Available online at www.most.gov.bd Volume 05, Page: 83-92, 2023 DOI: https://doi.org/10.3329/jscitr.v5i1.74008 Ministry of Science and Technology Government of the People's of Bangladesh Bangladesh Secretariat, Dhaka # Performances of MnO₂ and SnO₂ Coated MnO₂ as Cathode Materials for Aqueous Rechargeable Zinc-ion Batteries Parbhej Ahamed¹*, Md. Ibrahim Hossain Mollah¹, Md. Saddam Hossain¹, Rabeya Sultana Mim¹, Rakhi Kundu¹, Nishat Mahal Ira¹, Nusrat Tazeen Tonu¹, Md. Mahfujul, Hasan² and Mohammad Abu Yousuf¹* #### Abstract In this study, the micro-emulsion method was used to create the manganese-based cathode materials MnO_2 and $MnO_2@SnO_2$. For the use as cathode materials in rechargeable zinc-ion batteries, MnO_2 and SnO_2 coated $MnO_2@SnO_2$ were synthesized. FT-IR, Powder X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), and UV-visible Spectroscopy were used to characterize the as-prepared materials. Electrochemical impedance spectroscopy (EIS), battery charge-discharge (BCD), and cyclic voltammetry (CV) techniques were used to investigate the electrochemical properties of the prepared cathode materials for aqueous rechargeable zinc-ion batteries (ARZIBs). The CV profiles were measured in the potential range of 2.1-1.0 V at a scan rate of 20 mV/s. A pair of redox peaks can be seen in the cycle of CV curves. Charge/discharge cycles of SnO_2 coated $MnO_2@SnO_2$ electrodes are higher than those of pristine MnO_2 . SnO_2 coated $MnO_2@SnO_2$ electrodes have better initial charge/discharge capacities than pristine MnO_2 electrodes, which is a factor to take into account. In the first cycle, SnO_2 coated $MnO_2@SnO_2$ electrode has a 26% higher charge capacity than the bare MnO_2 electrode. The SnO_2 coating on MnO_2 may be the cause of the enhanced charge and discharge capabilities of $MnO_2@SnO_2$. Received:05.05.2023 Revised: 12.12.2023 Accepted: 12.052024 Keywords: Micro-emulsion method, SnO₂ coated manganese dioxide, Aqueous rechargeable zincion battery ## Introduction Quality aspects of humanitarian need and economical activities of a country are directly dependent upon the amount of energy consumption [Lambert *et al.*, 2014]. Energy is considered a basis input commodity to shape various important world issues such as international relation and economy. In today's world, energy resources is thereby regarded as a strategic scale for the level of economic development of a country. They push the existing techno-sphere of today's society into a new tomorrow's one. Accordingly, the advent of rechargeable battery technologies as energy storage resources have been attracted much more attention because of their convenience and stability during utilization [Larcher and Tarascon 2015]. So far, various rechargeable batteries (Li⁺, Na⁺, K⁺, Ca²⁺, Zn²⁺, Al³⁺) in aqueous and non-aqueous system have been developed [Su *et al.*, 2017; Suo *et al.*, 2017 & Xia et. at., 2018]. Among the developed aqueous rechargeable zinc-ion batteries (ARZIBs) have achieved the global limelight newly as next generation safe energy storage device due to their environmental benignity, abundant resources, low cost, reliable safety and *Corresponding author e-mail: parbhej@chem.kuet.ac.bd ¹Department of Chemistry, Khulna University of Engineering & Technology, Khulna-9203 ²Institute of Food Science & amp; Technology, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka-1205, Bangladesh affordability [Wang et al., 2021]. They have been considered as promising and potential candidate to substitute non-aqueous rechargeable batteries. In a typical ARZIBs Zn²⁺ from zinc metal anode reversibly intercalated into the host cathode structure in aqueous zinc containing electrolyte environment. Many studies have been thereby applied to manganese based oxides (Mn_xO_v), vanadium based oxides (V_xO_y), Prussian blue analogues and some organic polymers based materials to find the suitable host for ARZIBs [Li et al., 2020]. Among them MnO₂ polymorphs with tunnel, layer and spinel based architecture have attracted great attention for the advancement of ARZIBs owing to high theoretical capacity (308 mA h g⁻¹), cost effectiveness and low toxicity. However, the development of rechargeable Zn || MnO₂ system are dramatically limited due to severe phase transition behavior of MnO₂ host during charge/discharge processes. Manganese dissolution and hydrated Zn²⁺ ions insertion are mainly responsible for severe structural transition of MnO₂. These drastic phase transition behavior of MnO₂ induces large volumetric transformation, creates collapsed structure and independent of the original architecture [Le et al., 2021]. As a result, cyclic performance and capacity of aqueous Zn || MnO₂ system significantly reduce and hindere their practical applications. This puzzling structural phenomenon has motivated battery researchers for designing suitable architecture MnO₂ material for the development of aqueous rechargeable Zn || MnO₂ battery. There are no reports of stable cycling of MnO₂ cathode materials for ARZIBs. But there are some reports about the cycle life of MnO2 in aqueous mild electrolyte system. Among them Liu's et al. reported 45 cycles of MnO₂ cycle life and found maximum 260 mAh/g specific capacity [Guo et al., 2020]. Alongside, Chen et al. has demonstrated 230 mAh/g specific capacity MnO₂ cathode in 150 cycles [Guo et al., 2019]. Thus, the development of structurally stable MnO₂ materials for long cycle life Zn \parallel MnO₂ system are still posing a great challenge to the battery researchers. These challenges are still need to be overcome for designing **ARZIBs** with outstanding electrochemical battery performance. As mentioned above, the poor cycling performance of MnO₂ materials are mainly due to the contribution from the structure transformation of MnO2 and hydrated Zn²⁺ ions insertion into MnO₂ structure. A promising solution to address this problem is to strengthen the structure of MnO2 via coating with metal oxides. Henceforth, it has been planned to investigate the influence of SnO₂ coating on MnO₂ cathode materials for energy storage performance ARZIBs. Greater initial charge/discharge exhibited SnO2-coated capacities are by MnO₂@SnO₂ electrodes compared to pure MnO₂ electrodes. #### **Materials and Methods** The methodology of the proposed project consists of four parts. First part is the preparation of MnO₂ and MnO₂@SnO₂ (5 wt% of SnO₂ to MnO₂) electrode material using water in oil microemulsion technique (Figure 1). The second part consists of the physical characterization of the prepared MnO₂@SnO₂ electrode materials using various techniques. Next part is the fabrication of CR-2032 coil cell. The final part is to investigate the electrochemical performance of the fabricated CR-2032 coil cell. **Figure 1.** Schematic illustration of the preparation of MnO₂ nano-materials. # Synthesis of SnO₂ Coated Manganese Oxide Cyclohexane, Triton X-100 and cyclohexanol used as oil phase, surfactant and co-surfactant, respectively, for the preparation of microemulsion. The desired amount of cyclohexane, Triton X-100 and cyclohexanol taken in two separate beaker with 5:3:2 volume ratios and then magnetically stirred. Aqueous solution of potassium permanganate $(KMnO_4)$ and hydrogen peroxide (H_2O_2) were added dropwise to a beaker to prepare one microemulsion (ME1). Another two micro-emulsions were prepared by adding stoichiometric amount of stannous chloride and sodium hydroxide to two separate beakers. Stannous chloride and sodium hydroxide containing beakers are termed ME2 and ME3, respectively. ME1 was stirred for a certain period of time to form manganese dioxide (MnO₂). Then, ME2 was added dropwise to ME1 and stirred for another 30 mins. Afterwards, ME3 was added to the solution for the formation of MnO₂@Sn(OH)₂. Calcination of MnO₂@Sn(OH)₂ at 300 °C in open atmospheric condition resulted MnO₂@SnO₂. ## Fabrication of CR-2032 Coin Cell CR-2032 cell was fabricated as coin cell. The cathode electrode was prepared by mixing $MnO_2@SnO_2$ carbon black poly(vinylidene fluoride) (PVDF) at the weight ratio of 8:1:1. N-methyl pyrolidone used to prepare the slurry of the mixture. The prepared slurry was coated on stainless steel plate and dried at 80 °C. Zinc sulphate (ZnSO₄) used as electrolyte. Filter paper was used as separator. Zinc foil was used as anode. Along with them other components like spacer, ring and case were used to fabricate CR-2032 coin cell. ## **Results and Discussion** Using straightforward micro-emulsion the technique, MnO_2 and 5% SnO₂ coated MnO₂@SnO₂was produced (MnO₂). The produced MnO_2 materials and $MnO_2@SnO_2$ were characterized using UV-visible spectroscopy, FT-IR, FESEM, XRD and EDS techniques. The produced MnO₂ and MnO₂@SnO₂ were utilized to construct the CR-2032 coin cell, and the cell was then electrochemically assessed. ## UV-Vis Spectroscopic Analysis Utilizing UV-Vis methods, the band gap energy of the produced MnO₂ nanoparticles was examined. Figure 2 depicts the spectrum obtained from the produced MnO₂ and SnO₂ coated MnO₂@SnO₂. The UV-Visible reflectance spectra of the manufactured materials were used to calculate the optical band gap energy (E_{σ}) of the materials using the Tauc method. The typical reflectance spectra of MnO₂ and MnO₂@SnO₂ are shown in Figures 2 (a) and 2 (c) respectively. Figures 2 (b) and 2 (d) display the calculated band gap energies of MnO₂ and MnO₂@SnO₂ using the derivation of absorption spectrum fitting method. According to the graph, the band gap energies of MnO₂ and MnO₂@SnO₂ are, respectively, 3.2 and 3.1 eV. This suggests that the SnO₂ coated MnO₂ has a redshift of 0.1 eV relative to the pristine MnO₂ alone. The reason for this reduction in band gap is the SnO₂ coating on the MnO₂ surface. # FTIR Analysis FTIR analysis was used to identify the presence of key functional groups in MnO₂ and MnO₂@SnO₂. Figure 3 shows the observed FTIR spectra of MnO₂ and MnO₂@SnO₂. The absorption bands in this IR spectra typically range from 400–4000 cm⁻¹, with 527, 722 and 1380 cm⁻¹ being the most common. The Mn-O stretching mode of MnO₂ is revealed by the absorption band at 527 cm⁻¹, which indicates the presence of a Mn-O bond inside the MnO₂ structure Bin et al., 2018 and Chao et al., 2018]. Peak at 527 cm⁻¹ for MnO₂@SnO₂ has been broadened by the stretching modes of both Sn-O-Sn and Mn-O. The band for MnO₂@SnO₂ widened at 527 cm⁻¹, indicating that SnO₂ was successfully coated on the MnO₂ surface. The O-H bending vibrations paired with Mn atoms are responsible for the bands that exist between 720 and 1380 cm⁻¹ Kundu et al., 2016). In the MnO₂ and MnO₂@SnO₂ structures, the existence of absorbed water molecules is attributed to the usual broad absorption in the wavelength ranges of 3200 and 3600 cm⁻¹. The band at 1616 cm⁻¹, on the other hand, represented the bending collision of adsorbed water. Both of these bands were present at the same time, indicating the presence of an adsorbed H₂O molecule in this sample (Wei et al., 2012 and Xu et al., 2012]. **Figure 2.** Typical reflectance spectrum of (a) MnO_2 and (c) $MnO_2@SnO_2$. Estimation of E_g according to derivation of absorption spectrum fitting method of (b) MnO_2 and (d) $MnO_2@SnO_2$. Figure 3. FTIR spectrum shown by the prepared sample. #### XRD Analysis X-ray diffraction patterns validated the phase purity and crystalline nature of the prepared MnO₂ and MnO₂@SnO₂ samples. The prepared sample's Xray diffraction pattern is shown in the Figure 4. The production of α-MnO₂ is indexed by XRD patterns with diffraction peaks at 12.7, 18.1, 28.8, 37.5, 42.1, 49.9, 56.2, and 60.3° (2 θ). The (110), (200), (310), (211), (301), (411), (600) and (521) planes are represented by the peaks. Peak positions at 28 and 37° of 2θ can be ascribed to the formation of a SnO₂ layer on the MnO₂ surface. Hence, all of the diffraction peaks are well correlated with MnO2 and SnO₂ published values in the literature [Alfaruqi et al., 2017 and Lu et al., 2017]. There are no impurity peaks that could be identified. According to the XRD data, the as-prepared materials are pure phase MnO₂ and MnO₂@SnO₂. Figure 4. XRD patterns of the prepared samples (a) MnO₂ and (b) MnO₂@SnO₂ ## FESEM Analysis The morphology of the produced MnO₂ and MnO₂@SnO₂ materials was determined using fFESEM. Figure 5 depicts the shape of the prepared MnO₂ materials. Figure 5 (b) shows the histogram that corresponds to Figure 5 (a). Figure 5 (c) illustrate morphology of MnO₂@SnO₂ materials. The histograms of Figure 5 (c) is shown in Figures 5 (d). As shown in Figure 5 (a) and Figure 5 (c), it can be concluded that the particles of MnO₂ and MnO₂@SnO₂ are compactly packed and practically spherical in shape. As an irregular structure of agglomeration, the spherical form of MnO₂ and MnO₂@SnO₂ have been observed. The aggregation of prepared MnO₂ and MnO₂@SnO₂ materials may be affected by crystal face attraction interactions, van der Waals forces, hydrogen bonding, and hydrophobic interactions on MnO₂ MnO₂@SnO₂ nanoparticle surfaces may also be responsible for the aforementioned interaction, in addition to crystal face attraction. The synthesized MnO₂ and MnO₂@SnO₂ have average particle sizes of 20 nm and 45 nm, as seen in the histogram. # EDS Analysis The elemental composition of the generated MnO_2 and $MnO_2@SnO_2$ nanoparticles was determined using EDSinvestigations. The elemental analysis of MnO_2 and $MnO_2@SnO_2$ nanoparticles are shown in Figure 6. Elemental analytical data, which shows a very high signal for Mn and O, confirms the presence of MnO_2 in the manufactured MnO_2 and $MnO_2@SnO_2$ materials. In the EDS spectrum of Figure 6 (b) the element Sn has been found. Apart from Mn and O, the elemental analysis data also shows traces of K and C. Remains of K could be the result from the reactions mixture. The carbon tap of the sample holder is responsible for the C signal in this image. #### Electrochemical Characterization The electrochemical performance of the produced samples MnO₂ and MnO₂@SnO was tested using coin cells. The synthesized cathode material was used to build and test the CR-2032 coin cells. This section delves deeper into the details of a number of electrochemical characterizations. ## Cyclic Voltammetry Figure 7 shows the CV profiles of Zn-MnO₂ and Zn-MnO₂@SnO₂ cell in an aqueous electrolyte of 2.0 M ZnSO₄ to investigate the electrochemical parameters of the manufactured battery. The CV profiles were recorded at a scan rate 20 mV/s in the potential range 2.1-1.0 V. A pair of redox peaks can be seen in the cycle of CV curves. Zn²⁺ deintercalation from Zn foil, occurs around 1.62 V in the anode scan. The oxidation of Zn metal to Zn²⁺ and intercalation into the tunnel structure of MnO₂ are both involved in this process. The transition of MnO₂ to ZnMnO₂ is related with Zn²⁺ intercalation into the tunnel structure of MnO₂. Meanwhile, a reversible peak appeared at ~1.32 V in the cathode scan. Zn²⁺ de-intercalates from ZnMnO₂ in the reversible process and MnO2 returns to its original tunnel structure. Figure 5. FESEM images and corresponding histogram of the prepared MnO₂ and MnO₂@SnO₂ materials. **Figure 6.** EDS pattern of the prepared (a) MnO₂(b) MnO₂@SnO₂. Figure 7. Cyclic voltammograms of the coin cell using (a) MnO₂ (b) MnO₂@SnO₂. The CV profiles of the pristine MnO₂ electrode differ slightly from those of the SnO₂ coated MnO₂@SnO₂ electrode. Nonetheless, all of the constructed electrode's CV cycles are identical in shape and appear to coincide. Hence, anode and cathode peaks observation in both Zn/MnO₂ and Zn/MnO₂@SnO₂ cells, indicating their redox behavior. The following reactions are linked with the intercalation and de-intercalation processes of Zn²⁺ ion into MnO₂ and MnO₂@SnO in the cathode and anode scans. De-intercalation reaction : Zn foil= $Zn^{2+} + 2e^{-}$ (1) Intercalation reaction: $MnO_2 + Zn^{2+} + 2e^{-} = ZnMnO_2$ (2) Overall cell reaction : $Zn + MnO_2 = ZnMnO_2$ (3) ## Battery Charge Discharge Figure 8 shows the charge/discharge curves of MnO₂ and MnO₂@SnO at 1 mA. The observed CV curves in Figure 7 are consistent charge/discharge plateaus around 1.6 and 1.3 V. Charge/discharge cycles of SnO₂ coated MnO₂@SnO₂ electrodes are higher than those of bare MnO₂. The factor to consider is that SnO₂ coated MnO₂@SnO₂ electrodes have higher initial charge/discharge capabilities than bare MnO₂ electrodes. When compared to a MnO₂@SnO₂ electrode, the charge capacity value has increased by 3%. The increased charge and discharge capabilities of MnO₂@SnO₂ may be due to the SnO₂ coating on MnO₂. Comparison of Cycle Number of MnO_2 and $MnO_2@SnO_2$ The capacity of MnO₂ electrode batteries has been found to be essentially stable up to 10 cycles. The battery can be cycled up to 14 times with MnO₂@SnO₂ electrode. The cathodes MnO₂ and MnO₂@SnO₂ may thus retain reversible and nearly stable capacities up to the aforementioned cycles at 1 mA applied current. Following that, the electrodes may experience severe Zn²⁺ dissolving in electrolyte, causing the capacity to become unstable. Electrochemical Impedance Spectroscopy of prepared MnO₂ and SnO₂ coated MnO₂@SnO₂ The EIS spectra of the as-prepared MnO₂ and MnO₂@SnO₂ electrodes are in the 10-100 kHz frequency range (vs. SCE) and have a 5 mV amplitude (Figure 9). High-frequency semicircles and a low-frequency oblique line appeared in the Nyquist plots. The ohmic resistance (R_s) , which includes the electrode intrinsic resistance as well as the ion/electron resistances through the electrolyte, separator, and SEI film, is represented by the intercept on the real axis. The high-frequency semicircle diameter of the MnO₂@SnO₂ sample is significantly smaller than that of the other electrodes, according to the photographs of the high-frequency region of all the samples. The MnO₂@SnO sample with SnO₂ coating had the lowest R_s value, indicating improved charge transfer between the electrolyte and electrode. Figure 8. BCD cycles of the fabricated coin cell using (a) MnO₂(b) MnO₂@SnO₂ cathode. Figure 9. EIS data of the fabricated coin cell before BCD using (a) MnO₂ and (b) MnO₂@SnO₂ cathode. # **Conclusions** In conclusion, MnO₂@SnO₂ composite was successfully produced in this study using the simple sol-gel approach and then utilized as an aqueous ZIBs cathode. A lower band gap value and increased structural stability are the results of SnO₂ anchoring on MnO₂. The reversible capacity of the MnO₂@SnO₂ combination is greater than that of pure MnO₂. The findings could open a path for the development of ZIB cathode materials. # Acknowledgements This research was done by the financial support of Ministry of Science and Technology (Fiscal Year 2021-2022). #### **Declaration** The authors declare that this research findings reported in this article do not have any conflicting interest. ## Author's contribution Parbhej Ahamed & Md. Ibrahim Hossain Mollah: Methodology, Investigation, Formal Analysis, Writing - Original Draft; Md. Saddam Hossain, Md. Mahfujul Hasan, *Nishat Mahal Ira & Md. Ibrahim Mollah*: Analysis, Validation, Review & Editing; *Mim & Nusrat Tazeen Tonu:* Resources, Writing - Review & Editing, Project administration; *Parbhej Ahamed & Mohammad Abu Yousuf*: Conceptualization, Resources, Writing-Review & Editing, Funding acquisition, Visualization, Supervision. #### References - Alfaruqi MH, Mathew V, Song J, Kim S, Islam S, Pham DT, & Kim J (2017), Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. *Chemistry of Materials*, **29(4)**, 1684-1694. - Bin D, Wang F, Tamirat AG, Suo L, Wang Y, Wang C, & Xia Y (2018), Progress in aqueous rechargeable sodium-ion batteries. *Advanced Energy Materials*, **8(17)**, 1703008. - Chao D, Zhu C, Song M, Liang P, Zhang X, Tiep NH, & Fan HJ, (2018), A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. *Advanced Materials*, **30**(32), 1803181. - Guo C, Tian S, Chen B, Liu H, & Li J (2020), Constructing α-MnO₂@ PPy core-shell nanorods towards enhancing electrochemical behaviors in aqueous zinc ion battery. *Materials Letters*, **262**, 127180. - Guo C, Zhou Q, Liu H, Tian S, Chen B, Zhao J, & Li J (2019), A case study of β -and δ -MnO₂ with different crystallographic forms on ion-storage in rechargeable aqueous zinc ion battery. *Electrochimica Acta*, **324**, 134867. - Kundu D, Adams BD, Duffort V, Vajargah SH, & Nazar LF (2016), A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. *Nature Energy*, **1(10)**, 1-8. - Lambert JG, Hall CA, Balogh S, Gupta A, & Arnold M (2014), Energy, EROI and quality of life. *Energy policy*, **64**, 153-167. - Larcher D, & Tarascon JM (2015), Towards greener and more sustainable batteries for electrical energy storage. *Nature Chemistry*, **7(1)**, 19-29. - Le T, Sadique N, Housel LM, Poyraz AS, Takeuchi ES, Takeuchi KJ, & Liu P (2021), Discharging behavior of hollandite α-MnO₂ in a hydrated zincion battery. *ACS applied materials & interfaces*, **13(50)**, 59937-59949. - Li C, Zhang X, He W, Xu G, & Sun R (2020), Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications. *Journal of Power Sources*, **449**, 227596. - Lu K, Song B, Zhang Y, Ma H, & Zhang J (2017), Encapsulation of zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for highperformance rechargeable zinc ion batteries. *Journal of Materials Chemistry A*, **5(45)**, 23628-23633. - Su D, McDonagh A, Qiao, SZ, & Wang G (2017), High-capacity aqueous potassium-ion batteries for large-scale energy storage. *Advanced Materials*, **29(1)**, 1604007. - Suo L. Borodin O, Wang Y, Rong X, Sun W, Fan X, & Wang C (2017), "Water-in-salt" electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. *Advanced Energy Materials*, **7(21)**, 1701189. - Wang X, Zhang Z, Xi B, Chen W, Jia Y, Feng J, & Xiong S (2021), Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. *ACS nano*, **15(6)**, 9244-9272. - Wei C, Xu C, Li B, Du H, & Kang F (2012), Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. *Journal of Physics and Chemistry of Solids*, **73(12)**, 1487-1491. - Xia C, Guo J, Lei Y, Liang H, Zhao C, & Alshareef HN (2018), Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. *Advanced Materials*, **30**(**5**), 1705580. - Xu C, Li B, Du H, & Kang F, (2012), Energetic zinc ion chemistry: the rechargeable zinc ion battery. *Angewandte Chemie*, **124(4)**, 957-959.