

T(x) = e1 + e2 + e3)αT(x) = e1αT(x) = pβe1αx.  
 

That is, T(x) = pβe1αx for all x∈M, α∈Γ. Thus T(x)αy − xαT(y) = pβe1xδy − xαpβe1δy 
= pβe1αxδy − pβe1αxδy = 0. That is, 

 

T(x)αy = xαT(y) for all x, y∈M, α∈Γ.                                                                        (10) 
 
(T(xαy) −T(x)αy)βzγ(T(xαy) − T(x)αy) = 0.  
 

By the semiprimeness of M, we have, T(xαy) − T(x)αy = 0. This implies T(xαy) = 
T(x)αy. Thus T(xαy) = T(x)αy = xαT(y). This shows that T is a centralizer. 
 

Remark 2.5 Obviously every centralizer is commuting because T(xαx) = T(x)αx = xαT(x) 
for all x∈M, α∈Γ, and hence is a centralizing left centralizer. Thus we have the following 
corollary. 
Corollary 2.6 A mapping T of a semiprime Γ-ring M satisfying the condition (*) is a 
centralizer if and only if it is a centralizing left centralizer. Let T be a commuting left 
centralizer of a semiprime Γ-ring, then T(x)β[x, y]α = xβ[T(x), y]α holds for all x, y∈M, α, 
β∈Γ. 
 

Proof. Since T is commuting, therefore [T(x), x]α = 0 for all x∈M, α∈Γ.                       (11) 
 

Linearizing (11), we get 
 

[T(x), y]α + [T(y), x]α = 0 for all x, y∈M, α∈Γ.                                                          (12) 
 

Replacing y by xβy in (12) and using (12), we get 0 = [T(x), xβy]α + [T(xβy), x]α = 
[T(x), xβy]α + [T(x)βy, x]α = [T(x), x]αβy + xβ[T(x), y]α + [T(x), x]αβy + T(x)β[y, x]α = 
xβ[T(x), y]α − T(x)β[x, y]α. 
 

That is,   xβ[T(x), y]α − T(x)β[x, y]α = 0 for all x, y∈M, α, β∈Γ.  
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Thus       T(x)β[x, y]α = xβ[T(x), y]α for all x, y∈M, α, β∈Γ. 
 
Remark 2.7 If T is a central left centralizer of a prime Γ-ring M, then either T = 0 or M is 
commutative. This is because T(x)β[x, y]α = xβ[T(x), y]α gives T(x)β[x, y]α = 0. Replacing 
y by yδz in the last identity and using it, we get T(x)βyδ[x, z]α = 0 for all x, y, z∈M. Since 
M is prime, therefore T(x) = 0 or [x, z]α = 0 for all x, z∈M, α∈Γ. That is, T = 0 or M is 
commutative. 
 

Theorem 2.8. Let M be a semiprime Γ-ring satisfying the condition (*) and T and S be left 
centralizers of M such that  
T(x)αx + xαS(x)∈Z(M) for all x∈M, α∈Γ.                                                                       (13) 
Then T and S are both centralizers. 
 

Proof.  Linearizing (13), we get 
 

T(x)αy + T(y)αx + xαS(y) + yαS(x)∈Z(M) for all x, y∈M, α∈Γ.                               (14) 
 

Thus [T(x)αy + T(y)αx + xαS(y) + yαS(x), x]β = 0, which gives 
 

[T(x)αy + T(y)αx + xαS(y), x]β = −[yαS(x), x]β for all x, y∈M, α, β∈Γ.                    (15) 
 

Replacing y by yβx in (14), we get T(x)αyβx + T(yβx)αx + xαS(yβx) + yβxαS(x) = 
T(x)αyβx + T(y)βxαx + xαS(y)βx + yβxαS(x) = (T(x)αy + T(y)αx + xαS(y))βx + 
yαxβS(x)∈Z(M).  

Thus   [(T(x)αy + T(y)αx + xαS(y))βx + yαxβS(x), x]β = 0 for all x∈M, α, β∈Γ. This 
implies that  

 

[T(x)αy + T(y)αx + xαS(y), x]ββx + [yβxαS(x), x]β = 0 for all x, y∈M, α, β∈Γ.        (16) 
 

Using (15), from (16) we get 
 

− [yαS(x), x]ββx + [yαxβS(x), x]β = 0 for all x, y∈M, α, β∈Γ.                                    (17) 
 

Since [yαS(x)βx, x]β = [yαS(x), x]ββx, therefore (17) gives 0 = −[yαS(x)βx, x]β + 
[yαxβS(x), x]β = [yα(xβS(x) − S(x)βx), x]β = [yα[x, S(x)]β, x]β = yα[[x, S(x)]β, x]β + [y, 
x]βα[x, S(x)]β. 
 

Thus 
yα[[x, S(x)]β, x]β + [y, x]βα[x, S(x)]β = 0 for all x, y∈M, α, β∈Γ.                              (18) 
 

Replacing y by zλy in (18) and using (18), we get  0 = zλyα[[x, S(x)]β, x]β + [zλy, 
x]βα[x, S(x)]β  = zλyα[[x, S(x)]β, x]β + zλ[y, x]βα[x, S(x)]β + [z, x]βλyα[x, S(x)]β =             
[z, x]βλyα[x, S(x)]β. 

 

That is,          [z, x]βλyα[x, S(x)]β = 0 for all x, y, z∈M, α, β, λ∈Γ.                            (19) 
 

In particular, [S(x), x]βλyα[x, S(x)]β = 0 which, by semiprimeness of M, implies    
[S(x), x]β = 0. Thus S is a commuting left centralizer and, by Theorem 2.2, is a centralizer. 

We now show that T is commuting. By hypothesis and by the assumption, we have            
 
0 = [T(x)αx + xαS(x), x]β = [T(x), x]βαx + xα[S(x), x]β = [T(x), x]βαx. That is, 
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[T(x), x]βαx = 0 for all x, y∈M, α, β∈Γ.                                                                     (20) 
 

From (15), we get [T(x)αy + T(y)αx, x]β = [− xαS(y) − yαS(x), x]β. Thus  T(x)α[y, x]β  
+ [T(x), x]βαy + [T(y), x]βαx = −xα[S(y), x]β − yα[S(x), x]β − [y, x]βαS(x) =  
−xα[y, S(x)]β − [y, x]βαS(x) = xα[S(x), y]β + [x, y]βαS(x).  
That is, for all x, y∈M, α, β∈Γ                                                                                                              
 

T(x)α[y, x]β + [T(x), x]βαy + [T(y), x]βαx = xα[S(x), y]β + [x, y]βαS(x).                     (21) 
 

Again by hypothesis, we get  
 

0 = [T(x)αx + xαS(x), y]β = T(x)α[x, y]β + [T(x), y]βαx + [x, y]βαS(x) + xα[S(x), y]β.  
 

That is, for all x, y∈M, α, β∈Γ 
 

− T(x)α[y, x]β + [T(x), y]βαx = −[x, y]βαS(x) − xα[S(x), y]β.                                      (22) 
 

Adding (21) and (22), we get 
 

[T(x), x]βαy + [T(y), x]βαx + [T(x), y]βαx = 0 for all x, y∈M, α, β∈Γ.                       (23) 
 

Replacing y by yβT(x) in (23) and using (20), we get 
 

0 =  [T(x), x]βαyβT(x) + [T(yβT(x)), x]βαx + [T(x), yβT(x)]βαx 
=  [T(x), x]βαyβT(x) + [T(y)βT(x), x]βαx + [T(x), yβT(x)]βαx 
=  [T(x), x]βαyβT(x) + T(y)β[T(x), x]βαx + [T(y), x]ββT(x)αx + [T(x), y]ββT(x)αx 
=  −[T(y), x]βαxβT(x) − [T(x), y]βαxβT(x) + [T(y), x]ββT(x)αx + [T(x), y]ββT(x)αx 
=  [T(y), x]βα[T(x), x]β + [T(x), y]βα[T(x), x]β. 

 

That is 
 

[T(y), x]βα[T(x), x]β + [T(x), y]βα[T(x), x]β = 0 for all x, y∈M, α, β∈Γ.                    (24) 
 

Replacing y by yλx in (24) and using (23), we get 
 

0 = [T(yλx), x]βα[T(x), x]β + [T(x), yλx]βα[T(x), x]β 

= [T(y)λx, x]βα[T(x), x]β + [T(x), yλx]βα[T(x), x]β 
= [T(y), x]βλxα[T(x), x]β + yλ[T(x), x]βα[T(x), x]β + [T(x), y]βλxα[T(x), x]β 

= ([T(y), x]βλx + [T(x), y]βλx)α[T(x), x]β + yλ[T(x), x]βα[T(x), x]β 

= −[T(x), x]βλyα[T(x), x]β + yλ[T(x), x]βα[T(x), x]β.  
 

Thus  
 

[T(x), x]βλyα[T(x), x]β = yλ[T(x), x]βα[T(x), x]β for all x, y∈M, α, β, λ∈Γ.              (25) 
 

Replacing y by xαy in (25) and using (20), we get xαyλ[T(x), x]βα[T(x), x]β = [T(x), 
x]βαxαyλ[T(x), x]β = 0. 
 

That is,  
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xαyλ[T(x), x]βα[T(x), x]β = 0 for all x, y∈M, α, β, λ∈Γ,                                            (26) 
 

which gives T(x)βxαyλ[T(x), x]βα[T(x), x]β = 0.  
 

Further, replacing y by T(x)βy in (26), we get xαT(x)βyλ[T(x), x]βα[T(x), x]β = 0. 
Combining the last two identities, we get (T(x)βx − xβT(x))αyλ[T(x), x]βα[T(x), x]β = 0. 
That is, [T(x), x]βγyλ[T(x), x]βα[T(x), x]β = 0, which gives [T(x), x]βα[T(x), x]βαyλ[T(x), 
x]βα[T(x), x]β = 0. Since M is semiprime, therefore,  
 

[T(x), x]βα[T(x), x]β = 0 for all x∈M, α, β∈Γ.                                                            (27) 
 

Using (23), from (21) we get [T(x), x]βαyλ[T(x), x]β = 0, which by semiprimeness of M 
implies [T(x), x]β = 0. Thus T is a commuting left centralizer and hence by Theorem 2.2, T 
is a centralizer. 

Taking S = T in Theorem 2.7, we get the following corollary. 
 

Corollary 2.9. Let T be a skew centralizing left centralizer of a semiprime Γ-ring M 
satisfying the condition (*). Then T is a centralizer. 
The following corollary is also obvious. 
 

Corollary 2.10. Let T and S be left centralizers of a semiprime Γ-ring M satisfying the 
condition (*) such that T(x)αx + xαS(x) = 0 for all x∈M, α∈Γ. Then both T and S are 
centralizers. 
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