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Abstract 
 
Controlled drug delivery occurs when a polymer or lipid (natural or synthetic) is judiciously 
combined with a drug or other active agent in such a way that the active agent is released 
from the material in a pre-designed manner. The aim of controlling the drug delivery is to 
achieve more effective therapies while eliminating potential for both under- and overdosing. 
Controlled delivery systems includes the maintenance of drug levels within a desired range, 
the need for fewer administrations, optimal use of the drug in question, and increased patient 
compliance. Mathematical modeling of controlled drug delivery can help to provide a 
scientific knowledge base concerning the mass transport mechanisms that are involved in 
the control of drug release. Mathematically, it is identified for designing a particular 
pharmaceutical system and it can be used to simulate the effect of the device design 
parameters (viz., geometry and composition) on the resulting drug release kinetics. The 
objective of this review outlines the application of mathematical modeling to the controlled 
drug delivery mechanisms, focusing particular attention on drug transport in human breast 
cancer, treated with the drug Doxorubicin.  
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1. Introduction 
 
In what follows, a pharmaceutical agent is encapsulated within a polymer (or a lipid) drug 
safety and efficacy can be greatly improved and new therapies are possible. It gives the 
impetus for active study of the design of degradable materials, intelligent delivery systems 
and approaches for delivery through different portals in the body [1]. The developments of 
mathematical models, that can be predict delivery performance [2] will facilitate the 
design of various delivery systems. Application of materials for long-term controlled 
release of encapsulated agents is one of the principles used in drug delivery [1]. Some 
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potential advantages of drug delivery are, continuous maintenance of drug levels in a 
therapeutically desirable range; reduction of harmful side effects due to targeted delivery 
to a particular cell type or tissue; potentially decreased amount of drug needed and 
decreased number of dosage and possibly less invasive dosing, leading to improved 
patient compliance with the prescribed drug regimen; and facilitation of drug 
administration for pharmaceuticals with short in vivo half-lives [1]. These advantages 
must be weighed against the toxicity of the materials (or their degradation products) from 
which the drug is released, or other safety issues such as unwanted rapid release of the 
drug; discomfort caused by the system itself or the means of insertion; and expense of the 
system due to the drug encapsulation materials or the manufacturing process. Thus, 
controlled delivery systems can be used to release the drug in a pre-programmed, desired 
manner over prolonged periods. The purpose of controlled release system (CRS) is to 
maintain drug concentration in the blood or targeted tissues at a desired value as long as 
possible [3, 4]. In other words, they are able to exert a control on the drug release rate and 
duration [5]. Mathematically, CRS may be classified according to the controlling physical 
mechanism of release of the incorporated [6] is based on the mechanism of transport in 
these systems as diffusion-controlled systems. Accurate mathematical model that take into 
account the mechanistic aspects of the transport processes in drug delivery systems and 
the structural characteristics of the polymer can help fulfill the above objectives. When 
developing new CRS or elucidating drug release mechanisms, the choice of the 
appropriate mathematical model strongly depends on the type of drug, type of excipients 
and composition of the device. Various procedures can be used to control drug release. 
Diffusion, water-triggered transport (swelling) and degradation/erosion are the most 
important ones. In this context, polymers are added to control or modify the release step 
of the drug. There is no over all mathematical model covering all the possible chemical 
and physical process that can occur. Thus, it is crucial to identify or develop an adequate 
mathematical theory for a specific drug delivery system. 
 
2. Notations 
 
Here we recall the notations which are used frequently: 

t    - time, 
D - diffusion coefficient which is related to the breast tissue and drug properties 

(2.7ex10cm2/s), 
K   - drug consumption constant, 
φc  - volume fraction of the interstitium, 

e

Q2 - ratio of the total cell-averaged cell concentration over the free drug concentration 
in the second cell compartment, 

S  - specific surface area of the interstitium, 

Te - tortuosity of the interstitium, 
Pc - permeability of the first cell compartment, 
N1 - number of intersections of the first cell compartment per unit length of the 

diffusion path, 
Df2- diffusion coefficient in the fluid occupying the second cell compartment,  
Dfe- diffusion coefficient in the interstitial fluid, 
Cdox - concentration of drug (doxorubicin), 
(Ce,C2) - dissolved drug concentrations, 
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(De,D2) - true macroscopic drug diffusion coefficients,  
(Ac×Se×Ce) - adsorbed drug accumulation per unit bulk volume in the outer cell 

compartment,  
→

υ    - fluid velocity vector, 
2∇  - the Laplacian operator.    

 
3. Models for Controlled Drug Delivery  
 
In the study of CRS, mathematical modeling of the release process plays a significant role 
as it establishes a mechanism of drug (solute) release and provides more general 
guidelines for the development of other systems. It is accepted that numerous successful 
controlled delivery systems have been developed as a result of an almost arbitrary 
selection of components, configurations and geometrics. Here, we survey some of 
mathematical models as given below. 

A large number of mathematical models were developed to describe the release rate of 
drugs from matrix systems. In 1961, Higuchi [7] published the probably most famous and 
most often used mathematical equation to describe drug release from matrix system. This 
model was then extended to different geometries and porous systems [8]. The extended 
model is based on the hypotheses that (i) initial drug concentration in the matrix is much 
higher than drug solubility, (ii) drug diffusion takes place only in one dimension (edge 
effects must be negligible), (iii) drug particles are much smaller than system thickness, 
(iv) matrix swelling and dissolution is negligible, (v) drug diffusivity is constant and (vi) 
perfect sink conditions are always attained in the release environment. The basic equation 
of the Higuchi model is, 
 

( )02     t s s 0 sM A D C C C t C C= − >                                                                              (1) 

where, Mt is the amount of drug released until time t, A is the release area, D is the drug 
diffusion coefficient, C0 the initial drug concentration in the matrix while Cs is drug 
solubility. 

A simple semi-empirical equation to model the release kinetics is the so-called power 
law equation [9]  
      ntM Kt

M ∞

=                                                                                                                       (2) 

where M∞ is the amount of drug released after an infinite time, K is a constant and n is the 
exponent characterizing the release process. 

A mathematical framework was developed [10, 11] for the study of drug release from 
partially and not coated hydroxypropylmethyl cellulose (HPMC) tablets. This was based 
on the assumption that the release resistance is due to drug dissolution and diffusion 
through the developing gel layer surrounding the dry glassy core. A comprehensive model 
was developed [12-14] to describe the swelling/dissolution behaviors and drug release 
from cylindrical HPMC matrices. The advantage of this model lies in defining the 
polymer disentanglement concentration below which chains detaching from swollen 
network happens. An extension of this work was developed [15-17] to consider species 
diffusion in both radial and axial directions. This model consider as the most advanced 
model for drug release from amorphous polymers undergoing swelling and erosion. 
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Several attempts have been made to develop mathematical model for drug delivery 
systems. The first mathematical model for drug release [18] was formulated in a 
dissolving polymer-solvent system. The transport was assumed to be Fickian and mass 
balances were written for drug and the solvent at the glassy-rubbery interface and at the 
rubbery-solvent interface. This model can predict both Fickian as well as non-Fickian 
behavior. It is noticed that front synchronization (i.e., velocity of glassy-rubbery interface, 
velocity of rubbery-solvent interface) leads to zero-order release in dissolution-controlled 
systems. 

The model [18] was modified [19] by accounting for macromolecular chain 
disentanglement. It is enabled a molecular understanding of the dissolution mechanism of 
the polymer. This information is important to design tailor-made drug delivery systems 
for specific applications. 

Drug therapy to the central nervous system (CNS) is complicated by the presence of 
blood barrier. There exists a great interest in developing an effective method of 
administrating therapeutic drugs to the CNS for computing a wide variety of neurological 
disorders, ranging from brain tumors and epilepsy to Parkinson’s disease.  

The development of new drug delivery techniques to overcome this obstacle will be 
aided by a clear understanding of the transport processes in the brain. A finite element 
model [20] was developed for predicting the distribution of drugs delivered intracranially 
to the brain. The model has been used to predict transport and distribution of interleukin-2 
(IL-2), a cytokine that has been shown to be a potent activator of the immune system and 
is currently under investigation in the immunotherapy of different types of cancer, in the 
brain and studies the major determinants of transport, at both early and late times after 
drug delivery. They used magnetic resonance imaging to track the true evolution of drug 
concentration distribution over time in the brain. It is observed that the distribution of any 
drug in the brain is strongly dependent both on the transport pathways present in the brain 
and on the drug properties, such as diffusivity, hydrophilicity and its interaction with brain 
tissue. The study of IL-2 demonstrates the complex nature of its transport in the brain, 
being affected by transport modalities that may vary temporally and spatially. To maintain 
high local concentration in the brain over long periods of time, a sustained release of the 
drug is necessary without a sophisticated theoretical framework of transport in the brain 
and consideration of factors such as edema, one could make serious errors in the 
estimation of transport parameters. The model is a preliminary approach at incorporating 
the effects of edema and time-varying convective forces on transport in the brain. A 
rigorous analysis will help define the potential and limitations of any mode of delivery to 
the brain and particularly aid the development and rational design of polymeric drug 
carriers for intracranial implantation. 

A mathematical model was published to describe drug release from dissolving 
hydroxypropyl methyl cellulose (HPMC) matrices [15, 16, 21] by considering cylindrical 
devices and accounting for both radial as well as axial transport. In this technique, 
dissolution rate is treated as an adjustable parameter. The model has been shown to 
possess predictive capabilities by comparison with experimental data on release of 
propanolol-HCl from HPMC matrices. When dissolution rate has been treated as a 
constant, the model prediction can at best be treated as qualitative, as evidenced from the 
over-prediction of the release rate at short times, and under-prediction of the release rate 
at long times. Dissolution rate is a function of time, incorporation of that effect into the 
model might lead to more meaningful predictions [22]. 
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Mathematical modeling was used to elucidate the transport mechanisms involved in 
drug release from hydrophilic matrices [17] and allowing quantitative predictions of the 
resulting release kinetics. The practical benefit of this work was an improved design 
model that can be used to predict accurately the required composition and dimensions of 
drug-loaded hydrophilic matrices in order to achieve desired release profiles, thus 
facilitating the development of new pharmaceutical products. 

Mathematical modeling [23] was used as a tool for (a) determining the principal 
mechanisms governing the pharmacokinetics and pharmacodynamics during localized 
paclitaxel delivery and quantitatively simulating interatumorel drug  concentration, and 
(b) determining a drug release profile which maximizes tumor cell kill.  

From these techniques a reaction diffusion model was derived which describes the 
principal process governing drug transport inside a solid tumor: diffusion and binding in 
the interstitial medium, drug clearance from the interstitial medium through the leaky 
micro vessels, passive uptake of free interstitial drug by the intracellular medium, and 
specific and nonspecific binding of drug in the intracellular medium 

A mathematical model was developed for drug transport in human breast cancer tissue 
[24] on the basis of clinical study of patients with breast cancer, treated with the drug 
doxorubicin and of drug transport experiments using cultured human breast cancer cells. 
The clinical study revealed doxorubicin gradient in tumor islets of densely packed cancer 
cells, but not in connective tissue. This model allows simultaneous drug transport through 
the cellular network (transcellular path way), through the interstitium (paracellular 
pathway) and across the boundary between the two networks. 

A mathematical model was proposed to predict the release kinetics and distribution 
profile of Doxorubicin from Pluronic gel into the breast tissue [25]. This model accounts 
for the two dimensional distribution of the drug inside a physiologically realistic breast 
geometry, it helps specialists to understand the drug delivery mechanism and allow 
physicians to make decision on an optimal dose to treat patients. In the above modeling 
only diffusive condition was considered. Next, a 3D mathematical model [26] was 
developed to predict the release of Doxorubicin from pluronic gel to treat human breast 
cancer and it is very useful to observe the side effect to adjacent tissue while 
concentration profile is releasing. Here, only diffusion coefficient was taken. A three 
dimensional simulation platform for controlled drug delivery of doxorubicin in breast 
model was developed and extended from the two dimensional controlled- release drug 
delivery model. 

Recently, many models have been developed to study the release kinetics of polymer 
matrices [27-29]. Numerous mathematical models that predict drug release from 
degradable systems have been reported. A simple mathematical model was developed [30] 
to predict the release of many different types of agents from bulk eroding polymer 
matrices without regression. The comparison of model predictions and experimental data 
strongly suggests that the magnitude of the initial burst is directly proportional to the 
amount of agent localized to occlusions residing just inside the matrix surface. A unified 
model was developed [31] to predict release not only from bulk eroding and surface 
eroding systems but also from matrices that transition from surface eroding to bulk 
eroding behavior during the course of degradation. 

Outlines and importance of the above technique of cancer treatment to emphasize the 
need for further investigations into the mathematical models capable of describing clinical 
responses to these therapies as given below. 
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3.1.  Models for polymeric controlled release system 
 
Polymer based drug delivery systems [1] have had enormous impacts on drug therapies. 
Not only can the drug delivery platform transport drug molecules effectively, it can also 
improve patient compliance, offer greater patient convenience, and extent product life 
cycles as patents expire. The development of advanced drug delivery can be facilitated 
through mathematical modeling of controlled release systems. Mathematical modeling 
aids in predicting the drug release rates and diffusion behavior from these systems by the 
solution of an appropriate model, thereby reducing the number of experiment needed. It 
helps an understanding the physics of particular drug transport phenomenon; thus 
facilitating the development of new pharmaceutical products. One of the objective of this 
article is to review some of recent mathematical models that have been developed to 
describe drug release from polymeric controlled release systems.  
 
3.2.  Model of drug transport in human breast cancer 
 
There are so many studies have been conducted for the development of a drug delivery 
model in a cancer tissue and numerous papers have tried to design mathematical models 
of drug delivery for cancer treatment. Mathematical models can predict the drug 
concentration in the region of interest under different conditions such as various drug 
concentrations, tumor’s location, various geometries, and a range of drug’s diffusion 
coefficients in the tumor tissue etc. 

A mathematical model of drug transport in tissue has been developed on the basis of a 
clinical study of patients with breast cancer, treated with the drug Doxorubicin and of 
drug transport experiments using cultured human cells [24]. This model allows 
simultaneous drug transport through the cellular network (transcellular path way), and 
across the boundary between the two networks. Drug transport across this boundary has 
been modeled using the results of the cellular drug uptake and efflux experiments. In this 
sequel, a mathematical model of drug transport in human breast cancer islets has been 
developed, in order to asses the effectiveness of drug treatments. 

Drug transport in the interstitium,denoted by subscript ‘e’, and in the second cell 
compartment, denoted by subscript ‘2’,  forming part of the cellular network, can be 
described by the following diffusion equations: 

 

( ) ( ) ( ) ( )2
2

, CCPSCDCSA eceeeteece −××−∇×=××+φ                                                   (3) 

( ) ( ) ( )22
2

2,22 CCPSCDCQ ecet −××+∇×=×                                                        (4) 
 

For radial diffusion in a sphere, we have 
 

( ) ( ) { ( ){ }rrrr ∂∂×∂∂×=∇ 222 1 . 
 

The total volume- averaged drug concentration in the cells, , is defined by: 
aC

( ) 22 CQCSAC eca ×+××=                                                                                              (5) 

The macroscopic drug diffusion coefficient of the interstitium can be expressed as 
 

efeee TDD ×= φ                                                                                                             (6) 
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Drug transported through the cellular network must cross the outer cell compartment 
of each cell twice.  

The microscopic drugs diffusion coefficient D2 of the cellular network can be 
expressed as: 

 

( )cff PDNDD 2122 1 ×+=                                                                                           (7) 
 

The derivation of Eq. (7) for D2 is obtained as follows. The average drug concentration 
gradient in the cellular network is the sum of the concentration gradient in the second cell 
compartment and the concentration drop over a first cell compartment multiplied 
by ( ) ( )cfx PNDJxCN 1221 1: +×−=∂∂ . The number of intersections of a straight line of 

a unit length in a tumor with a number density of cells given by cV610 , and an average 

cell radius  is given by ca ( ) 63 1034 ×××= cc aV π  is equal to 

( ) ccc aVaN 2
362

1 102 =×××= π . Tortuosity may result in lower value of N1, but not 
much lower, since theoretically caN 11 > . Substitution of Eqs. (6) and (7) in (3) and (4) 
gives: 
 

( ) ( ) ( )21
2

1, CCBCAC eete −×−∇×=                                                                             (8) 

( ) ( ) ( )222
2

2,2 CCBCAC et −×−∇×=                                                                             (9) 
 
where, ( ),1 ecee SADA ×+= φ  ( ) ( ),1 ecece SAPSB ×+×= φ  ,222 QDA =  and 

( ) ,22 QPSB ce ×=  (A1 and A2 are the effective drug diffusion coefficients in the 
interstitium and in the cellular network). The boundary condition ( )tRCe ,  for the boundary 

Rr = of tumor islet is given by the time dependent concentration in the blood of a patient, 
while the boundary condition ( )tRC ,2 is given by the Eq. (9) with out the diffusion term. 
 
3.3.  2D model for doxorubicin controlled release system 
   
Doxorubicin is one of the most widely used anticancer drugs in chemotherapy treatment. 
It exhibits a broad spectrum of anticancer activity and has been used to treat a variety of 
human and animal solid tumors. Due to the short therapeutic life time of this drug, 
patients are required to receive the drug very often; and it may causes to severe side 
effects. When the drug is introduced to the patient, the drug concentration inside the 
patient’s body sometimes exceeds the maximum effective level, resulting in toxicity, 
while it is below the therapeutic range [32], as shown in Fig. 1(a).  

To better control the concentration of drug in the body, a localized delivery is 
introduced. The drug concentration can be maintained at the effective level for a 
prolonged period of time. In this delivery method, drug is encapsulated into a polymer 
matrix and is slowly released through polymer pores, as shown in Fig.1 (b). Polymeric 
device can control the concentration and the release rate of the drug [32]. Therefore, the 
drug can be released at the controlled rate, time and concentration. 

A mathematical model with the reconstructed breast cancer has been proposed to 
account for an understanding of the drug delivery mechanism and aid specialists to test 
various hypotheses before performing clinical experiments which can be costly and time 
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consuming [25]. The drug delivery of two dimensional model for Doxorubicin can be 
modeled in terms of convection and diffusion and is given by 

 

( ) doxdoxdox
dox kCCDC
t

C
−∇∇=Δ+

∂
∂ →

υ                                                                         (10) 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 1. Drug levels in the blood with (a) traditional drug dosing and (b) controlled-delivery dosing. 
 
 

In order to verify the 2D model was developed [25], the prediction was compared with 
the experiment result from an in vitro study. The mathematical model was developed such 
that it would closely mimic the desired in vitro setting. The comparison between the 
model prediction and experimental result shows that the diffusion coefficient of 
doxorubicin plays an important role in developing an accurate model. In this sequel, the 
effect of diffusion and polymer degradation were considered while the effect of 
convection was initially neglected. 

The mathematical model, used to explain this drug delivery system, contains only the 
continuity equation, because the system has no fluid flow and temperature change is 
neglected, i.e.,  = 0 and K = 0, then the equation becomes, 

→

υ
 

( )dox
dox CD
t

C
∇∇=

∂
∂                                           (11) 
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The diffusion rate in the above equation was calculated using by finite element 
method. The diffusion of doxorubicin inside the gel is significantly small which can be 
assumed to be zero. i.e.  
 

doxD  = 0 within the polymer; (r ≤ R - K.t). 
Doxorubicin is freely diffused once out side the gel with the diffusion coefficient of D. 

That is, 
  = D in normal tissue; (r > R + K.t). 

doxD

doxD  = D in Malignant tissue; (r > R + K.t), 
 

where r is position of doxorubicin in the system (cm) and R is the radius of polymer (cm). 
Doxorubicin concentration remains quite high inside the gel and drops sharply when 

moving away from the gel interface, indicating minimal doxorubicin diffusion. After 
about thirty minutes the gel interface starts with moving inward, while the concentration 
of doxorubicin in PBS solution increases. As time proceeds, doxorubicin diffuses further, 
creating a concentration gradient. 

This model helped to predict the release kinetics and distribution profile of 
Doxorubicin from Pluronic gel into the breast tissue and also it accounts for the two 
dimensional distribution of the drug inside a physiologically realistic breast geometry. 
This model can help specialists to understand the drug delivery mechanism and allow 
physicians to make decision on an optimal dose to treat patients. 
 
 3.4.  3D model for a doxorubicin controlled release system  
 
A 3D mathematical model was developed [26] to predict the release of Doxorubicin from 
pluronic gel to treat human breast cancer and it is very useful to observe the side effect to 
adjacent tissue while concentration profile is releasing. They considered only diffusion 
coefficient in this study also. Their aim of this research was to develop a three 
dimensional simulation platform for controlled drug delivery of doxorubicin in breast 
model extended from the validated two dimensional controlled- release drug delivery 
model.  

The diffusion coefficient of doxorubicin inside pluronic gel is significantly small 
which can be assumed to be zero and can be gradually increased to be higher value in PBS 
solution by  sigmoid function. As time proceeds, gel’s dissolving distance is K t mm. Then 
the diffusion coefficient inside gel will be increased as the gel surface transform from a 
solidified surface into a rubbery surface. The drug is released near the gel’s erosive 
surface while the gel is dissolving. The drug concentration inside the gel seems to be 
moving in a sigmoid pattern towards the center of the polymer based on equation (12). 
And the released drug is freely diffused once outside the gel with the diffusion coefficient 
of D as in equation (13).  
 

doxD  = sigmoid function;     (0< r ≤ R - K.t).                                                              (12) 

doxD  = D in PBS solution (2.96 x 10-5 cm2/s ) ; (r > R + K.t)                         (13) 
The diffusion rate in equation (11) was calculated using Finite Element Method. 

Initial condition: 
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doxC  = 5.02x10-3M;      (0< r ≤ R) 

doxC  = 0M;       (r > R) 
Boundary condition: 
 

doxD  = sigmoid function;        (0< r ≤ R - K.t).                   

doxD  = D in normal breast tissue (2.7 x 10-10 cm2/s ) ; (r > R + K.t)  
 
Observation 
 
A 2D model was developed [25] to predict the release profile of doxorubicin from 
pluronic gel. The diffusion coefficient of doxorubicin inside pluronic gel is significantly 
low that the diffusion inside the gel is considered negligible. As time increases, the gel’s 
surface gradually decomposes and doxorubicin can be released into breast tissue at higher 
diffusion coefficient. This drug’s diffusion looks similar to a soft threshold which is 
defined by sigmoid function. 

The 3D model developed [26] will be useful to observe the side effect to adjacent 
tissue while concentration profile is releasing. This model accounts for the three 
dimensional distribution of the drug inside a physiologically realistic breast geometry. 
Only diffusive condition was considered in this work. In the future work, one can modify 
this model to accommodate the convective condition as well as a more complex geometry. 
Mesh refinement and adaptive mesh will be used to improve for better accuracy. 
 
4. Applications 
 
The mathematical model equation can be used to design new systems by selecting the 
optimal geometry, method of formulation and size [2]. Mathematical modeling aids in 
predicting the drug release rates and diffusion behavior from these systems by the solution 
of an appropriate model, there by reducing the number of experiments needed. 
Mathematical modeling of controlled drug delivery can help provide a scientific 
knowledge base concerning the mass transport mechanisms which are involved in the 
control of drug release. Thus mathematical modeling can significantly facilitate the 
optimization of existing and the development of new pharmaceutical products. The 
systematic use of models can save money and time. The mathematical approaches may 
help researchers to develop highly effective drug formulations and more accurate dosing 
regimens. 
 
5. Conclusions 
 
The interest of this work was to discuss some mathematical efforts which were established 
to understand the mechanisms ruling controlled drug delivery. This represents the fact that 
mathematical models play a pivotal role in the design of drug delivery systems. The 
mathematical models discussed above will aid specialists to understand the drug delivery 
mechanism and allow physicians to make a decision on an optimal dose to treat patients. 
Mathematical modeling for controlled drug delivery will prove invaluable in the ongoing 
struggle to develop new and more effective therapeutic for the treatment of cancer. In 
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closing, we consider the generality of our approach, discuss related research on 
mathematical modeling, and suggest directions for further endeavors. 
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