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Abstract 

Revealing electronically excited states across organic/organic interfaces is 

important to speculate the charge photo-generation mechanisms in organic devices. 

As organic solar cells are large and unorganized systems so it is very tough to 

access it using conventional quantum chemical approaches. To unearth the charge 

separation mechanism a massive scale of excited states should be considered. For 

this purpose in this study, we have applied recently developed fragment molecular 

orbital (FMO) method that can effectively consider large-scale molecular 

aggregates. In our model, we have treated for different configurations of 

pentacene/C60 bilayer hetero-junction structures. Here, we have also discussed the 

charge delocalization effect, structural deformations. The measured energy 

dynamics low-lying interfacial CT states are in well match with experimental 

reports. 
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Introduction 

Recently, organic solar cells have shown extensive 

interest as they offer the potential for competitive 

renewable energy through direct photo-electron 

conversion of lavishly available sun light. In 

organic solar cells, charge transfer (CT) states at the 

donor-acceptor (D/A) interface have been focused 

because of its potentially enabling extensive area 

and flexible photovoltaic devices (Clarke and 

Durrant, 2010; Ostroverkhova, 2016). Figure 1 

shows schematic diagram of charge transfer donor 

acceptor level. Electron–hole pair is created due to 

photon consumption of organic solar cells (OSC). 

In an organic/organic hetero-junction the exciton 

splits into free charge carriers after relocating 

donor, acceptor of electron. In the this the produce 

charge pairs can reunite to the initial state that 

reduce open-circuit voltage (Benduhn et al., 2017; 

Vandewal et al., 2010).  

Charge carriers (electron-hole pair) generated 

across the donor/acceptor coupling plays a major 

role in charge photo-generation as it is an transition 

charge generation and reunited mechanism in a 

charge transfer state (CT) [Lin et al. 2018, 

Vandewal 2016]. Thus, investigation of dynamic 

and mood of the ICT states is important to reveal 

the charge photo-generation. In OSCs one of the 

major concern is the produce of free charge 

breeding (Gao and Inganäs, 2014; Yoshida et al., 

2015). Some previous findings  (Cornil et al., 2013; 

Reid et al., 2014; Vandewal et al., 2014)  suggested 

that charge creation  can occurs due to thermally 

relaxed ICT states.  
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Figure 1. Schematic diagram of charge transfer. 

Some scientific reports explain which the existence 

of massive concentrated C60 guide to fast charge 

generation (Gélinas et al., 2014; Jakowetz et al., 

2016).  

They attributed their reports to enhance relocation 

of the electron in the C60 clusters that boost 

dividation of charge pair (electron–hole pair) by 

diminishing the exciton bond energy. It measures 

directly the low-lying ICT states measurements and 

electro luminescence spectroscopy (Bernardo et al., 

2014; Brigeman et al., 2016; Kitoh-Nishioka and 

Ando, 2016; Tvingstedt et al., 2009; Vandewal et 

al., 2010) in excessive CT states, that may play 

major role in charge dissociation process which is 

tough to portray experimentally.  

The aim of the current investigations is to reveal 

elaborate findings about the CT-state using ab initio 

method for excited-state computation. We have taken 

into account PEN/C60 where PEN for electron donor 

and C60 for electron donor  interfaces have been 

widely considered both experimentally theoretically 

(Ahmed, 2015; Fu et al., 2014; Hasan et al., 2018; 

Minami et al., 2013; Minami and Nakano, 2011; 

Verlaak et al., 2009; Yang et al., 2014; Zheng et al., 

2017, Fujita et al., 2018), (Brigeman et al., 2016; 

Congreve et al., 2013; Dimova et al., 2009; Howe et 

al., 2011; Nakayama et al., 2016; Yamamoto et al., 

2015).  

Although many previous reports about OSCs 

applied bulk hetero-junction devices, the usage of a 

hetero-junction bilayer is more pertinent for 

straightly corresponding the frontier models with 

electronic mechanisms. Previous published reports 

have directed to monitor the credence of the 

interfacial CT energies on different morphological 

status (Bernardo et al., 2014; Ndjawa et al., 2017), 

(Kästner et al., 2017; Lin et al., 2016)  at the 

PEN/C60 interfaces.  

 

 
Figure 2. Schematic diagram of Electron-Hole separation
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In this report, we have designed bilayer hetero-

junction structures composed of large number of 

atoms to understand clearly the structural change, 

charge delocalization effects of excited state 

computations. Fig. 2 shows the schematic diagram 

of electron-hole separation. 
 

Method and Modeling 

 
Figure 3.  Atomistic structure of the (a) face on and (b) edge on interfaces included in the calculation (b and d) local 

interface structure. 

The model of the C60/PEN interface as shown in 

Fig. 3 were constructed of C60, in which the [111], 

[211], and [011] directions were considered for 

different configurations in simulation model. (II) 

The PEN thin film (Schiefer et al., 2007) was 

connected with the C60[111] surface with two 

different orientations. In the intersection model for 

edge-on and face-on models incorporate about 

thousands of atoms as Fig. 3(a and c).  

 

Figure 4. Single molecule of pentacene and C60 
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On the C60/PEN interface structure molecular 

dynamics simulation was employed at 300 K 

temperature. In this simulation study considered 

time step of 10 ps. The molecular dynamics 

simulation package GROMACS (Berendsen et al., 

1995) was considering AMBER force field (GAFF) 

model (Wang et al., 2004). The local frontier 

regions, as noticeable in Fig. 3(b and d), were 

considered by the excited state technique. The most 

bottom state is very important of CT state because 

of its energy obtained precisely from 

photoluminescence spectra. Total energy 

contributions were spilt into for the one-electron 

and two-electron, E = E1e-+E2e
 
in order to clear 

understanding the CT energy. For the different 

orientations measured energies are 1.383 eV and 

1.142 eV, respectively of adiabatic states, indicates 

the extensive domination of interface arrangements. 

Fig. 4 shows single molecule of pentacene and 

fullerene.  

 

 
Figure 5. Absorption spectrum of face-on and edge-on 

 

We have analyzed the absorption spectrum of 

pentacene/fullerene system for face-on and edge-on 

structures to know the stability and charge transfer 

states between the systems as shown in Fig. 5. 

Results and Discussion 

To reveal the exact feature at organic/organic 

interfaces junction for electronic structure is a 

difficult task, as charge relocations needs to 

consider. An electron or hole wave function is 

divided for a sizeable molecules to specify its using 

the inverse participation ratios (IPRs). CT energies 

remain same for the adiabatic and diabetic states of  

the face-on stuctures. One C60-PEN pair is 

necessary for CT wave function because of their 

IPR for electron and hole. On the other hand, CT 

energy is reduced for the adiabatic than that of the 

diabatic for the edge-on system.  

For both the adiabatic and diabatic CT states, it is 

visualized that comparing the E1e and E2e of the 

charge delocalization effect diminish for one-

electron donation but does not change two-electron 

donation in edge-on model. 

  

Table 1. Comparison of diabatic and adiabatic CT states (face-on vs edge-on)of d 

Face on E (eV) E(2e) (eV) Reh(A) Δeh(A2) Δe(A2) Δh(A2) 

Diabetic CT 1.440 -1.803 7.4 0.0 0.0 0.0 

Adiabatic CT 1.383 -1.830 7.5 4.2 3.4 2.0 

 E (eV) E(2e) (eV) Reh(A) Δeh(A2) Δe(A2) Δh(A2) 

Diabatic CT 1.452 -1.222 12.5 0.0 0.0 0.0 

Adiabatic CT 1.142 -1.150 13.6 36.4 31.8 17.4 
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Here, we elucidate the outcome of the frontier 

morphologies hole delocalization. In previous 

studies, author et al. reported that the charge 

delocalization interactions increases with decreased 

electron-hole separation (D’Avino et al., 2016; 

Tamura and Burghardt, 2013).  

We therefore, expect larger inverse participation 

ratios (IPRs) and standard abberation of electron-

hole dissociation (σeh) to correlate with increased 

electron-hole separation (Reh). However, 

irrespective of the larger IPR of wave functions for 

electron and hole (IPRe and IPRh), and σeh of the 

adiabatic state for the edge-on model, Reh remain 

same in both wave functions (diabatic and 

adiabatic).  

The bottom CT states are well balanced of short-

range CT states whose Reh are identical to one 

another, charge decentralization does not change 

distance of electron-hole wave functions.  In 

previous theoretical reports, a tight-binding method 

(Ma and Troisi, 2014; Roth, 2015; Tamura and 

Burghardt, 2013) were applied for modeling the 

electronic states. Here, we have applied excited-

state calculation for local conjoin configurations, 

with all external point charges. In this study, 

employed fragment based FMO (Nakano et al., 

2002 Tanaka et al., 2014) method that is very 

effective for considering large systems.  

 
Figure 6.  Character of excited states  (a) face on and  (b) edge on structure 

FMO considered excited-state wave function 

for overlapping for both intramolecular and 

intermolecular (CT) excitations (Fujita et al., 

2018) in diabatic states. The diabatic local 

excitations (LEs) state and the excited states for 

adiabatic of the system are accomplished by 

employing this equation Hc = Ec, [Here H is 

the Hamiltonian for excited-state and c 

indicates for coefficients for the diabatic 

states]. Computational particulars are shown in 

(Fujita et al., 2018). In the PEN/C60 interfaces 

excited-state wavefunctions are written as 

 

  (1) 
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where |LEk(C) stands for first excited states of 

C60 and |LEk(P) denotes first excited states of 

PEN molecules, respectively.  

This part in Fig. 6 indicates excitation energies and 

wave function of lowest CT states for different 

orientations (face-on and edge-on) of molecules 

(C60 and PEN). To get clear understanding into 

energy dynamics, CT states were divided into two 

parts where E1e for one systems contributions and E2e 

for two electron systems; total energy E= E1e+E2e. 

Here orbital energy difference (Band gap) for one 

electron contribution and the Coulomb attraction of 

electron and hole wave functions for two-electron 

contribution. The measured energies of ICT for the 

adiabatic are 1.383 eV and 1.142 eV for different 

orientations (face-on and edge-on) respectively, 

suggesting the considerable influence of interface 

models as shown in Table 1. 

 
Figure 7. Electron-hole separation (a) (face-on) and (b) edge-on structure 

To know the effects of morphology on the energy 

dynamics, here first focal point on the diabatic 

frontier CT energies. In case of one electron E1e, the 

localized frontier CT states are 1.440 eV and 1.452 

eV for both orientations (face on and edge on). On 

the contrary, of E2e localized CT states are 1.830 

eV, and 1.222 eV for both orientations. The 

difference in E1e effectively develop from the 

pentacene quadrupole moments, which 

destabilize/stabilize the electron wave function on 

neighboring C60 molecules for different 

configurations (Verlaak et al., 2009). E2e 
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corresponds to Coulomb attraction of the electron–

hole and its value is measured based on 

intermolecular interspace of C60 and PEN. Results 

indicate the confined ICT energy is 1.1 eV for edge 

on that is lower that than of face-on structure (1.3 

eV) as shown in Fig.6. 

In this part we focus on the spatial extent of 

adiabatic ICT states. Here IPRs were proposed to 

consider large system and the charge carrier were 

divided. For the face-on structures the ICT energies 

remain unchanged for both adiabatic and diabatic 

states. Here, we analyze the effect of the interfacial 

morphologies for hole delocalization. Usually, the 

scope of relocations is more intensified by higher 

electronic pairings and smaller energy difference of 

complex systems. Here, the outcome of frontier 

dissection on the charge delocalization is ascribed 

essentially to the energy difference among heavily-

collaborating charge transfer states.  

The hole delocalization in the face-on orientation is 

repressed by the substabtial energy fluctuations in 

frontier CT states. On the other hand, the edge-on 

structure the PEN bundles run parallel to the 

interface where relocations over the heap does not 

increase distance between electron and hole  as 

shown in Fig.7. 

 
Figure 8. Variance of electron-hole separation, and delocalization of electron or hole wavefunctions 

From the delocalization effects, now we target on 

the electron–hole partition. Decentralization was 

specified corresponding to the electron–hole 

separation. Previous report have recommended the 

charge decentralization reduces electron–hole 

electrostatic intercommunication and thus expands 

of its partition (D’Avino et al., 2016; Tamura and 

Burghardt, 2013). We, therefore, predicted spacious 

IPRs and deviation of electron hole partition Seh to 

correlate with increased Reh.  

Fig. 8 shows clearly about the variance of electron-

hole partition, and relocations of electron or hole 

wavefunctions. Experimental findings have 

indicated to outcome of the molecular coordination 

and bulk morphologies on energy dynamics of 

frontier CT states (Kästner et al., 2017; Lin et al., 

2016, 2018). Main factors devoting to the ICT 

energies are columbic and cleavage outcomes on 

the orbital energy levels, that have been treated by 

the micro electrostatic model (Castet et al., 2014; 

Verlaak et al., 2009) and by photoelectron 

spectroscopy (Yoshida et al., 2015). Our first-

principle study explains the elongated bilayer 

heterostructure, successfully narrating the conjoin 

reliant ICT energy shifts. Here, we have 

individually treated different structures (face-on and 

edge-on) orientations because target is to prepare 

bilayer heterojunction by connecting two crystal 

structures. Simulation study of charge partition 
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mechanism may be attained by merging a wide-

ranging numerical method (Hoshi et al., 2013, 

2017; Terao et al., 2013) with a quantum dynamics 

theory, (Fujita et al., 2016; Huh et al., 2014; 

Sawaya et al., 2015) that may provide clue for a 

future research. 

Conclusions 

In this study, we have examined the excited states 

of PEN/C60 interface junction structures, employing 

ab initio technique to atomistic models which was 

tailored by MD. We have partially recreated the 

energetics of experimental findings. Based on the 

wave function of electron–hole (partition, 

delocalization) and excited states of the PEN/C60 

interfaces were analyzed. We have noticed that the 

PEN–ICT jointure findings of delocalized ICT 

states across the PEN/C60 frontier. From a 

computational point of view, we have exhibited the 

wide-ranging excited state measurements for the 

broaden bilayer hetero-junction model according to 

the newly introduced noble fragment-based method. 

We able to reveal a relation between frontier 

morphologies and optoelectronic development, 

which provides important clue for further research. 
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