

Available Online

JOURNAL OF SCIENTIFIC RESEARCH

J. Sci. Res. 5 (1), 55-66 (2013)

www.banglajol.info/index.php/JSR

# Permuting Tri-Derivations of Semiprime Gamma Rings

K. K. Dey<sup>\*</sup> and A. C. Paul

Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh

Received 11 July 2012, accepted in final revised form 4 October 2012

#### Abstract

We study some properties of permuting tri-derivations on semiprime  $\Gamma$ -rings with a certain assumption. Let *M* be a 3-torsion free semiprime  $\Gamma$ -ring satisfying a certain assumption and let *I* be a non-zero ideal of *M*. Suppose that there exists a permuting tri-derivation *D*:  $M \times M \times M \to M$  such that *d* is an automorphism commuting on *I* and also *d* is a trace of *D*. Then we prove that *I* is a nonzero commutative ideal. Various characterizations of *M* are obtained by means of tri-derivations.

*Keywords*: Tri-derivation; Semiprime  $\Gamma$ -ring; Commutative ideal; Commuting map; Permuting map.

© 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: <u>http://dx.doi.org/10.3329/jsr.v5i1.9549</u> J. Sci. Res. **5** (1), 55-66 (2013)

## 1. Preliminaries

Gamma rings were first introduced by Nabusawa [1] and then Barnes [2] generalized the definition of  $\Gamma$ -rings. In this paper we work on  $\Gamma$ -rings due to Barnes [2]. Throughout this paper, M will represent a  $\Gamma$ -ring and Z(M) will be its center. A  $\Gamma$ -ring M is prime if  $x\Gamma M\Gamma y = 0$  implies that x = 0 or y = 0, and is semiprime if  $x\Gamma M\Gamma x = 0$  implies x = 0. Let  $x, y \in M, \alpha \in \Gamma$ , the commutator  $x\alpha y - y\alpha x$  will be denoted by  $[x, y]_{\alpha}$ . We know that  $[x\beta y, z]_{\alpha} = x\beta[y, z]_{\alpha} + [x, z]_{\alpha}\beta y + x[\beta, \alpha]_{z}y$  and  $[x, y\beta z]_{\alpha} = y\beta[x, z]_{\alpha} + [x, y]_{\alpha}\beta z + y[\beta, \alpha]_{x}z$  for all  $x, y, z \in M, \alpha, \beta \in \Gamma$ . We shall take an assumption (\*)  $x\alpha y\beta z = x\beta y\alpha z$  for all  $x, y, z \in M, \alpha, \beta \in \Gamma$ . Using the assumption (\*) the above identities reduce to  $[x\beta y, z]_{\alpha} = x\beta[y, z]_{\alpha} + [x, z]_{\alpha}\beta y$  and  $[x, y\beta z]_{\alpha} = y\beta[x, z]_{\alpha} + [x, y]_{\alpha}\beta z$ , for all  $x, y, z \in M$  and for all  $\alpha, \beta \in \Gamma$  which are used extensively in our results.

Let *I* be a nonempty subset of *M*. Then a map  $d: M \to M$  is said to be commuting (resp. centralizing) on *I* if  $[d(x), x]_{\alpha} = 0$  for all  $x \in I$ ,  $\alpha \in \Gamma$  (resp.  $[d(x), x]_{\alpha} \in Z(M)$  for all  $x \in I$ ,

<sup>\*</sup> *Corresponding author*: kkdmath@yahoo.com

 $\alpha \in \Gamma$ ), and is called central if  $d(x) \in Z(M)$  for all  $x \in M$ ,  $\alpha \in \Gamma$ . Every central mapping is obviously commuting but not conversely in general, and d is called skew-centralizing on a subset I of M (resp. skew-commuting on a subset I of M) if  $d(x)\alpha x + x\alpha d(x) \in Z(M)$  holds for all  $x \in I$ ,  $\alpha \in \Gamma$  (resp.  $d(x)\alpha x + x\alpha d(x) = 0$  holds for all  $x \in I$ ,  $\alpha \in \Gamma$ ). Recall that M is said to be *n*-torsion free, where  $n \neq 0$  is an integer, if whenever nx = 0, with  $x \in M$  then x = 0. An additive map d:  $M \to M$  is called a derivation if  $d(x\alpha y) = d(x)\alpha y + x\alpha d(y)$  for all x,  $y \in M$ ,  $\alpha \in \Gamma$ . By a bi-derivation we mean a bi-additive map  $D: M \times M \to M$  (i.e., D is additive in both arguments), which satisfies the relations  $D(x\alpha y, z) = D(x, z)\alpha y + x\alpha D(y, z)$ z) and  $D(x, y\alpha z) = D(x, y)\alpha z + y\alpha D(x, z)$  for x,  $y \in M$ ,  $\alpha \in \Gamma$ . Let D be symmetric, that is D(x, y) = D(y, x) for the x,  $y \in M$ . The map d:  $M \to M$  defined by d(x) = D(x, x) for all  $x \in M$ is called the trace of D. A map D:  $M \times M \times M \to M$  will be said to be permuting if the equation D(x, y, z) = D(x, z, y) = D(z, x, y) = D(y, z, x) = D(z, y, x) for all x, y,  $z \in M$ . A map d:  $M \to M$  defined by d(x) = D(x, x, x) for all  $x \in M$ , where  $D: M \times M \times M \to M$  is a permuting map is called the trace of D. It is obvious that, in case when D:  $M \times M \times M \rightarrow$ *M* is a permuting map which is also tri-additive (i.e., additive in each argument), the trace d of D satisfies the relation d(x + y) = d(x) + d(y) + 3D(x, x, y) + 3D(x, y, y) for all  $x, y \in M$ . Since we have D(0, y, z) = D(0 + 0, y, z) = D(0, y, z) + D(0, y, z) for all  $y, z \in M$ , we obtain D(0, y, z) = 0 for all  $y, z \in M$ . Hence we get D(0, y, z) = D(x - x, y, z) = D(x, y, z) + D(-x, y, z)z = 0 and so we see that D(-x, y, z) = -D(x, y, z) for all  $x, y, z \in M$ . This implies that d is an odd function. A tri-additive map  $D: M \times M \times M \to M$  will be called a tri-derivation if the relations  $D(x\alpha w, y, z) = D(x, y, z)\alpha w + x\alpha D(w, y, z), D(x, y\alpha w, z) = D(x, y, z)\alpha w + x\alpha D(w, y, z), D(x, y\alpha w, z) = D(x, y, z)\alpha w + x\alpha D(w, y, z)$  $y\alpha D(x, w, z)$  and  $D(x, y, z\alpha w) = D(x, y, z)\alpha w + z\alpha D(x, y, w)$  are fulfilled for all x, y, z,  $w \in M$ ,  $\alpha \in \Gamma$ . If D is permuting, then the above three relations are equivalent to each other.

Let *M* be commutative  $\Gamma$ -ring. A map *D*:  $M \times M \times M \to M$  defined by  $(x, y, z) \to d(x)\alpha d(y)\beta d(z)$  for all *x*, *y*,  $z \in M$ ,  $\alpha$ ,  $\beta \in \Gamma$ , is a tri-derivation where *d* is a derivation on *M*.

Ozturk *et al.* [3] studied on symmetric bi-derivations on prime  $\Gamma$ -rings. Some fruitful results of prime  $\Gamma$ -rings were obtained by these authors. Ozturk [4] obtained some properties concerning to the mapping permuting tri-derivations on prime and semiprime  $\Gamma$ -rings. Permuting tri-derivations in prime and semiprime  $\Gamma$ -rings had been studied by Ozden *et al.* [5]. Some remarkable results of these  $\Gamma$ -rings were obtained by them. An example of a permuting tri-derivation has also been given by these authors [5].

In this paper, we study and investigate some results concerning a permuting triderivation D on non-commutative 3-torsion free semiprime  $\Gamma$ -rings M. Some characterizations of semiprime  $\Gamma$ -rings are obtained by means of permuting triderivations.

First we prove the following lemmas which will be needed in our results.

## Lemma 1.1

Let *M* be a semiprime  $\Gamma$ -ring. Then *M* contains no nonzero nilpotent ideal.

## Proof.

Let *I* be a nilpotent ideal of *M*. Then  $(I\Gamma)^n I = 0$  for some positive integer *n*. Let us assume that *n* is minimum. Now suppose that  $n \ge 1$ . Since  $I\Gamma M \subset I$ , we then have  $(I\Gamma)^{n-1} I \Gamma M \Gamma (I\Gamma)^{n-1} I \subset (I\Gamma)^{n-1} I (I\Gamma)^n I = (I\Gamma)^n I (I\Gamma)^{n-2} I = 0$ . Hence by the semiprimeness of *M* we get  $(II)^{n-1} I = 0$ , a contradiction to the minimality of *n*. Therefore n = 1. Thus  $I\Gamma I = 0$ . Then  $I\Gamma M \Gamma I \subset I\Gamma I = 0$ . Since *M* is semiprime, it gives I = 0. This completes the proof. The above lemma gives us the following corollary.

## **Corollary 1.2**

Every prime  $\Gamma$ -ring has no nilpotent ideals.

## Lemma 1.3 [15 Theorem 4.1]

Let *M* be a 2, 3-torsion free prime  $\Gamma$ -ring. Let D(., ., .) be permuting tri-derivation of *M* with the trace *d*. If

$$a\alpha d(x) = 0, x \in M, \alpha \in \Gamma$$
<sup>(1)</sup>

where *a* is a fixed element of *M*, then either a = 0 or D = 0.

#### Lemma 1.4

Let *M* be a 2-torsion free semiprime  $\Gamma$ -ring. If  $x\alpha x = 0$  then  $x \in Z(M)$  for all  $x \in M$ ,  $\alpha \in \Gamma$ .

#### **Proof:**

We have  $x\alpha x = 0$  for all  $x \in M$ ,  $\alpha \in \Gamma$ . Replacing x by x + y, we get  $x\alpha y + y\alpha x = 0$  for all x,  $y \in M$ ,  $\alpha \in \Gamma$ .

Right-multiplying by  $\beta x$  we obtain  $x\alpha y\beta x = 0$  for all  $x, y \in M, \alpha, \beta \in \Gamma$ . Replacing y by  $y\gamma z$ and right-multiplying by  $\alpha y$  we get  $x\alpha y\gamma z\beta x\alpha y = 0$  for all  $x, y, z \in M, \alpha, \beta, \gamma \in \Gamma$ . Since M is semiprime  $\Gamma$ -ring, we obtain  $x\alpha y = 0$  for all  $x, y \in M, \alpha \in \Gamma$ . By the same method, we get  $y\alpha x$ = 0 for all  $x, y \in M, \alpha \in \Gamma$ . By subtracting those, we obtain  $[x, y]_{\alpha} = 0$ , for all  $x, y \in M, \alpha \in \Gamma$ , then  $x \in Z(M)$  for all  $x \in M$ .

#### Lemma 1.5

Let *M* be a semiprime  $\Gamma$ -ring satisfying the condition (\*). If  $x \alpha x \in Z(M)$  then  $x \in Z(M)$  for all  $x \in M$ ,  $\alpha \in \Gamma$ .

#### **Proof:**

We have  $x\alpha x \in Z(M)$  for all  $x \in M$ ,  $\alpha \in \Gamma$ . Then  $[x\alpha x, z]_{\beta} = 0$  for all  $z \in M$ ,  $\alpha, \beta \in \Gamma$ . Replacing *x* by x + y, we get  $[x\alpha y + y\alpha x, z]_{\beta} = 0$  for all *x*, *y*,  $z \in M$ ,  $\alpha, \beta \in \Gamma$ . Since  $y\beta z\alpha x = y\alpha z\beta x$ , we have  $x\alpha[y, z]_{\beta} + [x, z]_{\beta}\alpha y + [y\alpha x, z]_{\beta} = 0$  for all *x*, *y*,  $z \in M$ ,  $\alpha, \beta \in \Gamma$ . Similarly,  $[y, z]_{\beta}\alpha x + y\alpha[x, z]_{\beta} + [x\alpha y, z]_{\beta} = 0$  for all  $x, y, z \in M$ ,  $\alpha, \beta \in \Gamma$ .

Using the relation  $[x\alpha y + y\alpha x, z]_{\beta} = 0$  and replacing y by  $x\alpha x$  we obtain  $[x, z]_{\beta}\alpha x\alpha x = 0$  for all  $x, z \in M$ ,  $\alpha, \beta \in \Gamma$ .

Left-multiplying by  $x\alpha$  and right-multiplying  $\alpha[x, z]_{\beta}\alpha x$ , we get  $(x\alpha[x, z]_{\beta}\alpha x)\alpha(x\alpha[x, z]_{\beta}\alpha x) = 0$  for all  $x, z \in M$ ,  $\alpha, \beta \in \Gamma$ . We obtain  $x\alpha[x, z]_{\beta}\alpha x = 0$  for all  $x, z \in M$ ,  $\alpha, \beta \in \Gamma$ . Leftmultiplying by  $[x, z]_{\beta}\alpha$  with using Lemma 1.4, we obtain  $[x, z]_{\beta}\alpha x = 0$  for all  $x, z \in M$ ,  $\alpha, \beta \in \Gamma$ . Right-multiplying by  $\delta z$ , we get  $[x, z]_{\beta}\alpha x \delta z = 0$  for all  $x, z \in M$ ,  $\alpha, \beta, \delta \in \Gamma$ . Again using the relation  $[x, z]_{\beta}\alpha x = 0$  and replacing z by  $z\delta z$ , we obtain  $[x, z]_{\beta}\alpha z\delta x = 0$  for all  $x, z \in M$ ,  $\alpha, \beta, \delta \in \Gamma$ . Subtracting we obtain  $x \in Z(M)$  for all  $x \in M$ .

## Lemma 1.6

Let *M* be a 3-torsion free prime  $\Gamma$ -ring satisfying the condition (\*) and let *I* be a non zero ideal of *M*. If there exists a permuting tri-derivation *D*:  $M \times M \times M \rightarrow M$  such that d is commuting on *I*, where *d* is the trace of *D*, then we have D = 0.

#### Proof.

Suppose that

$$[d(x), x]_{\beta} = 0 \text{ for all } x \in I, \beta \in \Gamma$$
(2)

Linearizing (2) we get,

$$[d(x), y]_{\beta} + [d(y), x]_{\beta} + 3[D(x, x, y), x]_{\beta} + 3[D(x, y, y), x]_{\beta} + 3[D(x, x, y), y]_{\beta} + 3[D(x, y, y), y]_{\beta} = 0 \text{ for all } x, y \in I, \beta \in \Gamma$$

$$(3)$$

Putting -x instead of x in (3) and since d is odd, we obtain

$$[D(x, x, y), x]_{\beta} = 0 \text{ for all } x, y \in I, \beta \in \Gamma$$
(4)

Putting x = x + y in (4) and then we obtain

$$[d(y), x]_{\beta} + 3[D(x, y, y), x]_{\beta} = 0 \text{ for all } x, y \in I, \beta \in \Gamma$$
(5)

Replacing  $y\alpha x$  for x in (3) we get

 $[d(y), y\alpha x]_{\beta} + 3[D(y\alpha x, x, y), y]_{\beta} = y\alpha[d(y), x]_{\beta} + 3d(y)\alpha[x, y]_{\beta} + 3y\alpha[D(x, y, y), y]_{\beta} = 0$ for all  $x, y \in I$ ,  $\alpha, \beta \in \Gamma$ , which implies that

$$y\alpha([d(y), x]_{\beta} + 3 [D(x, y, y), y]_{\beta}) + 3d(y)\alpha[x, y]_{\beta} = 0$$
(6)

By using (5) we have  $d(y)\alpha[x, y]_{\beta}=0$  for all  $x, y \in I$ ,  $\alpha, \beta \in \Gamma$  on account of (5). Since *I* is a nonzero non-commutative prime  $\Gamma$ -ring, it follows from (3) and Lemma 1.3 that, for all  $y \in I$  with  $y \notin Z(M)$ , we have d(y) = 0 since for every fixed  $y \in I$ , a map  $x \to [x, y]_{\beta}$  is a derivation on *I*.

Now, let  $x \in I$  with  $x \in Z(M)$  and  $y \in I$  with  $y \notin Z(M)$ . Then  $x + y \notin Z(M)$  and  $-y \notin Z(M)$ . Thus we have

d(x + y) = d(x) + 3D(x, x, y) + 3D(x, y, y) = 0 which shows that d(x - y) = d(x) - 3D(x, x, y) + 3D(x, y, y) = 0 which shows that

$$d(x) + 3D(x, y, y) = 0$$
(7)

Replacing  $y \in I$  ( $y \notin Z(M)$ ) by 2y in (7) we obtain that D(x, y, y) = 0 and so the relation (7) gives d(x) = 0 for all  $x \in I$  with  $x \in Z$ . Therefore we obtain d(x) = 0 for all  $x \in I$ .

On the other hand, since the relation D(x, x, y) + D(x, y, y) = 0 fulfilled for all  $x, y \in I$ , it follows that

 $D(x, x, y) + D(x, y, y) = 0 \text{ for all } x, y \in I,$ (8)

and substituting y + z for y in (8) we obtain that 2D(x, y, z) = 0 = D(x, y, z) for all  $x, y \in I$ .

Let us substitute  $w\alpha x \ (w \in M)$  for x in the above relation D(x, y, z) = 0 for all x, y,  $z \in I$ . Then we have

 $D(w, y, z)\alpha x = 0$ . Hence  $D(w, y, z)\alpha x\beta D(w, y, z) = 0$ .Since *M* is prime, we get D(w, y, z) = 0 for all  $y, z \in I$ ,  $w \in M$ . Also, substituting  $y\delta v$  ( $v \in M$ ) for y in this relation, we have  $y\delta D(w, v, z) = 0$  and so  $D(w, v, z)\beta y\delta D(w, v, z) = 0$ . Again, by primeness of *M*, we obtain that D(w, v, z) = 0 for all  $z \in I$ ,  $w, v \in M$ . Furthermore, replacing z by  $u\gamma z$  ( $u \in M$ ,  $\gamma \in \Gamma$ ) in the relation D(w, v, z) = 0, we get D(w, v, u) = 0. The primeness of *M* implies that D(w, v, u) = 0 for all  $u, v, w \in M$ .

#### Lemma 1.7

Let *M* be a 3-torsion free semiprime  $\Gamma$ -ring satisfying the condition (\*) and *I* be a nonzero ideal of *M*. If there exists a permuting tri-derivation *D*:  $M \times M \times M \rightarrow M$  such that d is centralizing on *I*, where *d* is the trace of *D*, then *d* is commuting on *I*.

#### **Proof:**

Assume that

$$[d(x), x]_{\beta} \in Z(M) \text{ for all } x \in I, \beta \in \Gamma$$
(9)

By linearizing (9) we get,

$$[d(x), y]_{\beta} + [d(y), x]_{\beta} + 3[D(x, x, y), x]_{\beta} + 3[D(x, y, y), x]_{\beta} + 3[D(x, x, y), y]_{\beta} + 3[D(x, y, y), y]_{\beta} \in \mathbb{Z}(M), \text{ for all } x, y \in I, \beta \in \Gamma.$$
(10)

We substitute -x for x in (10) we get

$$[D(x, y, y), x]_{\beta} + [D(x, x, y), y]_{\beta} \in \mathbb{Z}(M), \text{ for all } x, y \in I, \beta \in \Gamma$$
(11)

Replacing x by x + y in (11) we have

$$[d(y), x]_{\beta} + 3[D(x, y, y), y]_{\beta} \in \mathbb{Z}(M), \text{ for all } x, y \in I, \beta \in \Gamma$$
(12)

#### 60 Permuting Tri-Derivations

Taking  $x = y\delta y$  in (12) and invoking (9) show that

$$[d(y), y\delta y]_{\beta} + 3[D(y\delta y, y, y), y]_{\beta} = 8[d(y), y]_{\beta}\delta y \in Z(M), \text{ for all } y \in I, \beta, \delta \in \Gamma$$
(13)

Commuting with d(y) in (13) gives

$$8[d(y), y]_{\beta}\delta[d(y), y]_{\beta} = 0, \text{ for all } y \in I, \beta, \delta \in \Gamma$$
(14)

On the other hand, substituting x for yyx in (14)

$$[d(y), y\gamma x]_{\beta} + 3[D(y\gamma x, x, y), y]_{\beta} = y\gamma[d(y), x]_{\beta} + 3d(y)\gamma[x, y]_{\beta} + 3[D(x, y, y), y]_{\beta}$$
  
+ 4[d(y), y]\_{\beta}\gamma x \in Z(M) for all x, y \in I, \beta, \gamma \in \Gamma (15)

Hence we have

$$[y\gamma\{[d(y), x]_{\beta} + 3[D(x, y, y), y]_{\beta}\gamma[x, y]_{\beta}\}, y]_{\beta} + [3d(y)\gamma[x, y]_{\beta} + 4[d(y), y]_{\beta}\gamma x, y]_{\beta} = 0$$
  
for all  $x, y \in I, \beta, \gamma \in \Gamma$  (16)

So we get  $[3d(y)\gamma[x, y]_{\beta}, y]_{\beta} + 7[d(y), y]_{\beta}\gamma[x, y]_{\beta} = 0$ , for all  $x, y \in I$ ,  $\beta, \gamma \in \Gamma$ , according to (14).

Substituting  $d(y)\lambda x$  for x in (15), it follows that

$$d(y)\gamma\{3d(y)\lambda[[x, y]_{\beta}, y]_{\beta} + 7[d(y), y]_{\beta}\gamma[x, y]_{\beta}\} + 6d(y)\gamma[d(y), y]_{\beta}\gamma[x, y]_{\beta}$$
  
+ 7[d(y), y]\_{\beta}\gamma[d(y), y]\_{\beta}\gamma x, for all x, y \in I, \beta, \gamma \in \Gamma, (17)

which by (16) implies

$$6d(y)\gamma[d(y), y]_{\beta}\gamma[x, y]_{\beta} + 7[d(y), y]_{\beta}\gamma[d(y), y]_{\beta}\gamma x = 0 \text{ for all } x, y \in I, \beta, \gamma \in \Gamma$$
(18)

Letting  $x = [d(y), y]_{\beta}$  in (18) we arrive at  $[d(y), y]_{\beta}\gamma[d(y), y]_{\beta}\gamma[d(y), y]_{\beta} = 0$  and so we get

$$7[d(y), y]_{\beta}\gamma[d(y), y]_{\beta}\gamma[d(y), y]_{\beta}\gamma[d(y), y]_{\beta} = 0$$
(19)

Since *M* is a semiprime  $\Gamma$ -ring  $7[d(y), y]_{\beta}\gamma[d(y), y]_{\beta} = 0$  for all  $x, y \in I, \beta, \gamma \in \Gamma$ . Hence, the relations (16) and (19) yield  $[d(y), y]_{\beta}\gamma[d(y), y]_{\beta} = 0$  for all  $y \in I, \beta, \gamma \in \Gamma$ . Since the center of a semiprime ring contains no nonzero nilpotent elements, we conclude that [d(y), $y]_{\beta} = 0$  for all  $y \in I$ ,  $\beta \in \Gamma$ . This completes the proof.

## Lemma 1.8

Let M be a 3- torsion free prime  $\Gamma$ -ring and let I be a nonzero ideal of M. If there exists a nonzero permuting tri-derivation D:  $M \times M \times M \rightarrow M$  such that d is centralizing on I, where d is the trace of D, then M is commutative.

## **Proof:**

Suppose that M is non-commutative. Then it follows from Lemma 1.3 that is commuting on *I*. Hence Lemma 1.6 gives D = 0 which proves the Lemma.

### Lemma 1.9

Let *M* be a semiprime  $\Gamma$ -ring satisfying the condition (\*). If there exists  $a \in M$  such that  $a\alpha[x, y]_{\beta} = 0$  holds for all pairs  $x, y \in M, \alpha, \beta \in \Gamma$ . In this case,  $a \in Z(M)$ .

## **Proof:**

We have  $[z, a]_{\beta} \alpha x \delta[z, a]_{\beta} = z\beta a \alpha x \delta[z, a]_{\beta} - a\beta z \alpha x \delta[z, a]_{\beta} = z\beta a \alpha[z, x\delta a]_{\beta} - z\beta a \alpha[z, x]_{\beta} \delta a - a\beta[z, z\alpha x\delta a]_{\beta} + a\beta[z, z\alpha x]_{\beta} \delta a = 0.$ 

Hence  $a \in Z(M)$ . Since  $z\alpha a \delta w \gamma[x, y]_{\beta} = 0$  for all  $z, w, x, y \in M$ ,  $\alpha, \beta, \delta, \gamma \in \Gamma$ , we can repeat the above argument with  $z\alpha a \gamma w$  instead of a to obtain  $M\Gamma a \Gamma M \in Z(M)$  and now it is obvious that the ideal generated by a is central.

#### 2. Permuting Tri-Derivations

We prove some results on permuting tri-derivations.

## Theorem 2.1

Let *M* be a 3-torsion free semiprime  $\Gamma$ -ring satisfying the condition (\*) and let *I* be a nonzero ideal of *M*. If there exists a permuting tri-derivation *D*:  $M \times M \times M \rightarrow M$  such that d is an automorphism commuting on I, where *d* is the trace of *D*, then *I* is a nonzero commutative ideal.

#### **Proof:**

Suppose that

$$[d(x), x]_{\beta} = 0 \text{ for all } x \in I, \beta \in \Gamma.$$
(20)

Substituting *x* by x + y leads to

$$[d(x), y]_{\beta} + [d(y), x]_{\beta} + 3[D(x, x, y), x]_{\beta} + 3[D(x, y, y), x]_{\beta} + 3[D(x, x, y), y]_{\beta} + 3[D(x, y, y), y]_{\beta} = 0 \text{ for all } x, y \in I, \beta \in \Gamma$$
(21)

Putting -x instead of x in (21) we get

$$[D(x, y, y), x]_{\beta} + [D(x, x, y), y]_{\beta} = 0 \text{ for all } x, y \in I, \beta \in \Gamma.$$
(22)

Since *d* is odd, we set x = x + y in (22) and then use (20) and (22) to obtain

$$[d(y), x]_{\beta} + 3[D(x, y, y), y]_{\beta} = 0 \text{ for all } x, y \in I, \beta \in \Gamma.$$
(23)

Let us write  $y\alpha x$  instead of x in (23), we obtain

 $[d(y), y\alpha x]_{\beta} + 3[D(y\alpha x, y, y), y]_{\beta} = y\alpha[d(y), x]_{\beta} + 3d(y)\alpha[x, y]_{\beta} + 3y\alpha[D(x, y, y), y]_{\beta} = y\alpha([d(y), x]_{\beta} + 3[D(x, y, y), y]_{\beta}) + 3d(y)\alpha[x, y]_{\beta} = 0 \text{ for all } x, y \in I, \alpha, \beta \in \Gamma. \text{ Then } d(y)\alpha[x, y]_{\beta} = 0 \text{ for all } x, y \in I, \alpha, \beta \in \Gamma. \text{ Since } d \text{ is an automorphism, we obtain } y\alpha[x, y]_{\beta} = 0 \text{ for all } x, y \in I, \alpha, \beta \in \Gamma. \text{ Replacing } x \text{ by } y\alpha x, \text{ we get}$ 

 $y \alpha x \gamma [x, y]_{\beta} = 0$  for all  $x, y \in I, \alpha, \beta, \gamma \in \Gamma$ . (24)

Again left-multiplying by *x* implies that

 $x \alpha y \gamma [x, y]_{\beta} = 0 \text{ for all } x, y \in I, \alpha, \beta, \gamma \in \Gamma.$  (25)

Subtracting (24) and (25) with using *M* is semiprime  $\Gamma$ -ring, we completes our proof. By same method in Theorem 2.1, it is easy to proof the following results.

# **Corollary 2.2**

Let *M* be a 3-torsion free semiprime  $\Gamma$ -ring satisfying the condition (\*) and *I* be an ideal of *M*. If there exists a permuting tri-derivation *D*:  $M \times M \times M \rightarrow M$  such that *d* is commutating on *I*, where *d* is the trace of *D*, then *I* is a central ideal.

# Theorem 2.3

Let *M* be a 3-torsion free semiprime  $\Gamma$ -ring satisfying the condition (\*). If there exist a permuting tri-derivation *D*:  $M \times M \times M \to M$  such that d is an automorphism commuting on *M*, where *d* is the trace of *D*, then *M* is commutative.

# Theorem 2.4

Let *M* be a 6-torsion free semiprime  $\Gamma$ -ring satisfying the condition (\*). If there exists a permuting tri-derivation *D*:  $M \times M \times M \rightarrow M$  such that *d* is an automorphism centralizing on *M*, where *d* is the trace of *D*, then *M* is commutative.

# **Proof:**

Assume that

| $[d(x), x]_{\beta} \in Z(M)$ for all $x \in M$ and $\beta \in \Gamma$ .                                                                                                                                                                        | (26) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Replacing x by $x + y$ and again using (26), we obtain                                                                                                                                                                                         |      |
| $\begin{split} & [d(x), y]_{\beta} + [d(y), x]_{\beta} + 3[D(x, x, y), x]_{\beta} + 3[D(x, y, y), x]_{\beta} + 3[D(x, x, y), y]_{\beta} \\ & + 3[D(x, y, y), y]_{\beta} \in Z(M) \text{ for all } x, y \in M, \ \beta \in \Gamma. \end{split}$ | (27) |
| Replacing x by $-x$ in (27) we get                                                                                                                                                                                                             |      |
| $[D(x, y, y), x]_{\beta} + [D(x, x, y), y]_{\beta} \in Z(M) \text{ for all } x, y \in M, \beta \in \Gamma.$                                                                                                                                    | (28) |
| Replacing x by $x + y$ in (28), we obtain                                                                                                                                                                                                      |      |
| $[d(y), x]_{\beta} + 3[D(x, y, y), y]_{\beta} \in Z(M) \text{ for all } x, y \in M, \beta \in \Gamma.$                                                                                                                                         | (29) |
| Taking $x = y\alpha y$ in (29) and invoking (26), we get                                                                                                                                                                                       |      |
| $[d(y), y\alpha y]_{\beta} + 3[D(y\alpha y, y, y), y]_{\beta} = 8[d(y), y]_{\beta}\alpha y \in Z(M) \text{ for all } y \in M, \alpha, \beta \in \Gamma.$                                                                                       | (30) |
| Now commuting (30) with $d(y)$ yields                                                                                                                                                                                                          |      |
|                                                                                                                                                                                                                                                |      |

 $8[d(y), y]_{\beta} \alpha[d(y), y]_{\beta} = 0 \text{ for all } y \in M, \, \alpha, \, \beta \in \Gamma.$ 

Again substituting x by  $y\alpha x$  in (29) gives

 $[d(y), y\alpha x]_{\beta} + 3[D(y\alpha x, y, y), y]_{\beta} = y\alpha([d(y), x]_{\beta} + 3[D(x, y, y), y]_{\beta}) + 3d(y)\alpha[x, y]_{\beta} + 4[d(y), y]_{\beta}\alpha x \in Z(M) \text{ for all } x, y \in M, \alpha, \beta \in \Gamma. \text{ Then } [y\alpha([d(y), x]_{\beta} + 3[D(x, y, y), y]_{\beta}), y]_{\beta} + [3d(y)\alpha[x, y]_{\beta} + 4[d(y), x]_{\beta}\alpha x, y]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma. \text{ And so we get}$ 

 $3d(y)\alpha[[x, y]_{\beta}, y]_{\beta} + 7[d(y), y]_{\beta}\alpha[x, y]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$ (31)

Since d acts as an automorphism with *M* is 6-torsion free the relation (31) reduces to  $y\alpha[[x, y]_{\beta}, y]_{\beta} = 0$  for all  $x, y \in M, \alpha, \beta \in \Gamma$ .

Replacing *x* by  $r\delta x$ , we get

$$y\alpha x\delta [[x, y]_{\beta}, y]_{\beta} + 2y\alpha [x, y]_{\beta} = 0 \text{ for all } x, y \in M, \alpha, \beta, \delta \in \Gamma.$$
(32)

Replacing y by -y in (32) and subtracting with (32), gives

$$4y\delta[x, y]_{\beta} = 0 \text{ for all } x, y \in M, \beta, \delta \in \Gamma.$$
(33)

Replacing x by  $x\gamma r$  and left-multiplying by s, we obtain

$$4y\delta x\alpha[r, y]_{\beta} = 0 \text{ for all } x, y, r, s \in M, \alpha, \beta, \delta \in \Gamma.$$
(34)

Again in (33) replacing x by  $x\lambda m$  and x by  $s\delta x$ , we get

$$4y\gamma s\delta x\alpha[m, y]_{\beta} = 0 \text{ for all } x, y, m, s \in M, \alpha, \beta, \delta, \gamma \in \Gamma.$$
(35)

Subtracting (34) and (35) with using *M* is 6-torsion free semiprime, we obtain  $[s, y]_{\beta} = 0$  for all *s*,  $y \in M$ . Thus, we get *M* is commutative.

#### Theorem 2.5

Let *M* be a 3-torsion free semiprime  $\Gamma$ -ring satisfying the condition (\*). If there exists a permuting tri-derivation *D*:  $M \times M \times M \to M$  such that *d* is commuting on *M*, where *d* is the trace of *D*, then *d* is a central mapping.

#### **Proof:**

We have

$$[d(x), x]_{\beta} = 0 \text{ for all } x \in M, \beta \in \Gamma.$$
(36).

The substitution of x in (36) by x + y leads to

$$[d(x), y]_{\beta} + [d(y), x]_{\beta} + 3[D(x, x, y), x]_{\beta} + 3[D(x, y, y), x]_{\beta} + 3[D(x, x, y), y]_{\beta} + 3[D(x, y, y), y]_{\beta} = 0 \text{ for all } x, y \in M, \beta \in \Gamma.$$
(37)

Putting -x instead of x in (37) we obtain,

$$[D(x, y, y), x]_{\beta} + [D(x, x, y), y]_{\beta} = 0 \text{ for all } x, y \in M, \beta \in \Gamma.$$
(38)

Since d is odd, we set x = x + y in (38) with using (36) and (37), we get

$$[d(y), x]_{\beta} + 3[D(x, y, y), y]_{\beta} = 0 \text{ for all } x, y \in M, \beta \in \Gamma.$$
(39)

Let us write in (39)  $y\alpha x$  instead of *x*, we obtain according to (39) and since *M* is 3-torsion semiprime  $d(y)\alpha[x, y]_{\beta} = 0$  for all  $x, y \in M, \beta \in \Gamma$ .

Applying Lemma 1.9, the above relation gives  $d(y) \in Z(M)$  for all  $y \in M$ , thus we completes the proof of the theorem.

## Theorem 2.6

Let *M* be a 3-torsion free semiprime  $\Gamma$ -ring. If there exists a permuting tri-derivation *D*: *M*  $\times M \times M \to M$  such that *d* is commuting on *M*, where *d* is the trace of *D*, then *D* is commuting (resp. centralizing).

## **Proof:**

We can restrict our attention to the relation

$$[d(x), x]_{\beta} = 0 \text{ for all } x \in M, \beta \in \Gamma.$$
(40)

The substitution of x + y for x in above relation gives

$$[d(x), y]_{\beta} + [d(y), x]_{\beta} + 3[D(x, x, y), x]_{\beta} + 3[D(x, y, y), x]_{\beta} + 3[D(x, x, y), y]_{\beta}$$
  
+ 3[D(x, y, y), y]\_{\beta} = 0 for all x, y \in M, \beta \in \Gamma \left( \beta \in M\vert \beta \in \beta \in \beta \in \beta \beta

Now, by the same method in Theorem 2.5, we arrive at

$$y\delta[d(y), x]_{\beta} + 3d(y)\delta[x, y]_{\beta} + 3y\delta[D(x, y, y), y]_{\beta} = 0 \text{ for all } x, y \in M, \beta, \delta \in \Gamma.$$
(42)

which implies that

$$d(y)\delta[x, y]_{\beta} = 0 \text{ for all } x, y \in M, \beta, \delta \in \Gamma.$$
(43)

Applying Lemma 1.5, the above relation gives  $d(y) \in Z(M)$  for all  $x \in M$ . By substitution the relation  $d(y) \in Z(M)$  in (41) with using replacing x by y and M is 3-torsion free semiprime, we obtain

$$[D(y, y, y), y]_{\beta} = 0 \text{ for all } x, y \in M, \beta \in \Gamma$$
(44)

Then D is commuting (resp. centralizing) of M.

#### Theorem 2.7

Let *M* be a non-commutative 3-torsion free semiprime  $\Gamma$ -ring satisfying the condition (\*). If there exists a permuting tri-derivation *D*:  $M \times M \times M \to M$  such that d is skew-commuting on *M*, where *d* is the trace of *D*, then *d* is commuting.

## **Proof:**

We have  $d(x)\alpha x + x\alpha d(x) = 0$  for all  $x \in M$ . Replacing x by x + y, we obtain

$$d(y)\alpha x + 3D(x, x, y)\alpha x + 3D(x, y, y)\alpha x + d(x)\alpha y + 3D(x, x, y)\alpha y + 3D(x, y, y)\alpha y + x\alpha d(y) + 3x\alpha D(x, x, y) + 3x\alpha D(x, y, y) + y\alpha d(y) + 3y\alpha D(x, x, y) + 3y\alpha D(x, y, y) = 0 \text{ for all } x, y \in M, \alpha \in \Gamma$$

$$(45)$$

We substitute -x for x in (45) we get  $3D(x, y, y)\alpha x + 3D(x, x, y)\alpha y + 3x\alpha D(x, y, y) + 3y\alpha D(x, x, y) = 0$  for all  $x, y \in M, \alpha \in \Gamma$ .

Since M is 3-torsion free, we obtain

$$D(x, x, y)\alpha x + D(x, x, y)\alpha y + x\alpha D(x, y, y) + y\alpha D(x, x, y) = 0 \text{ for all } x, y \in M, \alpha \in \Gamma$$
(46)

Again we substituting  $x\beta y$  for x in (46) then we get

$$x\alpha D(y, y, y)\beta y + D(x, y, y)\alpha x\beta y + x\alpha y\beta D(y, y, y) + D(x, y, y)\alpha y = 0$$
  
for all x,  $y \in M$ ,  $\alpha, \beta \in \Gamma$  (47)

We substitute -x for x in (47) and compare (47) with the result to get  $D(x, y, y)\alpha x\beta y = 0$  for all  $x, y \in M$ . Replacing x by y and since d is the trace of D, we obtain  $d(y)\alpha y\beta y = 0$  for all  $y \in M$ . Left- multiplying by y and right-multiplying by  $d(y)\delta y$  with using Lemma 1.4, we obtain

$$y\delta d(y)\beta y = 0$$
 for all  $y \in M, \beta, \delta \in \Gamma$ . (48)

(49)

Left- multiplying (48) by d(y) with using Lemmas (1.1 and 1.3) gives

 $d(y)\beta y = 0$  for all  $y \in M$ ,  $\beta \in \Gamma$ .

Right- multiplying (48) by d(y) with using Lemmas (1.1 and 1.3) and subtracting the result with (49), we obtain  $[d(y), y]_{\beta} = 0$  for all  $y \in M$ ,  $\beta \in \Gamma$ .

By Theorem 2.3, we complete our proof.

By the same method in Theorem 2.8, with using Lemmas (1.4 and 1.5), it is easy to proof the following corollary.

#### Theorem 2.8

Let *M* be a non-commutative 3-torsion free semiprime  $\Gamma$ -ring satisfying the condition (\*) and *I* be a non-zero ideal of *M*. If there exists a permuting tri-derivation *D*:  $M \times M \times M \rightarrow M$  such that d is skew-commuting on *I*, where *d* is the trace of *D*, then *d* is commuting on *I*.

#### **Proof:**

Using the same method in Theorem 2.7, with Lemma 1.7, we complete the proof of the Theorem.

## Theorem 2.9

Let *M* be a non commutative 3-torsion free semiprime  $\Gamma$ -ring satisfying the condition (\*) and *I* be a nonzero ideal of *M*. If there exists a permuting tri-derivation *D*:  $M \times M \times M \rightarrow M$  such that *d* is skew- centralizing on *I* where *d* is the trace of *D*, then *d* is commuting on *I*.

## **Proof:**

Using same method in Theorem 2.7, we obtain  $[d(x)\alpha y \delta y, r]_{\beta} \in Z(M)$  for all  $x \in I$ ,  $r \in M$ ,  $\alpha$ ,  $\beta$ ,  $\delta \in \Gamma$ , replacing *r* by *y* with using Lemma 1.7, we complete the proof of the theorem.

## Corollary 2.10

Let *M* be a 3-torsion free prime  $\Gamma$ -ring satisfying the condition (\*) and *I* be a nonzero ideal of *M*. If there exists a nonzero a permuting tri-derivation *D*:  $M \times M \times M \rightarrow M$  such that *d* is skew-centralizing on *I* where *d* is the trace of *D*, then *M* is commutative.

## **Proof:**

Suppose that *M* is non-commutative, then by the same method in Theorem 2.9, we get  $[d(x), x]_{\beta} \in Z(M)$  for all  $x \in I$ ,  $\beta \in \Gamma$ . Hence by Lemma 1.8, the proof of the corollary is complete.

## References

- 1. N. Nabusawa, Osaka J. Math. , 65 (1964).
- 2. W. E. Barnes, Pacific J. Math 18, 411 (1966).
- 3. M. A. Ozturk, M. Sapanci, M. Soyturk and K. H. Kim, Sci. Math. Jpn. 53, 3 491 (2001).
- 4. M. A. Ozturk, East Asian Math. J. 15, 2 177 (1999).
- 5. M. A. Ozturk, M. Sapanci and Y. B. Jun, East Asian Math. J. 15, 1 105 (1999).
- Y. –S. Jung and K.-H. Park, Bull. Korean Math. Soc., 44 789 (2007). http://dx.doi.org/10.4134/BKMS.2007.44.4.789
- 7. M. A. Ozturk and Young Bae Jun, Commun. Fac. Sci. Univ. Ank. Series A1 54, 11 (2005).
- 8. D. Ozden and M. A. Ozturk, Kyungpook Math. J. 46, 153 (2006).
- 9. M. A. Ozturk and M. Sapanci, Hacettepe Bul. of Sci. and Engineering, Series B 26, 31 (1997).
- 10. J. Vukman, Aequationes Math. 38 (2-3), 245 (1989). http://dx.doi.org/10.1007/BF01840009
- 11. J. Vukman, Aequationes Math. 40 (2-3), 181 (1990). http://dx.doi.org/10.1007/BF02112294
- 12. K. K. Dey and A. C. Paul, J. Sci. Res. **4** (1), 33 (2012). http://dx.doi.org/10.3329/jsr.v4i1.7911
- 13. K. K. Dey and A. C. Paul, J. Sci. Res. 3 (2), 331 (2011). http://dx.doi.org/10.3329/jsr.v3i2.7278
- 14. K. K. Dey and A. C. Paul, J. Sci. Res. 4 (2), 349 (2012). http://dx.doi.org/10.3329/jsr.v4i2.8691
- 15. K. K. Dey, A. C. Paul and I. S. Rakhimov, JP Journal of Algebra, Number Theory and Applications 25 (1), 29 (2012).