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SUMMARY

In this article we propose a new variable selection method for analyzing data collected from
longitudinal sample surveys. The procedure is based on the survey-weighted quadratic in-
ference function, which was recently introduced as an alternative to the survey-weighted
generalized estimating function. Under the joint model-design framework, we introduce
the penalized survey-weighted quadratic inference estimator and obtain sufficient condi-
tions for the existence, weak consistency, sparsity and asymptotic normality. To illustrate
the finite sample performance of the model selection procedure, we include a limited sim-
ulation study.
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1 Introduction

In economics, social and health sciences, longitudinal sample surveys often exhibit complex sam-
pling design features such as unequal selection probabilities, stratification and clustering of individ-
uals. For data collected from some large-scale surveys, or from surveys which have been linked to
administrative data files, to explore relationships between the outcome variables and the covariates,
special methods are required for variable selection.
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The problem of variable selection is important since missing important covariates leads to un-
derfitting, inducing estimation bias and poor prediction performance, whereas the inclusion of too
many factors in the model generates overfitting, making the model unnecessarily complex and dif-
ficult to interpret, as well as producing unstable estimates. Traditional approaches such as stepwise
deletion and subset selection are usually used in practice, ignoring the stochastic errors acquired in
the variable selection process.

To improve the prediction accuracy and interpretability of regression models with a larger num-
ber of covariates, various penalized methods that force some coefficients to zero, have been proposed
in the literature. For example, the least absolute shrinkage and selection operator (LASSO) was in-
troduced in Tibshirani (1996), but even though it has several attractive properties, for large regression
coefficients, the method introduces a significant bias towards zero. Alternative methods have been
considered for bias reduction, such as e.g. the adaptive LASSO (ALASSO) (see Zou, 2006) via
a weighted penalty approach, and the smoothly clipped absolute deviation (SCAD) penalty, intro-
duced in Fan and Li (2001). The latter was shown to satisfy desirable theoretical and empirical
properties; for a parameter which is close to zero, it preserves the penalization rate of the LASSO,
but, as the absolute value of the parameter increases, the rate is continuously relaxed. However, the
SCAD penalty is non-convex, which generates numerical challenges in obtaining the solution, and,
in practice, additional considerations are needed for the selection of the regularization parameter.

The traditional approach to analyze sample survey data is to make a design-based inference on
the finite population parameters with respect to the distribution induced by the probability sampling
design. A penalized method for variable selection, based on an empirical likelihood approach to
model univariate responses from complex sampling surveys, was recently proposed in Zhao et al.
(forthcoming). Nevertheless, to draw conclusions which are valid beyond the reference population,
a stochastic model on the population elements is often needed and in such case, the large sample
properties of the estimators are obtained within a joint model-design framework, formally estab-
lished in Rubin-Bleuer and Schiopu Kratina (2005). The corresponding results specify an average
behaviour of estimators which would have been obtained from taking potential samples from all
possible finite populations.

The topic of variable selection in models for complex longitudinal sample survey data using
penalty functions is rather scarce in the literature and a first procedure, based on the survey-weighted
generalized estimating equation (GEE), was introduced in Wang et al. (2014). The motivating ex-
ample was the Canadian National Population Health Survey, where the binary variable of the loss
of independence among seniors is modelled using the logistic regression, as a function of eleven
other variables from the data set: sex, age, BMI, chronic conditions, smoking status, residence area,
education level, income level, living in company, active status and alcohol consumption. To select
significant variables and simultaneously estimate coefficients, using the SCAD penalty, the authors
used the survey-weighted GEE, introduced by Rao (1998) and further discussed in Roberts et al.
(2009) and Carrillo et al. (2010).

Under the semiparametric marginal modeling approach for longitudinal observations, the corre-
lations between measurements taken at different occasions of the survey are unknown and an alter-
native to the survey-weighted GEE was proposed in Dumitrescu et al. (2021). Its main advantage
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is that it yields estimators that are more efficient, under misspecification of the working correlation
matrix and are as efficient as the GEE counterpart, when the correlation matrix is correctly spec-
ified. Moreover, the procedure based on the survey-weighted quadratic inference function (QIF)
avoids the additional step of estimating the nuisance correlation parameters and, more importantly,
provides an inference function for model diagnostics, as well as for goodness-of-fit tests.

To automatically and simultaneously select variables, we propose the penalized survey-weighted
quadratic inference criterion, yielding an estimator with attractive large sample properties. The rates
of convergence of the penalized estimator depend on the regularization parameter and, under certain
conditions, we show that it retains the oracle property for selecting the correct model: the null
components of the estimator are estimated as zero, with probability converging to one, whereas, the
nonzero components are estimated as well as the correct submodel is known.

The paper is organized as follows. Our framework and notations are presented in Section 2. In
Section 3 we review the survey-weighted GEE and the survey-weighted QIF methods and show how
a result in Dumitrescu et al. (2021) can be used to obtain the limiting distribution of the survey-
weighted GEE estimator. The penalized survey-weighted QIF is introduced in Section 4 and we
obtain sufficient conditions for weak consistency, sparsity, as well as the asymptotic normality of
its nonzero components. In Section 5 we illustrate the finite sample performance of the proposed
model selection procedure and obtain numerical results on the estimated coefficients.

2 The Model: Assumptions and Notations

Longitudinal data comprise several observations, made at different time points on a set of individ-
uals or units and recorded measurements consist of a sequence of n size m vectors, denoted as
{yi1, . . . , yim}, i = 1, . . . , n. The usual assumption is that there is a correlation within the mea-
surements from each unit i but observations from different units are independent. Furthermore,
corresponding to yij there is a set of d non-stochastic covariates, denoted as a d-dimensional vector
xij . Hence y1, . . . ,yn is a sample of independent m dimensional random vectors, defined on a
probability space (Θ,A, Pβ), β ∈ Ω and the objective is to estimate the parameter β.

There are several estimating approaches which have been used in the literature and one of the
most popular assumes a marginal model for the response yij which depends on the parameter β
through the value θij = xT

ijβ,

Eβ(yij) = µ(θij) := µij(β) and Varβ(yij) = ϕµ′(θij) := ϕσ2
ij(β), ϕ ̸= 0.

Here, µ denotes the (canonical) link function, assumed to be a continuously differentiable function,
with µ′ > 0 and ϕ is an over-dispersion parameter. In the marginal modelling approach, the true
correlation within cluster i is not specified and the GEE method involves the use of a working cor-
relation matrix instead, denoted as Ri(α), which depends on a nuisance parameter α. An estimator
of β is taken to be the solution of the GEE, defined as

gn(β) :=

n∑
i=1

[
∂µi(β)

∂βT

]T
Ai(β)

−1/2Ri(α)−1Ai(β)
−1/2

[
yi − µi(β)

]
= 0, (2.1)
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where µi(β) = (µi1(β), . . . , µim(β))T and Ai(β) = diag{ϕσ2
i1(β), . . . , ϕσ

2
im(β)}. Assuming

that there exists a “true” value of the regression parameter, denoted as β0, which is an interior point
of Ω, the following identifiability assumption is imposed

Eβ

[
gn(β)

]
= 0 if and only if β = β0. (2.2)

When the sample is obtained through a complex sampling survey from a finite population U

of size N , using for example stratification or unequal cluster selection probabilities, the inference
needs to account for the sampling features. Namely, from the set of labels U = {1, . . . , N}, a subset
s ⊂ U of indices is selected according to a probability sampling design, Pπ such that P (i ∈ s) = πi,
1 = 1, . . . , N denotes the first-order inclusion probability. Then, to draw conclusions which are
valid beyond the reference population, we assume the stochastic model (2.1) on the population
elements in F = {y1, . . . ,yN}. This leads to a joint model-design inference, where the large
sample properties of the estimator are obtained according to the probabilities induced by the model
and survey design. The results then specify an average behaviour of the estimator, which would
have been obtained from taking potential samples from all possible finite populations. Within the
framework of a product probability space of the super-population and the design space (as introduced
in Rubin-Bleuer and Schiopu Kratina, 2005), an important assumption is that, given the design
variables, the sample selection and the model characteristics are independent.

In what follows, the following matrix notations will be used. For a d × 1 vector, λ, we use the
notation ∥λ∥ for its Euclidean norm, whereas if A is a d× d matrix, then ∥A∥ = sup∥λ∥=1 ∥Aλ∥
is used for its operator norm. If A is symmetric, we denote by λmin(A) and λmax(A) its min-
imum and maximum eigenvalues, respectively. In addition, for any matrix A, we have ∥A∥ =

[λmax(A
TA)]1/2.

3 The Survey-weighted Quadratic Inference Function

A standard assumption in the literature of longitudinal data is that the within-individual correlations
are equal and typical choices include

(a)R(α) = Im, where Im denotes the identity matrix of order m,
(b)R(α) = {ρlr(α)}1≤l,r≤m, where ρlr(α) = α, l ̸= r, 0 ≤ α ≤ 1, ρll(α) = 1,

(c)R(α) = {ρlr(α)}1≤l,r≤m, where ρlr(α) = α|l−r|, 0 ≤ α ≤ 1,

(d)R(α) = {ρlr(α)}1≤l,r≤m, where 0 ≤ ρlr(α) ≤ 1, l, r = 1, . . . ,m.

The above forms correspond to (a) independence, (b) exchangeable, (c) first-order autoregressive
and (d) unspecified correlation structure, respectively.

Remark 1. As noted in Qu et al. (2000), the inverses of the matrices in (a) - (c) can be written as a
linear combinations of a small number of simple basis matrices:

(a)M1 = Im,

(b)M1 = Im and M2 = {γlr}1≤l,r≤m, γlr = 1, for 1 ≤ l ̸= r ≤ m and γll = 0, l = 1, . . . ,m,
(c) M1 = Im, M2 = {γlr}1≤l,r≤m, γl,l−1 = 1, l = 2, . . . ,m and γl,r = 0, for r ̸= l − 1,

1 ≤ l, r ≤ m and M3 = {γlr}1≤l,r≤m, with γ11 = γmm = 1 and 0 elsewhere.
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Hence, we assume that the working covariance matrix R−1(α) can be written as

R−1(α) =

L∑
l=1

cl(α)Ml, (3.1)

with given M1, . . . ,ML. The “census extended quasi-score” vector q̄N (β) is defined as

q̄N (β) =
1

N

N∑
i=1

qi(β) =
1

N



N∑
i=1

[
∂µi(β)

∂βT

]T
Ai(β)

−1/2M1Ai(β)
−1/2

[
yi − µi(β)

]
...

N∑
i=1

[
∂µi(β)

∂βT

]T
Ai(β)

−1/2MLAi(β)
−1/2

[
yi − µi(β)

]


.

and the survey-weighted extended quasi-score is obtained using the survey design weights wi =

π−1
i , i ∈ s

qn(β) =
1

N

∑
i∈s

wiqi(β).

If the census extended quasi-score satisfies a central limit theorem (CLT) under the model probabil-
ity (assumption (N1)) and a CLT holds for the survey-weighted QIF, under the design probability
(assumption (N2)), the limiting distribution of the latter was obtained in Theorem 2 of Dumitrescu
et al. (2021), under the joint model-design probability. The notation L−→ is used for the convergence
in distribution of random variables.

Theorem 1. Assume that the following conditions hold.

(N0) n/N −→ f, as n → ∞, with 0 ≤ f < 1.

(N1) N1/2q̄N (β0)
L−→ N (0,Σβ0

), as N → ∞, under Pβ0
, where Σβ0

> 0.

(N2) Given the sequence of finite populations, FN = (y1N , . . . ,yNN ), we have

n1/2
[
qn(β0)− q̄N (β0)

] L−→ N (0,Σd), as n → ∞, under Pπ,

where Σd > 0 is non-stochastic.

Then, as n → ∞,

(Q) n1/2qn(β0)
L−→ N (0,Σ0), under Pβ0,π, where Σ0 = Σd + fΣβ0

. (3.2)

The statement of Theorem 1 is very general and it can be used to obtain the limiting distribution
of a sequence of estimators β̄n, obtained as a solution of the survey-weighted GEE, gWGEE

n (β) =

0. The pseudo-GEE estimating function

gWGEE
n (β) :=

n∑
i=1

wi

[
∂µi(β)

∂βT

]T
Ai(β)

−1/2Ri(α)−1Ai(β)
−1/2

[
yi − µi(β)

]
, (3.3)
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was first proposed in Rao (1998) and Roberts et al. (2009) to analyze longitudinal survey data.
Sufficient conditions for the pseudo-GEE estimator β̄n to be weakly consistent, under the joint

model and design probability, were given in Carrillo et al. (2010). Assuming that (Q) holds for
gWGEE
n , we next show a CLT result for this estimator. Denote Bn = {β ∈ Ω : n1/2∥β − β0∥ ≤

r}, with r > 0 and let

∇gWGEE
n (β) = −∂gWGEE

n (β)

∂βT
,

ḡN (β) =
1

N

N∑
i=1

[
∂µi(β)

∂βT

]T
Ai(β)

−1/2Ri(α)−1Ai(β)
−1/2

[
yi − µi(β)

]
.

Proposition 3.1. Assume that (N0) holds, together with the following conditions:

(G1) N1/2ḡN (β0)
L−→ N (0,Σg

β0
), as N → ∞, under Pβ0

, where Σg
β0

> 0.

(G2) Given the sequence of finite populations, FN = (y1N , . . . ,yNN ), we have

n1/2
[
gWGEE
n (β0)−ḡN (β0)

] L−→ N (0,Σg
d), as n → ∞, under Pπ, where Σg

d > 0 is non-stochastic.

(G3) there exists an invertible non-stochastic d× d matrix D0, such that, as n → ∞, we have

sup
β∈Bn

∥∥∥∇gWGEE
n (β)−D0

∥∥∥ Pβ0,π−→ 0.

Then, as n → ∞,

n1/2(β̄n − β0)
L−→ N (0,D−1

0 Σg
0D

−1
0 ), under Pβ0,π, where Σg

0 = Σg
d + fΣg

β0
. (3.4)

Proof. The Mean Value theorem applied to gWGEE
n , on the set {gWGEE

n (β̄n) = 0, β̄n ∈ Bn} gives

gWGEE
n (β̄n) = gWGEE

n (β0)−∇gWGEE
n (β∗

n)(β̄n − β0),

where β∗
n ∈ Bn and we write

n1/2gWGEE
n (β0) = n1/2D

1/2
0

[
D

−1/2
0 ∇gWGEE

n (β∗
n)D

−1/2
0 − Id

]
D

1/2
0 (β̄n − β0)

+ n1/2D0(β̄n − β0). (3.5)

By (G3), the first term in (3.5) is oPβ0π
(1) so that the asymptotic distribution of n1/2(β̄n − β0)

is equal to the asymptotic distribution of n1/2D−1
0 gWGEE

n (β0) and an application of Theorem 1
concludes the proof.

We now turn to the extended quasi-score vector. Let

Cn(β) =
1

N

∑
i∈s

wiqi(β)qi(β)
T ,
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and assume that it is Pβ0,π- a.s. invertible and that there exists a constant K > 0 such that for any
n, we have infβ∈Ω λmin[Cn(β)] > K, Pβ0,π- a.s.

Furthermore, suppose that the link function µ is three times continuously differentiable on a
neighbourhood of β0, Uδ = {β ∈ Ω; ∥β − β0∥ < δ}, with δ > 0 so that qn is twice continuously

differentiable on Uδ, Pβ0,π- a.s. Let Dn(β) =
∂qn(β)

∂βT
, whose k-th column is given by d

(k)
n (β)

and, for each k = 1, . . . , d, we denote G(k)
n (β) =

∂Cn(β)

∂βk
, with uniformly continuous entries on

Uδ .
The survey-weighted quadratic inference function is defined as

Qn(β) = nqn(β)
TCn(β)

−1qn(β)

and its first and second order partial derivatives, with 1 ≤ k, l ≤ d, satisfy

∂n−1Qn(β)

∂βk
= 2d(k)

n (β)TCn(β)
−1qn(β)− qn(β)

TCn(β)
−1G(k)

n (β)Cn(β)
−1qn(β),

∂2n−1Qn(β)

∂βk∂βl
= 2d(k)

n (β)TCn(β)
−1d(l)

n (β) + r(k,l)n (β),

where

r(k,l)n (β) = 2

[
∂d

(k)
n (β)

∂βl

]T
Cn(β)

−1qn(β)− 2d(k)
n (β)TCn(β)

−1G(l)
n (β)Cn(β)

−1qn(β)

− 2d(l)
n (β)Cn(β)

−1G(k)
n (β)Cn(β)

−1qn(β)

+ 2qn(β)Cn(β)
−1G(l)

n (β)Cn(β)
−1G(k)

n (β)Cn(β)
−1qn(β)

− qn(β)
TCn(β)

−1 ∂G
(k)
n (β)

∂βl
Cn(β)

−1qn(β).

In Dumitrescu et al. (2021), the following assumptions were used to obtain the limiting distribu-
tion of the survey-weighted QIF estimator

(S1) there exists a non-stochastic and positive definite Ld × Ld matrix, W0(β) such that

supβ∈Uδ
∥Cn(β)

−1 −W0(β)∥
Pβ0,π−→ 0, as n → ∞;

(S2) there exists a non-stochastic matrix D0(β), of size Ld × d, such that supβ∈Uδ
∥Dn(β) −

D0(β)∥
Pβ0,π−→ 0, as n → ∞;

(S3) the matrix J0(β) := D0(β)
TW0(β)D0(β) is non-singular on Uδ.

By Theorem 1 we have
√
nqn(β0) = OPβ0,π

(1)
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and, due to (S1) and (S2), for every k = 1, . . . , d, we obtain

∂n−1/2Qn(β0)

∂β
= n1/2Dn(β0)

TCn(β0)
−1qn(β) +R1

n(β0), ∥R1
n(β0)∥ = oPβ0π

(1). (3.6)

In addition, since r
(k,l)
n (β0) = oPβ0,π

(1), for any 1 ≤ k, l ≤ d we have

∂2n−1Qn(β0)

∂β∂βT
= 2Dn(β0)

TCn(β0)
−1Dn(β0) +R2

n(β0), with ∥R2
n(β0)∥ = oPβ0π

(1), (3.7)

which implies the element-wise convergence in Pβ0π of
∂2n−1Qn(β0)

∂β∂βT
to 2J0(β0), as n → ∞.

Definition 3.1. The pseudo-QIF estimator is defined as

β̂n = argmin
β∈Ω

Qn(β). (3.8)

Under the joint randomization framework, the expected value of the survey-weighted extended
quasi-score is equal to

Eβ0,π

[
qn(β)

]
=

1

N

N∑
i=1

∆i(β),

where

∆i(β) = Eβ0

[
qi(β)

]
=



[
∂µi(β)

∂βT

]T
Ai(β)

−1/2M1Ai(β)
−1/2

[
µi(β0)− µi(β)

]
...[

∂µi(β)

∂βT

]T
Ai(β)

−1/2MLAi(β)
−1/2

[
µi(β0)− µi(β)

]

 .

In Dumitrescu et al. (2021), the weak consistency of the pseudo-QIF estimator, with respect to the
joint model-design probability, was obtained (see their Theorem 1). Assumptions (A1) and (A2)

guarantee that the objective function approaches, uniformly, a census-type function, which, due
(A3), has a unique minimum at the true value of the parameter.

Theorem 2. Assume that the following conditions are satisfied.

(A1) supβ∈Ω ∥Cn(β)
−1 − WN (β)∥

Pβ0,π−→ 0, as n → ∞, for some positive definite Ld × Ld

matrix WN (β).

(A2) sup
β∈Ω

∥∥∥qn(β)−
1

N

N∑
i=1

∆i(β)
∥∥∥ Pβ0,π−→ 0, as n → ∞.

(A3) For every N ≥ 1, the equation 1
N

∑N
i=1 ∆i(β) = 0 has a unique solution, β0.
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Then, as n → ∞, we have

(C) β̂n

Pβ0,π−→ β0.

The limiting distribution of the pseudo-QIF estimator follows from the convergence of the
survey-weighted extended quasi-score (as in Theorem 3.2), by showing that this estimator is asymp-
totically linear, as defined in e.g. (3.3) of Newey and McFadden (1986). When terms of the func-
tions of β are evaluated at β0, we suppress β0 and denote D0 = D0(β0), J0 = J0(β0) and
W0 = W0(β0). The next result was shown in Theorem 3 of Dumitrescu et al. (2021).

Theorem 3. Assume that (C) and (Q) are satisfied, as well as (S1), (S2) and (S3). Then, as
n → ∞,

(U)
√
n(β̂n − β0)

L−→ N
(
0,J−1

0

[
DT

0 W0Σ0W0D0

]
J−1
0

)
, under Pβ0,π. (3.9)

In addition to yielding an estimator which is at least as efficient as the one obtained from the
survey-weighted GEE, the survey-weighted QIF can be used to construct a pseudolikelihood ratio
type statistics for testing composite hypotheses on model parameters, and a statistic for testing the
goodness-of-fit of the marginal model. Their limiting distributions are weighted sums of indepen-
dent chi-squared random variables, each with one degree of freedom.

4 The Penalized Survey-weighted Quadratic Inference Function

Based on the survey-weighted QIF, we introduce a new approach to variable selection for longitu-
dinal survey data which can incorporate the within cluster correlation, as well as the survey design
features, through penalization:

QP
n (β) = Qn(β) + n

d∑
k=1

pλ(|βk|),

where pλ is a penalty function which depends on a regularization parameter λ. The main advantage
of penalized methods versus other procedures, such as stepwise deletion and subset selection, is
that they can automatically and simultaneously select variables, hence, avoiding the corresponding
stochastic errors. There are several functions which have been used as penalties, such as the L2

penalty leading to the ridge regression, or the L1 penalty, used in LASSO. Due to its properties, in
our simulations, we use the SCAD, introduced in Fan and Li (2001), which is a nonconcave penalty
function on (0,∞), defined as a quadratic spline function with knots at λ and aλ (for some constant
a > 0)

pλ(|θ|) =


λ|θ|, |θ| ≤ λ,

− |θ|2−2aλ|θ|+λ2

2(a−1) , λ < |θ| ≤ aλ,

(a+1)λ2

2 , |θ| > aλ.

(4.1)
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This penalty is singular at origin (yielding sparse solutions), bounded (so that, for large coefficients,
the resulting estimators are nearly unbiased) and continuous (leading to a stable model selection
procedure). The function is continuously differentiable, with

p′λ(|θ|) = λI(|θ| ≤ λ) +
aλ− |θ|
a− 1

I(λ < |θ| ≤ aλ), a > 2.

In Fan and Li (2001), the value a = 3.7 was shown to give good practical performance for vari-
ous selection problems and it was shown that results were similar to those obtained by using the
generalized cross-validation method.

Definition 4.1. The penalized pseudo-QIF estimator is defined as

β̃n = argmin
β∈Ω

QP
n (β).

For any d-dimensional vector β, we consider the partition β = (βT
1 ,β

T
2 )

T into subvectors of
size d1 and d− d1, respectively, and use the corresponding notation

β0 = (βT
10,β

T
20)

T ,

assuming, without loss of generality that β20 = 0.
In our simulations, to calculate the penalized pseudo-QIF estimator, we use the iterative method,

based on a local quadratic approximation, as proposed in Fan and Li (2001). The method approxi-
mates the nonconvex SCAD penalty term by

pλ
(
|β(t)

k |
)
+

1

2

p′λ
(
|β(t)

k |
)

|β(t)
k |

[
(β

(t)
k )2 − β2

k

]
, β

(t)
k ̸= 0,

where β(t) = (β
(t)
1 , . . . , β

(t)
d )T is the estimator obtained at step t. If β(t)

k is such that |β(t)
k | < 0.001,

we set β(t+1)
k = 0 and write β(t) = (β

(t)
1 ,β

(t)
2 )T , where β

(t)
k ̸= 0, for k = 1, . . . , d1 and β

(t)
k = 0,

for k = d1 + 1, . . . , d. The algorithm is initialized with the value of the pseudo-QIF estimator β̂n

and, based on a previous value β(t), the objective function is approximated by

Qn(β
(t)) +

[
∂Qn(β

(t))

∂β1

]T
(β1 − β

(t)
1 ) +

1

2
(β1 − β

(t)
1 )T

[
∂2Qn(β

(t))

∂β1∂βT
1

]T
(β1 − β

(t)
1 )

+
1

2
nβT

1 Γ(β
(t))β1,

where β1 is a vector with d1 non-zero entries and Γ(β(t)) = diag

{
p′λ(|β

(t)
1 |)

|β(t)
1 |

, . . . ,
p′λ(|β

(t)
d1

|)

|β(t)
d1

|

}
.

Newton-Raphson algorithm gives the minimizer as

β
(t+1)
1 = β

(t)
1 −

[
∂2Qn(β

(t))

∂β1∂βT
1

+ nΓ(β(t))

]−1 [
∂Qn(β

(t))

∂β1
+ nΓ(β(t))β

(t)
1

]
. (4.2)
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The performance of the variable selection procedure depends on the choice of the tuning pa-
rameter and, following Wang and Qu (2009) and Cho and Qu (2013), in our simulations, we use a
Bayesian information criterion, based on the pseudo-QIF and take λn to be the minimizer of

WBIC(λ) =
[
Qn(β̃λ) + log(n)df(β̃λ)

]
.

Here, β̃λ denotes the penalized pseudo-QIF estimator and df(β̃λ) corresponds to its number of non-
zero entries. It can be shown that, with probability tending to 1, this criterion selects the tuning
parameter that identifies the true model (we refer to Qian, 2018, for a proof).

4.1 Asymptotic properties

In this section we investigate the asymptotic properties of the penalized pseudo-QIF estimator β̃n.
Results are formulated for a general penalty function, whose derivative is continuous and we use
the techniques in Fan and Li (2001) to obtain the desired properties. The first theorem shows that,
under assumption (P1), with probability converging to 1, the penalized pseudo-QIF estimator β̃n

exists within a ball Bn(r) = {β ∈ Ω; n1/2∥β − β0∥ ≤ r}, r > 0 and hence, it is
√
n− weakly

consistent. Assumption (P2) ensures that the penalty function does not have much more influence
than the pseudo-QIF function on the penalized estimator.

Theorem 4 (Existence and weak consistency). Assume that (Q), (S1), (S2), (S3) are satisfied,
together with the following conditions.

(P1) n
1/2 max

{
p′λn

(|β0k|), k = 1, . . . d1
}
= O(1).

(P2) max
{
|p′′λn

(|β0k|)|, k = 1, . . . d1
}
= o(1).

Then, there exists a sequence β̃n of random variables satisfying

(a) Pβ0,π

(
β̃n is a local minimizer of QP

n (β) on Bn(r)
) n→∞−→ 1 and

(b) ∥β̃n − β0∥ = OPβ0,π
(n−1/2).

Proof. (a) We show that, for any ε > 0, there exist r > 0 and nε,r such that the event
En =

{
QP

n (β0) < inf
β∈∂Bn(r)

QP
n (β)

}
has the property

Pβ0,π(En) ≥ 1− ε, for all n ≥ nε,r, (4.3)

where ∂Bn(r) = {β ∈ Ω; n1/2∥β − β0∥ = r}. This implies that, with probability at least 1 − ε,
there is a minimum in the ball Bn(r), i.e. there exists a local minimizer β̃n such that ∥β̃n − β0∥ =

OPβ0,π
(n−1/2).
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Let β ∈ ∂Bn(r) be arbitrarily fixed. By Taylor’s expansion of Qn(β), using pλn
(0) = 0

QP
n (β)−QP

n (β0) = Qn(β)−Qn(β0) + n

d∑
k=1

[
pλn

(
|βk|

)
− pλn

(
|β0k|

)]
≥
[
∂Qn(β0)

∂β

]T
(β − β0) +

1

2
(β − β0)

T ∂2Qn(β
∗)

∂β∂βT
(β − β0)

+ n

d1∑
k=1

[
p′λn

(
|β0k|

) |β0k|
β0k

(
βk − β0k

)
+

1

2
p′′λn

(
|β∗∗

k |
)(
βk − β0k

)2]
:= T1 + T2 + T3, (4.4)

where β∗ and {β∗∗
k }1≤k≤d1 are such that ∥β∗ − β0∥ ≤ ∥β − β0∥ = n−1/2r and |β∗∗

k − β0k| ≤
|βk − β0k| ≤ n−1/2r, for every k = 1, . . . , d1.

The Cauchy-Schwarz inequality gives T1 ≥ −r

∥∥∥∥∂n−1/2Qn(β0)

∂β

∥∥∥∥.
We evaluate

T2 =
1

2
(β − β0)

T

[
∂2Qn(β

∗)

∂β∂βT
− ∂2Qn(β0)

∂β∂βT

]
(β − β0) +

1

2
(β − β0)

T ∂2Qn(β0)

∂β∂βT
(β − β0)

= oPβ0,π
(1) + n(β − β0)

TI0(β − β0),

where by (S3), I0 = DT
0 W0D0 is positive definite.

From the Cauchy-Schwarz inequality, using (P1) and (P2), we obtain

T3 ≥ −r
√
d1
√
nmax

{
p′λn

(|β0k|), k = 1, . . . , d1

}
− r2

2
max

{ ∣∣p′′λn
(|β0k|)

∣∣ , k = 1, . . . , d1

}
+ o(1)

which is dominated by the leading term of T2. Hence, using (P2), we have

QP
n (β)−QP

n (β0) ≥ −r

∥∥∥∥∂n−1/2Qn(β0)

∂β

∥∥∥∥+ r2λmin(I0)

− r
√

d1
√
nmax

{
p′λn

(|β0k|), k = 1, . . . , d1

}
− oPβ0,π

(1)

and for ε > 0 arbitrarily fixed, choosing rε such that, for sufficiently large n, the right hand side of
the above inequality is strictly positive, with probability of at least 1 − ε, concludes the proof. Part
(b) now follows from (a).

For the SCAD penalty, if λn → 0, then, with n large enough, max
{
p′λn

(|β0k|), k = 1, . . . d1
}
=

0 and max
{
p′′λn

(|β0k|), k = 1, . . . d1
}
= 0 so that (P1) and (P2) are satisfied. We now show that,

with a regularization parameter chosen such that λn → 0 and
√
nλn → ∞, the penalized pseudo-

QIF estimator, using the SCAD penalty performs as well as the oracle procedure. Firstly, it identifies
the non-zero components correctly, with a probability converging to 1 and secondly, these estimators
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are as efficient as the estimator obtained if β20 = 0 were known. In the general case, the assumption
(P3), below assures that the penalty function singular at the origin so that the penalized pseudo-QIF
estimator possess the sparsity property.

Theorem 5 (Sparsity). Assume that (Q), (S1), (S2), (S3) hold, together with

(P3) lim inf
n→∞

lim inf
θ→0+

p′λn
(θ)λ−1

n > 0.

If λn → 0 and
√
nλn → ∞, as n → ∞, then, with probability converging to 1, for any sequence

β1n such that n1/2∥β1n − β10∥ = OPβ0,π
and C > 0, we have

0 = arg min
n1/2∥β2∥≤C

Qn

[
(βT

1n,β
T
2 )

T
]
.

Proof. Let β1n be such that n1/2∥β1n − β10∥ = OPβ0,π
(1) and let C > 0 be arbitrary. With

k = d1 + 1, . . . , d, using a Taylor’s expansion of the function
∂QP

n [(β
T
1n,β

T
2 )

T ]

∂βk
(as a function of

β2), around β20 = 0, we have

∂QP
n

[
(βT

1n,β
T
2 )

T
]

∂βk
=

∂Qn

[
(βT

1n,0
T )T

]
∂βk

+

d∑
l=d1+1

∂2Qn

[
(βT

1n,β
∗T
2 )T

]
∂βk∂βl

βl + np′λn

(
|βk|

)
sign(βk),

=
∂Qn

[
(βT

10,0
T )T

]
∂βk

+ oPβ0π
(1) +

d∑
l=d1+1

∂2Qn

[
(βT

10,0
T )T

]
∂βk∂βl

βl + oPβ0π
(1)

+ np′λn

(
|βk|

)
sign(βk), (4.5)

where β∗
2 is such that ∥β∗

2∥ ≤ ∥β2∥ ≤ Cn−1/2 and we used the continuity of the first and second
order partial derivatives of Qn(β), with respect to βk, k = d1+1, . . . , d around β0. From (3.6), the
first term in (4.5) is OPβ0π

(n1/2), whereas (3.7), together with (S1) and (S2), implies that the third
term is OPβ0π

(n1/2).

Since n−1/2λ−1
n → 0, we obtain

∂QP
n

[
(βT

1n,β
T
2 )
]

∂βk
= np′λn

(
|βk|

)
sign(βk) +OPβ0π

(n1/2) + oPβ0π
(1)

= nλn

[
λ−1
n p′λn

(
|βk|

)
sign(βk) + oPβ0π

(1) + oPβ0π
(n−1λ−1

n )
]
,

which, due to (P3), for large enough n, we have sign
{
∂QP

n [(β
T
1n,β

T
2 )]

∂βk

}
= sign(βk) for any k =

d1 + 1, . . . , d and C > 0. Hence, QP
n [(β

T
1n,β

T
2 )] has a local minimum within the ball {β2 :

n1/2∥β2∥ ≤ C}, at β2 = 0.

Under the assumptions of Theorem 5, with probability converging to 1, if the penalized pseudo-
QIF estimator β̃n = (β̃T

1n, β̃
T
2n)

T is
√
n-consistent, then it must satisfy β̃2n = 0.



34 Dumitrescu et al.

Let D10 be the Ld1 × d1 matrix obtained from D0

{(
β10

0

)}
by selecting the rows and columns

corresponding to β10, i.e. include the first d1 columns and rows numbered by ηd+ 1, . . . , ηd+ d1,
where η = 0, . . . , (L−1). Similarly, let W10 be the Ld1×Ld1 matrix obtained from W0

{(
β10

0

)}
by

selecting the rows and columns which are numbered as ηd+1, . . . , ηd+d1, where η = 0, . . . , (L−1).
Finally, let I10 denote the upper d1 × d1 corner of the matrix I0

{(
β10

0

)}
and

bn =
(
p′λn

(
|β01|

)
sign(β01), . . . , p

′
λn

(
|β0d1

|
)
sign(β0d1

)
)T

,

Bn = diag
{
p′′λn

(
|β01|

)
, . . . , p′′λn

(
|β0d1

|
)}

.

Theorem 6 shows that the limiting distribution of β̃1n is normal and that, for certain penalties,
including the SCAD, the penalized pseudo-QIF of β10 is asymptotically as efficient as the estimator
obtained if β20 = 0 were known.

Theorem 6 (Limiting distribution). Assume that (Q), (S1), (S2), (S3) and (P3) hold. If λn → 0

and
√
nλn → ∞, as n → ∞, then, with probability converging to 1, the

√
n-consistent local

minimizer of QP
n (β), β̃n = (β̃T

1n,0
T )T satisfies

√
n
[
2I10 +Bn

]{
β̃1n − β10 + [2I10 +Bn]

−1bn

}
L−→ N

(
0, 4DT

10W10Σ
(1)
0 W10D10

)
,

under Pβ0π , where Σ
(1)
0 denotes the Ld1 × Ld1 matrix obtained from Σ0 = Σd + fΣ(βT

10,0
T )T by

selecting the rows and columns which are numbered as ηd+1, . . . , ηd+d1 and η = 0, . . . , (L−1).

Proof. Since the local minimizer of QP
n (β1,0), β̃1n, is a

√
n-consistent estimator of β10, a Taylor’s

expansion gives

∂QP
n

∂β1

{(
β̃1n

0

)}
=

∂Qn

∂β1

{(
β10

0

)}
+

∂2Qn

∂β1∂βT
1

{(
β∗
1

0

)}
(β̃1n − β10) + nbn

+ n diag
{
p′′λn

(|β∗∗
1 |), . . . , p′′λn

(|β∗∗
d1
|)
}
(β̃1n − β10),

where β∗
1 and β∗∗

k are such that ∥β∗
1 − β10∥ ≤ ∥β̃1n − β10∥ and |β∗∗

k − β0k| ≤ |β̃nk − β0k|, with
k = 1 . . . , d1. After rearranging, we obtain

−
√
n
∂n−1Qn

∂β1

{(
β10

0

)}
=

∂2n−1Qn

∂β1∂βT
1

{(
β10

0

)}
√
n(β̃1n − β10) +

√
nbn +Bn

√
n(β̃1n − β10)

+

∂2n−1Qn

∂β1∂βT
1

{(
β∗
1

0

)}
− ∂2n−1Qn

∂β1∂βT
1

{(
β10

0

)}√
n(β̃1n − β10)

+ diag
{
p′′λn

(|β∗∗
1 |)− p′′λn

(|β01|), . . . , p′′λn
(|β∗∗

d1
|)− p′′λn

(|β0d1
|)
}√

n(β̃1n − β10).
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Due to (3.7),
∂2n−1Qn

∂β1∂βT
1

{(
β10

0

)}
= 2I10 + oPβ0π(1) which, together with the fact that the entries

of
∂2n−1Qn

∂β1∂βT
1

{(
β1

0

)}
are continuous at (βT

10,0
T )T , the asymptotic distribution of

√
n
[
2I10 +Bn

]{
β̃1n − β10 + [2I10 +Bn]

−1bn

}
is equivalent to that of −

√
n
∂n−1Qn

∂β1

{(
β10

0

)}
. The latter is equivalent to the limiting distribu-

tion of −2
∂qn

∂βT
1

{(
β10

0

)}{
Cn

{(
β10

0

)}}−1√
nqn

{(
β10

0

)}
, using (3.6), which, in turn, is given

by N
(
0, 4DT

10W10Σ
(1)
0 W10D10

)
, under the joint model-design probability, due to Theorem 1 and

assumptions (S1) and (S2).

Remark 2. Under the assumptions of Theorem 6, if ∥bn∥ → 0 and ∥Bn∥ → 0 then

√
n
(
β̃1n − β10

) L−→ N
(
0, I−1

10 [DT
10W10Σ

(1)
0 W10D10]I−1

10

)
,

under Pβ0π , showing that the penalized pseudo-QIF estimator is as efficient as the oracle estimator
that assumes the true model, with β20 = 0 is known.

By Theorem 6, an estimator of the asymptotic variance of β̃1n is given by

n−1

[
∂2n−1Qn

∂β1∂βT
1

{(
β̃1n

0

)}
+Bn

]−1

V̂(1)
0

[
∂2n−1Qn

∂β1∂βT
1

{(
β̃1n

0

)}
+Bn

]−1

,

where V̂(1)
0 = 4D1n(β̃1n)

T
[
C1n(β̃1n)

]−1
Σ̂

(1)
0

[
C1n(β̃1n)

]−1D1n(β̃1n), with Σ̂
(1)
0 = Σ̂d +

fΣ̂(β̃T
1n,0)

T . In addition, D1n(β̃1n) denotes the Ld1 × d1 matrix obtained from Dn

{(
β̃1n

0

)}
by

selecting the first d1 columns and rows numbered by ηd + 1, . . . , ηd + d1 and C1n(β̃1n) is the
Ld1 × Ld1 matrix obtained from Cn

{(
β̃1n

0

)}
by selecting the rows and columns which are num-

bered as ηd+ 1, . . . , ηd+ d1, where η = 0, . . . , (L− 1).
In complex sample surveys the asymptotic variance of an estimator may have a complicated form

and resampling methods have to be used. Wang et al. (2014) used the estimating function bootstrap
method for variance estimation under the penalized pseudo-GEE method for variable selection. A
bootstrap method can be employed to obtain a variance estimator of β̃1n by generating bootstrap
weights using the Rao-Wu rescaling method (see Rao and Wu, 1988; Rao et al., 1992) and taking a
one-step bootstrap. Then, as in (4.2), for each set of bootstrap weights, the value of the estimator of
the non-zero components can be updated as follows

β̃
(b)
1n = β̃1n −

[
∂2Q

(b)
n (β̃n)

∂β1∂βT
1

+ nΓ(β̃n)

]−1 [
∂Q

(b)
n (β̃n)

∂β1
+ nΓ(β̃n)(β̃1n)

]
, (4.6)
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where Q
(b)
n (β̃1n) is the bootstrap weighted QIF, calculated using the b-th set of bootstrap weights.

Consequently, a bootstrap variance estimator is given by

V̂B
β̃1n

:=
1

B

B∑
b=1

(
β̃
(b)
1n − β̃1n

)(
β̃
(b)
1n − β̃1n

)T
. (4.7)

5 Numerical Results

We generate a finite population with correlated binary responses from the following marginal logistic
model

logitµij(β0) = xT
ijβ0, x

k
ij

indep∼ U(0, 0.8), i = 1, . . . N, j = 1, . . . ,m, k = 1, . . . d,

N = 30000, m = 5, d = 10, β0 = (0.8,−0.7,−0.6, 0, 0, 0, 0, 0, 0, 0)T , choosing the exchangeable
correlation matrix with parameter α = 0.4 as the true correlation. In this case, the basis matrices are

M1 = I5 and M2 =



0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0


and d1 = 3.

From each generated finite population we obtain a sample of n clusters, using informative sam-
pling: clusters are selected with probability proportional to the size measures zi =

∑5
j=1 yij + 1,

with replacement. We consider sample sizes of n = 300 and n = 500 and repeat the procedure of
generating a finite population and then selecting the sample H = 500 times.

For each sample, we apply each the following methods: unweighted QIF with SCAD penalty
(UNWGT), weighted QIF with SCAD penalty (PQIF), weighted GEE with SCAD penalty (PGEE)
and ORACLE, which is the weighted QIF under the true model (with three nonzero coefficients and
seven zero coefficients).

To evaluate the performance of the proposed method, two working correlations: exchangeable
(EX) and fist-order autoregressive (AR1) are considered for each procedure and assessed in Table
1, as follows. The columns labeled as “(True)”, “(Over)” and “(Under)” give, respectively, the
percentage of times the true model (only first three components of the estimator are non-zero) is
selected, the percentage of times the variables are over-selected (more than the first three components
of the estimator are non-zero ) and the percentage of times the variables are under-selected (at least
one of the first three components of the estimator is zero). The results in Table 1 show that the
unweighted PQIF is not capable of variable selection and only less than 10% of the time the true
model selected. Furthermore, PQIF and PGEE both perform well in terms of selecting the true
model (True), with PQIF leading to slightly larger values.
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Table 1: Correlated binary responses in surveys: comparisons of the unweighted QIF, penalized
pseudo-QIF, penalized pseudo-GEE and oracle QIF under exchangeable and AR(1) working corre-
lation matrices. The columns labeled as “(True)” indicate the percentage of times the true model
is selected (i.e. only first three components of the estimator are non-zero). The columns labeled
as “(Over)” indicate the percentage of times the variables are over-selected (i.e. more than the first
three components of the estimator are non-zero). The columns labeled as “(Under)” give the per-
centage of times the variables are under-selected (i.e. at least one of the first three components of
the estimator is zero).

Exchangeable AR(1)

Sample size Method (True) (Over) (Under) MSE (True) (Over) (Under) MSE

n = 300 UNWGT 5.6 34.2 60.2 0.538 2.4 16.0 71.6 0.610

PQIF 80.8 11.2 8.0 0.129 75.0 11.4 13.6 0.163

PGEE 73.0 10.6 16.4 0.172 72.2 10.4 17.4 0.181

ORACLE 100.0 - - 0.072 100.0 - - 0.080

n = 500 UNWGT 7.0 66.6 26.4 0.384 5.4 59.6 35.0 0.435

PQIF 91.2 8.6 0.2 0.049 87.8 11.0 1.2 0.065

PGEE 88.2 10.0 1.8 0.054 87.0 10.2 1.8 0.062

ORACLE 100.0 - - 0.039 100.0 - - 0.046

In addition, we compute the Monte Carlo average MSE of the estimators, reported in Table 1 as
MSE

MSE =
1

H

H∑
h=1

(
β̃(h)
n − β0

)T(
β̃(h)
n − β0

)
,

where β̃(h)
n is the survey-weighted penalized estimator, calculated at iteration h, with h = 1, . . . ,H

and H = 500. Table 1 shows that UNWGT leads to larger MSE, while PQIF exhibits smaller MSE
than PGEE. As expected, ORACLE performs the best in terms of correctly selecting the true model
and MSE.

In Table 2 we report the absolute relative bias of the non-zero coefficients, calculated as

ARB(β̃nk) =

∣∣∣H−1
∑H

h=1 β̃
(h)
nk − β0k

∣∣∣
|β0k|

× 100, k = 1, 2, 3,

where β̃
(h)
nk is the k-th component of β̃(h)

n and β0k is the k-th entry of β0. The unweighted PQIF
yields biased results, whereas the relative biases of PQIF estimates are less that those of PGEE. In
addition, in contrast to the unweighted methods, the values the relative bias decrease in case of the
weighted methods.
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Table 2: Correlated binary responses in surveys: comparisons of percent absolute relative bias
(ARB) of regression coefficients, obtained from the unweighted QIF, penalized pseudo-QIF, pe-
nalized pseudo-GEE and oracle QIF, under exchangeable and AR(1) working correlation matrices.

Exchangeable AR(1)

Sample size Method β̃n1 β̃n2 β̃n3 β̃n1 β̃n2 β̃n3

n = 300 UNWGT 28.8 30 55 28.8 37.1 61.7

PQIF 1.3 1.4 6.7 2.5 0 8.3

PGEE 7.5 1.4 13.3 6.3 1.4 13.3

ORACLE 1.3 1.4 3.3 0 0 3.3

n = 500 UNWGT 28.4 22.9 41.4 28.6 26.6 46.5

PQIF 1.7 2.3 4.0 1.4 2.0 3.9

PGEE 3.9 1.2 5.8 3.5 0.9 4.5

ORACLE 1.8 2.4 3.9 1.5 2.0 3.2

Next, we evaluate the performance of the bootstrap variance estimator given by (4.7). To obtain
the bootstrap standard error, we draw 500 bootstrap samples of size n − 1, each selected with
replacement and equal probabilities from the n sampled units. For each b-th bootstrap sample, the
bootstrap weights are calculated using the rescaling formula

w
(b)
i = wi

n

n− 1
t
(b)
i ,

where t
(b)
i is the number of repetitions of unit i in the b-th bootstrap sample.

As in Fan and Li (2001), to illustrate the performance of the proposed variance estimator, we
first compute SD (for each k = 1, 2, 3), defined as the ratio between the median absolute deviation
of the estimator β̃nk

median
{∣∣∣β̃(h)

nk − median{β̃(h)
nk , h = 1, . . . ,H}

∣∣∣ , h = 1, . . . ,H
}
,

and 0.6745. Due to the normality of the limiting distribution of β̃nk, this value is an estimate of
its true standard error and in Table 3, we compare it with the one obtained from the bootstrap
method, denoted as SDm. The latter is obtained as the median of the H bootstrap estimated standard
deviations

median
{√

v̂B,h

β̃nk
, h = 1, . . . ,H

}
,

where, at each iteration h, v̂B,h

β̃nk
= B−1

∑B
b=1

(
β̃
(b,h)
nk − β̃

(h)
nk

)2
is the bootstrap variance estimate of

β̃
(h)
nk . Here, β̃(b,h)

nk denotes the k-th component of β̃(b,h)
1n whose form is given in (4.6), h = 1, . . . ,H .
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Table 3: Correlated binary responses in surveys: accuracy of the bootstrap approximation of the
variance of the penalized pseudo-QIF estimator, under exchangeable and AR(1) working correlation
matrices.

β̃n1 β̃n2 β̃n3

Sample size SD SDm (SDmad) SD SDm (SDmad) SD SDm (SDmad)

Exchangeable

n = 300 0.172 0.163 (0.016) 0.152 0.161 (0.015) 0.142 0.156 (0.015)

n = 500 0.112 0.127 (0.011) 0.125 0.125 (0.010) 0.099 0.123 (0.010)

AR(1)

n = 300 0.181 0.172 (0.018) 0.170 0.170 (0.016) 0.162 0.165 (0.016)

n = 500 0.124 0.134 (0.011) 0.137 0.133 (0.011) 0.125 0.131 (0.011)

Furthermore, for each k = 1, 2, 3, the median absolute deviation error of the 500 bootstrap estimated
standard errors, denoted as SDmad is evaluated as the ratio between

median
{∣∣∣√v̂B,h

β̃nk
− SDk

∣∣∣ , h = 1, . . . ,H
}
,

and 0.6745, where SDk is the estimate of the true standard error of β̃nk. Results in Table 3 compare
estimates obtained under the two working correlations and different sample sizes. They show that in
each case, the one-step bootstrap method for variance estimation performs well in tracking the value
of the true standard error of β̃nk, k = 1, 2, 3.

6 Conclusions
In this article, based on a penalized survey-weighted quadratic inference function, we proposed a
new approach to model selection for longitudinal survey data. Under the joint model-design frame-
work, the procedure performs parameter estimation and model selection simultaneously and takes
into account the within-cluster correlation and the complex sampling survey-design features. The
method is directly applicable to discrete or continuous data and has the additional advantage of incor-
porating the within-cluster correlation without specifying the full likelihood function, or estimating
the correlation parameters. The penalized survey-weighted approach was shown to be consistent
for model selection and to satisfy the oracle property. Our simulation study illustrated the finite
sample performance of the proposed procedure in terms of true model selection, under informative
sampling.

In complex sample surveys the asymptotic variance of an estimator may have a complicated
form and, in practice, to obtain a variance estimator, the first stage sampling fractions under a mul-
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tistage design are assumed to be small and treated as if the first stage sampling units are drawn with
replacement. Following the lines of Section 4.3 in Dumitrescu et al. (2021), a simplified variance
estimator of the proposed penalized pseudo-QIF can be derived under this set up and it would be of
interest to compare its performance to the bootstrap variance estimator given in (4.7).

As we advocate throughout the paper, the survey-weighted quadratic inference function ap-
proach for modelling longitudinal survey data is a flexible and convenient tool. It has the appealing
feature of yielding efficient estimators, but it also provides a pseudolikelihood ratio type statistics
to test composite hypotheses on model parameters, and a statistic for testing the goodness-of-fit of
the marginal model. Furthermore, due to modern challenges in the analysis of contemporary survey
data, in some model selection problems the number of parameters is large. In the case of non-survey
responses, in Fan and Peng (2004) and Cho and Qu (2013) it was shown that the rate of divergence
of the number of parameters influences the convergence rate of penalized estimators. However, for
complex sampling surveys, to obtain accurate results, the survey design features should be taken
into consideration and we anticipate that the survey-weighted quadratic inference function can be
employed to analyze high-dimensional survey data. We intend to formalize these ideas in a future
project.
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