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Abstract 

 
We study some properties of permuting tri-derivations on semiprime Γ-rings with a certain 
assumption. Let M be a 3-torsion free semiprime Γ-ring satisfying a certain assumption and 
let I be a non-zero ideal of M. Suppose that there exists a permuting tri-derivation D: 
M×M×M → M such that d is an automorphism commuting on I and also d is a trace of D. 
Then we prove that I is a nonzero commutative ideal. Various characterizations of M are 
obtained by means of tri-derivations.  
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1.  Preliminaries 
 
Gamma rings were first introduced by Nabusawa [1] and then Barnes [2] generalized the 

definition of Γ-rings. In this paper we work on Γ-rings due to Barnes [2]. Throughout this 

paper, M will represent a Γ-ring and Z(M) will be its center. A Γ-ring M is prime if  

xΓMΓy = 0 implies that x = 0 or y = 0, and is semiprime if xΓMΓx = 0 implies x = 0. Let 

x, y∈M, α∈Γ, the commutator xαy − yαx will be denoted by [x, y]α. We know that [xβy, 

z]α = xβ[y, z]α + [x, z]αβy + x[β, α]zy and [x, yβz]α = yβ[x, z]α + [x, y]αβz + y[β,α]xz for all 

x, y, z∈M, α, β∈Γ. We shall take an assumption (*) xαyβz = xβyαz for all x, y, z∈M, α, 

β∈Γ. Using the assumption (*) the above identities reduce to [xβy, z]α = xβ[y, z]α + [x, 

z]αβy and [x, yβz]α = yβ[x, z]α + [x, y]αβz, for all x, y, z∈M and for all α, β∈Γ which are 

used extensively in our results.  

Let I be a nonempty subset of M. Then a map d: M → M is said to be commuting 

(resp. centralizing) on I if [d(x), x]α = 0 for all x∈I, α∈Γ (resp. [d(x), x]α∈Z(M) for all x∈I, 
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α∈Γ), and is called central if d(x)∈Z(M) for all x∈M, α∈Γ. Every central mapping is 

obviously commuting but not conversely in general, and d is called skew-centralizing on a 

subset I of M (resp. skew-commuting on a subset I of M) if d(x)αx + xαd(x)∈Z(M) holds 

for all x∈I, α∈Γ (resp. d(x)αx + xαd(x) = 0 holds for all x∈I, α∈Γ). Recall that M is said 

to be n-torsion free, where n ≠ 0 is an integer, if whenever nx = 0, with x∈M then x = 0.  

An additive map d: M → M is called a derivation if d(xαy) = d(x)αy + xαd(y) for all x, 

y∈M, α∈Γ. By a bi-derivation we mean a bi-additive map D: M × M → M (i.e., D is 

additive in both arguments), which satisfies the relations D(xαy, z) = D(x, z)αy + xαD(y, 

z) and D(x, yαz) = D(x, y)αz + yαD(x, z) for x, y∈M, α∈Γ. Let D be symmetric, that is 

D(x, y) = D(y, x) for the x, y∈M. The map d: M → M defined by d(x) = D(x, x) for all x∈M 

is called the trace of D. A map D: M × M × M → M will be said to be permuting if the 

equation D(x, y, z) = D(x, z, y) = D(z, x, y) = D(y, z, x) = D(z, y, x) for all x, y, z∈M. A map 

d: M → M defined by d(x) = D(x, x, x) for all x∈M, where D: M × M × M → M is a 

permuting map is called the trace of D. It is obvious that, in case when D: M × M × M → 

M is a permuting map which is also tri-additive (i.e., additive in each argument), the trace 

d of D satisfies the relation d(x + y) = d(x) + d(y) + 3D(x, x, y) + 3D(x, y, y) for all x, y∈M. 

Since we have D(0, y, z) = D(0 + 0, y, z) = D(0, y, z) + D(0, y, z) for all y, z∈M, we obtain 

D(0, y, z) = 0 for all y, z∈M. Hence we get D(0, y, z) = D(x − x, y, z) = D(x, y, z) + D(−x, y, 

z) = 0 and so we see that D(−x, y, z) = −D(x, y, z) for all x, y, z∈M. This implies that d is 

an odd function.  A tri-additive map D: M × M × M → M will be called a tri-derivation if 

the relations D(xαw, y, z) = D(x, y, z)αw + xαD(w, y, z), D(x, yαw, z) = D(x, y, z)αw + 

yαD(x, w, z) and D(x, y, zαw) = D(x, y, z)αw + zαD(x, y, w) are fulfilled for all x, y, z, 

w∈M, α∈Γ . If D is permuting, then the above three relations are equivalent to each other.  

Let M be commutative Γ-ring. A map D: M × M × M → M defined by (x, y, z) → 

d(x)αd(y)βd(z) for all x, y, z∈M, α, β∈Γ, is  a tri-derivation where d is a derivation on M. 

Ozturk et al. [3] studied on symmetric bi-derivations on prime Γ-rings. Some fruitful 

results of prime Γ-rings were obtained by these authors. Ozturk [4] obtained some 

properties concerning to the mapping permuting tri-derivations on prime and semiprime 

Γ-rings. Permuting tri-derivations in prime and semiprime Γ-rings had been studied by 

Ozden et al. [5]. Some remarkable results of these Γ-rings were obtained by them. An 

example of a permuting tri-derivation has also been given by these authors [5]. 

 In this paper, we study and investigate some results concerning a permuting tri-

derivation D on non-commutative 3-torsion free semiprime Γ-rings M. Some 

characterizations of semiprime Γ-rings are obtained by means of permuting tri-

derivations.  

First we prove the following lemmas which will be needed in our results.  
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Lemma 1.1 

Let M be a semiprime Γ-ring. Then M contains no nonzero nilpotent ideal. 
 

Proof. 

Let I be a nilpotent ideal of M. Then (IΓ)nI = 0 for some positive integer n. Let us assume 

that n is minimum. Now suppose that n ≥ 1. Since IΓM ⊂ I, we then have (IΓ)n-

1IΓMΓ(IΓ)n-1I ⊂ (IΓ)n−1I(IΓ)nI = (IΓ)nI(IΓ)n-2I = 0 . Hence by the semiprimeness of M we 

get (IΓ)n-1I = 0, a contradiction to the minimality of n. Therefore n = 1. Thus IΓI = 0. Then 

IΓMΓI ⊂ IΓI = 0. Since M is semiprime, it gives I = 0. This completes the proof. 

The above lemma gives us the following corollary. 
 

Corollary 1.2 

Every prime Γ-ring has no nilpotent ideals. 
 

Lemma 1.3 [15 Theorem 4.1]  

Let M be a 2, 3-torsion free prime Γ-ring. Let D(., ., .) be permuting tri-derivation of M 

with the trace d. If  
 

aαd(x) = 0, x∈M, α∈Γ                                             (1) 
 

where a is a fixed element of M, then either a = 0 or D = 0.    
 

Lemma 1.4  

Let M be a 2-torsion free semiprime Γ-ring. If xαx = 0 then x∈Z(M) for all x∈M, α∈Γ.  
 

Proof:  

We have xαx = 0 for all x∈M, α∈Γ. Replacing x by x + y, we get xαy + yαx = 0 for all x, 

y∈M, α∈Γ.  

Right-multiplying by βx we obtain xαyβx = 0 for all x, y∈M, α, β∈Γ. Replacing y by yγz 

and right-multiplying by αy we get xαyγzβxαy = 0 for all x, y, z∈M, α, β, γ∈Γ. Since M is 

semiprime Γ-ring, we obtain xαy = 0 for all x, y∈M, α∈Γ. By the same method, we get yαx 

= 0 for all x, y∈M, α∈Γ. By subtracting those, we obtain [x, y]α = 0, for all x, y∈M, α∈Γ, 

then x∈Z(M) for all x∈M.  
 

Lemma 1.5  

Let M be a semiprime Γ-ring satisfying the condition (*). If xαx∈Z(M) then x∈Z(M) for 

all x∈M, α∈Γ. 
 

Proof:  

We have xαx∈Z(M) for all x∈M, α∈Γ. Then [xαx, z]β = 0 for all z∈M, α, β∈Γ. Replacing 

x by x + y, we get [xαy + yαx, z]β = 0 for all x, y, z∈M, α, β∈Γ. Since yβzαx = yαzβx, we 

have xα[y, z]β + [x, z]βαy + [yαx, z]β = 0 for all x, y, z∈M, α, β∈Γ. 
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Similarly, [y, z]βαx + yα[x, z]β + [xαy, z]β = 0 for all x, y, z∈M, α, β∈Γ. 

Using the relation [xαy + yαx, z]β = 0 and replacing y by xαx we obtain [x, z]βαxαx = 0  

for all x, z∈M, α, β∈Γ. 

Left-multiplying by xα and right-multiplying α[x, z]βαx, we get (xα[x, z]βαx)α(xα[x, 

z]βαx) = 0 for all x, z∈M, α, β∈Γ. We obtain xα[x, z]βαx = 0 for all x, z∈M, α, β∈Γ. Left-

multiplying by [x, z]βα with using Lemma 1.4, we obtain [x, z]βαx = 0 for all x, z∈M, α, 

β∈Γ. Right-multiplying by δz, we get [x, z]βαxδz = 0 for all x, z∈M, α, β, δ∈Γ. Again 

using the relation [x, z]βαx = 0 and replacing z by zδz ,we obtain [x, z]βαzδx = 0 for all x, 

z∈M, α, β, δ∈Γ. Subtracting we obtain x∈Z(M) for all x∈M.  
 

Lemma 1.6  

Let M be a 3-torsion free prime Γ-ring satisfying the condition (*) and let I be a non zero 

ideal of M. If there exists a permuting tri-derivation D: M × M × M → M such that d is 

commuting on I, where d is the trace of D, then we have D = 0.  
 

Proof.  
Suppose that  

 

[d(x), x]β = 0 for all x∈I, β∈Γ                                                                                       (2) 
 

Linearizing (2) we get, 
 

[d(x), y]β + [d(y), x]β + 3[D(x, x, y), x]β + 3[D(x, y, y), x]β + 3[D(x, x, y), y]β +  

3[D(x, y, y), y]β = 0 for all x, y∈I, β∈Γ                                                                        (3) 
 

Putting −x instead of x in (3) and since d is odd, we obtain  
 

[D(x, x, y), x]β = 0 for all x, y∈I, β∈Γ                                                                          (4) 
 

Putting x = x + y in (4) and then we obtain  
 

[d(y), x]β + 3[D(x, y, y), x]β = 0 for all x, y∈I, β∈Γ                                                      (5) 
 

Replacing yαx for x in (3) we get 

[d(y), yαx]β + 3[D(yαx, x, y), y]β = yα[d(y), x]β + 3d(y)α[x, y]β + 3yα[D(x, y, y), y]β = 0 

for all x, y∈I, α, β∈Γ, which implies that  
 

yα([d(y), x]β + 3 [D(x, y, y), y]β) + 3d(y)α[x, y]β = 0                                                    (6) 
 

By using (5) we have d(y)α[x, y]β= 0 for all x, y∈I, α, β∈Γ on account of (5). Since I 

is a nonzero non-commutative prime Γ-ring, it follows from (3) and Lemma 1.3 that, for 

all y∈I with y∉Z(M), we have d(y) = 0 since for every fixed y∈I, a map x → [x, y]β is a 

derivation on I. 
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Now, let x∈I with x∈Z(M) and y∈I with y∉Z(M). Then x + y∉Z(M) and −y∉Z(M). 

Thus we have  

d(x + y) = d(x) + 3D(x, x, y) + 3D(x, y, y) = 0 which shows that d(x − y) = d(x) − 3D(x, 

x, y) + 3D(x, y, y) = 0 which shows that   
 

d(x) + 3D(x, y, y) = 0                                                                                                    (7) 
 

Replacing y∈I (y∉Z(M)) by 2y in (7) we obtain that D(x, y, y) = 0 and so the relation 

(7) gives d(x) = 0 for all x∈I with x∈Z. Therefore we obtain d(x) = 0 for all x∈I. 

On the other hand, since the relation D(x, x, y) + D(x, y, y) = 0 fulfilled for all x, y∈I, it 

follows that 

D(x, x, y) + D(x, y, y) = 0 for all x, y∈I,                                                                        (8) 

and substituting y + z for y in (8) we obtain that 2D(x, y, z) = 0 = D(x, y, z)  for all x, y∈I. 

Let us substitute wαx (w∈M) for x in the above relation D(x, y, z) = 0 for all x, y, z∈I. 

Then we have  

D(w, y, z)αx = 0. Hence D(w, y, z)αxβD(w, y, z) = 0.Since M is prime, we get D(w, y, 

z) = 0 for all y, z∈I, w∈M. Also, substituting yδv (v∈M) for y in this relation, we have 

yδD(w, v, z) = 0 and so D(w, v, z)βyδD(w, v, z) = 0. Again, by primeness of M, we obtain 

that D(w, v, z) = 0 for all z∈I, w, v∈M. Furthermore, replacing z by uγz (u∈M, γ∈Γ) in the 

relation D(w, v, z) = 0, we get D(w, v, u) = 0. The primeness of M implies that D(w, v, u) = 

0 for all u, v, w∈M. 
 

Lemma 1.7  

Let M be a 3-torsion free semiprime Γ-ring satisfying the condition (*) and I be a nonzero 

ideal of M. If there exists a permuting tri-derivation D: M × M × M → M such that d is 

centralizing on I, where d is the trace of D, then d is commuting on I.  
 

Proof: 
Assume that  
 

[d(x), x]β∈Z(M) for all x∈I, β∈Γ                                                                                 (9) 
 

By linearizing (9) we get, 
 

[d(x), y]β + [d(y), x]β + 3[D(x, x, y), x]β + 3[D(x, y, y), x]β + 3[D(x, x, y), y]β  

+ 3[D(x, y, y), y]β∈Z(M), for all x, y∈I, β∈Γ.                 (10) 
 

We substitute −x for x in (10) we get  
 

[D(x, y, y), x]β + [D(x, x, y), y]β∈Z(M), for all x, y∈I, β∈Γ                 (11) 
 

Replacing x by x + y in (11) we have  
 

[d(y), x]β + 3[D(x, y, y), y]β∈Z(M), for all x, y∈I, β∈Γ                 (12) 
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Taking x = yδy in (12) and invoking (9) show that   
 

[d(y), yδy]β + 3[D(yδy, y, y), y]β = 8[d(y), y]βδy∈Z(M), for all y∈I, β, δ∈Γ     (13) 
 

Commuting with d(y) in (13) gives 
 

8[d(y), y]βδ[d(y), y]β = 0, for all y∈I, β, δ∈Γ                                       (14) 
 

On the other hand, substituting x for yγx in (14) 
 

[d(y), yγx]β + 3[D(yγx, x, y), y]β = yγ[d(y), x]β + 3d(y)γ[x, y]β + 3[D(x, y, y), y]β  

+ 4[d(y), y]βγx∈Z(M)  for all x, y∈I, β, γ∈Γ      (15) 
 

Hence we have  
 

[yγ{[ d(y), x]β + 3[D(x, y, y), y]βγ[x, y]β}, y]β + [3d(y)γ[x, y]β + 4[d(y), y]βγx, y]β = 0   
for all x, y∈I, β, γ∈Γ         (16)   
 

So we get [3d(y)γ[x, y]β, y]β + 7[d(y), y]βγ[x, y]β = 0 , for all x, y∈I, β, γ∈Γ, according 

to (14).  

Substituting d(y)λx for x in (15), it follows that 
 

d(y)γ{3d(y)λ[[x, y]β, y]β + 7[d(y), y]βγ[x, y]β} + 6d(y)γ[d(y), y]βγ[x, y]β  

+ 7[d(y), y]βγ[d(y), y]βγx, for all x, y∈I, β, γ∈Γ,    (17)   
 

which by (16) implies   
 

6d(y)γ[d(y), y]βγ[x, y]β + 7[d(y), y]βγ[d(y), y]βγx = 0 for all x, y∈I, β, γ∈Γ   (18) 
 

Letting x = [d(y), y]β in (18) we arrive  at [d(y), y]βγ[d(y), y]βγ[d(y), y]β = 0 and so we 

get 
 

7[d(y), y]βγ[d(y), y]βγ7[d(y), y]βγ[d(y), y]β = 0      (19) 
 
 

Since M is a semiprime Γ-ring 7[d(y), y]βγ[d(y), y]β = 0 for all x, y∈I, β, γ∈Γ. Hence, 

the relations (16) and (19) yield [d(y), y]βγ[d(y), y]β = 0 for all y∈I, β ,γ∈Γ.  Since the 

center of a semiprime ring contains no nonzero nilpotent elements, we conclude that [d(y), 

y]β = 0 for all y∈I, β∈Γ. This completes the proof. 
 

Lemma 1.8 

Let M be a 3- torsion free prime Γ-ring and let I be a nonzero ideal of M. If there exists a 

nonzero permuting tri-derivation D: M × M × M → M such that d is centralizing on I, 

where d is the trace of D, then M is commutative. 
 

Proof: 
Suppose that M is non-commutative. Then it follows from Lemma 1.3 that is commuting 

on I. Hence Lemma 1.6 gives D = 0 which proves the Lemma.  
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Lemma 1.9  

Let M be a semiprime Γ-ring satisfying the condition (*). If there exists a∈M such that 

aα[x, y]β = 0 holds for all pairs x, y∈M, α, β∈Γ. In this case, a∈Z(M).  
 

Proof: 

We have [z, a]βαxδ[z, a]β = zβaαxδ[z, a]β − aβzαxδ[z, a]β = zβaα[z, xδa]β − zβaα[z, x]βδa 

− aβ[z, zαxδa]β + aβ[z, zαx]βδa = 0. 

Hence a∈Z(M). Since zαaδwγ[x, y]β = 0 for all z, w, x, y∈M, α, β, δ, γ∈Γ, we can 

repeat the above argument with zαaγw instead of a to obtain MΓaΓM∈Z(M) and now it is 

obvious that the ideal generated by a is central.  

 

2. Permuting Tri-Derivations 
 

We prove some results on permuting tri-derivations. 
 

Theorem 2.1  

Let M be a 3-torsion free semiprime Γ-ring satisfying the condition (*) and let I be a 

nonzero ideal of M. If there exists a permuting tri-derivation D: M × M × M → M such 

that d is an automorphism commuting on I, where d is the trace of D, then I is a nonzero 

commutative ideal.  
 

Proof: 
Suppose that  

 

[d(x), x]β = 0 for all x∈I, β∈Γ.  (20) 
 

Substituting x by x + y leads to  
 

[d(x), y]β + [d(y), x]β + 3[D(x, x, y), x]β + 3[D(x, y, y), x]β + 3[D(x, x, y), y]β  

+ 3[D(x, y, y), y]β = 0 for all x, y∈I, β∈Γ  (21)  
 

Putting –x instead of x in (21) we get  
 

[D(x, y, y), x]β + [D(x, x, y), y]β = 0 for all x, y∈I, β∈Γ.  (22) 
 

Since d is odd, we set x = x + y in (22) and then use (20) and (22) to obtain  
 

[d(y), x]β + 3[D(x, y, y), y]β = 0 for all x, y∈I, β∈Γ.  (23) 
 

Let us write yαx instead of x in (23), we obtain  

[d(y), yαx]β + 3[D(yαx, y, y), y]β = yα[d(y), x]β + 3d(y)α[x, y]β + 3yα[D(x, y, y), y]β = 

yα([d(y), x]β + 3[D(x, y, y), y]β) + 3d(y)α[x, y]β = 0 for all x, y∈I, α, β∈Γ. Then d(y)α[x, 

y]β = 0 for all x, y∈I, α, β∈Γ, since d is an automorphism, we obtain yα[x, y]β = 0 for all x, 

y∈I, α, β∈Γ. Replacing x by yαx, we get  
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yαxγ[x, y]β = 0 for all x, y∈I, α, β, γ∈Γ.             (24) 
 

Again left-multiplying by x implies that  
 

xαyγ[x, y]β = 0 for all x, y∈I, α, β,γ∈Γ.             (25) 
 

Subtracting (24) and (25) with using M is semiprime Γ-ring, we completes our proof. 

By same method in Theorem 2.1, it is easy to proof the following results.  
 

Corollary 2.2  

Let M be a 3-torsion free semiprime Γ-ring satisfying the condition (*) and I be an ideal of 

M. If there exists a permuting tri-derivation D: M × M × M → M such that d is 

commutating on I, where d is the trace of D, then I is a central ideal.  
 

Theorem 2.3  

Let M be a 3-torsion free semiprime Γ-ring satisfying the condition (*). If there exist a 

permuting tri-derivation D: M × M × M → M such that d is an automorphism commuting 

on M, where d is the trace of D, then M is commutative.  
 

Theorem 2.4  

Let M be a 6-torsion free semiprime Γ-ring satisfying the condition (*). If there exists a 

permuting tri-derivation D: M × M × M → M such that d is an automorphism centralizing 

on M, where d is the trace of D, then M is commutative.  
 

Proof: 
Assume that  

 

[d(x), x]β∈Z(M) for all x∈M and β∈Γ.  (26)  
 

Replacing x by x + y and again using (26), we obtain  
 

[d(x), y]β + [d(y), x]β + 3[D(x, x, y), x]β + 3[D(x, y, y), x]β + 3[D(x, x, y), y]β  

+ 3[D(x, y, y), y]β∈Z(M) for all x, y∈M, β∈Γ.  (27)  
 

Replacing x by –x in (27) we get  
 

[D(x, y, y), x]β + [D(x, x, y), y]β∈Z(M) for all x, y∈M, β∈Γ.  (28)  
 

Replacing x by x + y in (28), we obtain  
 

[d(y), x]β + 3[D(x, y, y), y]β∈Z(M) for all x, y∈M, β∈Γ.  (29)  
 

Taking x = yαy in (29) and invoking (26), we get  
 

[d(y), yαy]β + 3[D(yαy, y, y), y]β = 8[d(y), y]βαy∈Z(M) for all y∈M, α, β∈Γ.  (30)  
 

Now commuting (30) with d(y) yields  
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8[d(y), y]βα[d(y), y]β = 0 for all y∈M, α, β∈Γ.  

Again substituting x by yαx in (29) gives  

[d(y), yαx]β + 3[D(yαx, y, y), y]β = yα([d(y), x]β + 3[D(x, y, y), y]β) + 3d(y)α[x, y]β + 

4[d(y), y]βαx∈Z(M) for all x, y∈M, α, β∈Γ. Then [yα([d(y), x]β + 3[D(x, y, y), y]β), y]β + 

[3d(y)α[x, y]β + 4[d(y), x]βαx, y]β = 0 for all x, y∈M, α, β∈Γ. And so we get  
 

3d(y)α[[x, y]β, y]β + 7[d(y), y]βα[x, y]β = 0 for all x, y∈M, α, β∈Γ.        (31) 
 

Since d acts as an automorphism with M is 6-torsion free the relation (31) reduces to 

yα[[x, y]β, y]β = 0 for all x, y∈M, α,β∈Γ . 

Replacing x by rδx, we get  
 

yαxδ [[x, y]β, y]β + 2yα[x, y]β = 0 for all x, y∈M, α, β, δ∈Γ.  (32)  
 

Replacing y by –y in (32) and subtracting with (32), gives  
 

4yδ[x, y]β = 0 for all x, y∈M, β, δ∈Γ.               (33) 
 

Replacing x by xγr and left-multiplying by s, we obtain  
 

4yδxα[r, y]β = 0 for all x, y, r, s∈M, α, β, δ∈Γ.  (34) 
 

Again in (33) replacing x by xλm and x by sδx, we get  
 

4yγsδxα[m, y]β = 0 for all x, y, m, s∈M, α, β, δ, γ∈Γ.                          (35) 
 

Subtracting (34) and (35) with using M is 6-torsion free semiprime, we obtain [s, y]β = 

0 for all s, y∈M. Thus, we get M is commutative.  
 

Theorem 2.5  

Let M be a 3-torsion free semiprime Γ-ring satisfying the condition (*). If there exists a 

permuting tri-derivation D: M × M × M → M such that d is commuting on M, where d is 

the trace of D, then d is a central mapping.  
 

Proof: 
We have  

 

[d(x), x]β = 0 for all x∈M, β∈Γ.  (36).  
 

The substitution of x in (36) by x + y leads to  
 

[d(x), y]β + [d(y), x]β + 3[D(x, x, y), x]β + 3[D(x, y, y), x]β + 3[D(x, x, y), y]β  

+ 3[D(x, y, y), y]β = 0 for all x, y∈M, β∈Γ.  (37)   
 

Putting –x instead of x in (37) we obtain,  
 

[D(x, y, y), x]β + [D(x, x, y), y]β = 0 for all x, y∈M, β∈Γ.                      (38) 
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Since d is odd, we set x = x + y in (38) with using (36) and (37), we get  
 

[d(y), x]β + 3[D(x, y, y), y]β = 0 for all x, y∈M, β∈Γ.                  (39) 
 

Let us write in (39) yαx instead of x, we obtain according to (39) and since M is 3-

torsion semiprime d(y)α[x, y]β = 0 for all x, y∈M, β∈Γ.  

Applying Lemma 1.9, the above relation gives d(y)∈Z(M) for all y∈M, thus we 

completes the proof of the theorem.  
 

Theorem 2.6  

Let M be a 3-torsion free semiprime Γ-ring. If there exists a permuting tri-derivation D: M 

× M × M → M such that d is commuting on M, where d is the trace of D, then D is 

commuting (resp. centralizing).  
 

Proof:  
We can restrict our attention to the relation  

 

[d(x), x]β = 0 for all x∈M, β∈Γ.                     (40) 
 

The substitution of x + y for x in above relation gives  
 

[d(x), y]β + [d(y), x]β + 3[D(x, x, y), x]β + 3[D(x, y, y), x]β + 3[D(x, x, y), y]β  

+ 3[D(x, y, y), y]β = 0 for all x, y∈M, β∈Γ (41)  
 

Now, by the same method in Theorem 2.5, we arrive at  
 

yδ[d(y), x]β + 3d(y)δ[x, y]β + 3yδ[D(x, y, y), y]β = 0 for all x, y∈M, β, δ∈Γ.  (42) 
 

which implies that  
 

d(y)δ[x, y]β = 0 for all x, y∈M, β, δ∈Γ.                                     (43) 
 

Applying Lemma 1.5, the above relation gives d(y)∈Z(M) for all x∈M. By substitution 

the relation d(y)∈Z(M) in (41) with using replacing x by y and M is 3-torsion free 

semiprime, we obtain  
 

[D(y, y, y), y]β = 0 for all x, y∈M, β∈Γ                                 (44) 
 

Then D is commuting (resp. centralizing) of M.  
 

Theorem 2.7 

Let M be a non-commutative 3-torsion free semiprime Γ-ring satisfying the condition (*). 

If there exists a permuting tri-derivation D: M × M × M → M such that d is skew-

commuting on M, where d is the trace of D, then d is commuting.  
 

Proof: 

We have d(x)αx + xαd(x) = 0 for all x∈M. Replacing x by x + y, we obtain  
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d(y)αx + 3D(x, x, y)αx + 3D(x, y, y)αx + d(x)αy + 3D(x, x, y)αy + 3D(x, y, y)αy  

+ xαd(y) + 3xαD(x, x, y) + 3xαD(x, y, y) + yαd(y) + 3yαD(x, x, y)  

+ 3yαD(x, y, y) = 0 for all x, y∈M, α∈Γ  (45)  
 

 

 

We substitute –x for x in (45) we get 3D(x, y, y)αx+ 3D(x, x, y)αy + 3xαD(x, y, y) + 

3yαD(x, x, y) = 0 for all x, y∈M, α∈Γ.  
 

Since M is 3-torsion free, we obtain  
 

 

D(x, x, y)αx + D(x, x, y)αy + xαD(x, y, y) + yαD(x, x, y) = 0 for all x, y∈M, α∈Γ (46) 
 

Again we substituting xβy for x in (46) then we get  
 

xαD(y, y, y)βy + D(x, y, y)αxβy + xαyβD(y, y, y) + D(x, y, y)αy = 0  

for all x, y∈M, α, β∈Γ  (47)  
 

We substitute –x for x in (47) and compare (47) with the result to get D(x, y, y)αxβy = 

0 for all x, y∈M. Replacing x by y and since d is the trace of D, we obtain d(y)αyβy = 0 for 

all y∈M. Left- multiplying by y and right-multiplying by d(y)δy with using Lemma 1.4, 

we obtain  
 

yδd(y)βy = 0 for all y∈M, β, δ∈Γ.                                         (48) 
 

Left- multiplying (48) by d(y) with using Lemmas (1.1and 1.3) gives  
 

d(y)βy = 0 for all y∈M, β∈Γ.                          (49) 
 

Right- multiplying (48) by d(y) with using Lemmas (1.1 and 1.3) and subtracting the 

result with (49), we obtain [d(y), y]β = 0 for all y∈M, β∈Γ.  

 

By Theorem 2.3, we complete our proof.  
 

By the same method in Theorem 2.8, with using Lemmas (1.4 and 1.5), it is easy to 

proof the following corollary.  
 

Theorem 2.8  

Let M be a non-commutative 3-torsion free semiprime Γ-ring satisfying the condition (*) 

and I be a non-zero ideal of M. If there exists a permuting tri-derivation D: M × M × M → 

M such that d is skew-commuting on I, where d is the trace of D, then d is commuting on I.  
 

Proof:  
Using the same method in Theorem 2.7, with Lemma 1.7, we complete the proof of the 

Theorem.  
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Theorem 2.9  

Let M be a non commutative 3-torsion free semiprime Γ-ring satisfying the condition (*) 

and I be a nonzero ideal of M. If there exists a permuting tri-derivation D: M × M × M → 

M such that d is skew- centralizing on I where d is the trace of D, then d is commuting on I. 
 

Proof:  

Using same method in Theorem 2.7, we obtain [d(x)αyδy, r]β∈Z(M) for all x∈I, r∈M, α, 

β, δ∈Γ, replacing r by y with using Lemma 1.7, we complete the proof of the theorem.  
 

Corollary 2.10  

Let M be a 3-torsion free prime Γ-ring satisfying the condition (*) and I be a nonzero ideal 

of M. If there exists a nonzero a permuting tri-derivation D: M × M × M → M such that d 

is skew-centralizing on I where d is the trace of D, then M is commutative.  
 

Proof: 
Suppose that M is non-commutative, then by the same method in Theorem 2.9, we get 

[d(x), x]β∈Z(M) for all x∈I, β∈Γ. Hence by Lemma 1.8, the proof of the corollary is 

complete.  
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