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SUMMARY

We investigate the performance of methods for estimating the conditional quantile of a
response based on longitudinal data, when outcomes are incomplete and when the cor-
relation between repeated responses is ignored. In a simulation study, we compare the
performance of the quantile regression estimator based on the complete cases, the available
cases, quantile-based multiple imputation, and quantile-based inverse probability weight-
ing. In the data setting considered, quantile-based multiple imputation is the most promis-
ing method with the best bias-efficiency trade-off. A potential drawback, however, is its
computation time.
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1 Introduction

In a setting where longitudinal data are collected, often not all scheduled measurements of a subject’s
outcome are observed (see Fitzmaurice et al. (2008) for an overview of longitudinal data analysis). In
this paper, we focus on dropout, where a subject drops out from the study at a certain occasion, after
which time there are no recordings. Inference based on only the complete cases in a longitudinal
study generally leads to biased and inefficient estimators (as shown in the simulation study, see
Section 3). Therefore, there is a need for techniques that properly handle missing data (see among
others Little and Rubin (2014) and Molenberghs et al. (2014)).

The nature of the missingness mechanism highly influences the performance of statistical tech-
niques that deal with missing data. According to Rubin (1976), there are three main missing data
mechanisms: missing completely at random (MCAR), missing at random (MAR), and missing not
at random (MNAR). Under MCAR, missingness does not depend on either the observed or unob-
served variables, apart from perhaps covariates. When missingness is independent of the unobserved
measurements conditional on the observed ones, the process is called MAR. MNAR occurs when
neither MAR nor MCAR hold. The latter is a very general and therefore realistic assumption, of
course, but leads to challenging inferential problems. The most commonly used assumption, at least
for a primary analysis in a variety of settings, such as clinical trials, is MAR.

Two commonly used methods to deal with missing data are inverse probability weighting (IPW)
methods (Horvitz and Thompson, 1952; Robins et al., 1994, 1995; Lipsitz et al., 1998) and multiple
imputation (MI) (Rubin, 1987; Lipsitz et al., 1998; Aerts et al., 2002; Wei et al., 2012; van Buuren,
2012; Carpenter and Kenward, 2013). MI uses the observed data to generate values for the missing
data from the predictive distribution of what is unobserved given what is observed. Once the data are
imputed, standard inference techniques for complete data are used together with relatively straight-
forward combination rules. IPW methods, on the other hand, change the optimization problem, by
re-weighting observations as a a function of the underlying missingness mechanism. Several au-
thors have compared IPW and MI, predominantly in fully parametric or semi-parametric settings,
such as generalized estimating equations (GEE). For example, Beunckens et al. (2008) concluded
that MI combined with GEE performed better in terms of mean squared error than weighted GEE.
This is not totally surprising. Indeed, as is known from the survey literature as well, a weighted
analysis tends to decrease precision relative to the corresponding unweighted analysis. The effect is
exacerbated when the variability in observation-driven weights, rather than design-based weights is
taken into account, but the decreased precision manifests itself, even when this additional variability
is ignored.

The focus of this paper is placed on techniques dealing with missing data when the aim is to
estimate the effect of covariates on a quantile of the response, i.e., quantile regression (Koenker and
Bassett, 1978). Quantile regression allows to examine the effect of covariates on different quantiles
of a response (and not only the center of the distribution). The method is therefore also useful for
asymmetrically distributed responses and models with heteroscedastic errors.

The model and methods are described in Section 2. Section 3 contains a simulation study.
A motivating study on ophthalmology is analyzed in Section 4. Finally, we end the paper with
concluding remarks in Section 5.
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2 Model and Methodology

We focus on estimating the τ -th quantile (with 0 < τ < 1) of a response given the covariates. We
assume that we have observations (Xi,Yi) (for i = 1, . . . , n), where Yi = (Yi1, . . . , Yini)

′ is a ni-
dimensional response vector for individual i = 1, . . . , N . Consider the multivariate linear quantile
regression model

QYi(τ |Xi) = X ′
iβ

τ , (2.1)

where X ′
i is a (ni × p)−matrix of covariates, βτ = (βτ

1 , . . . , β
τ
p )

′ is a vector of regression coeffi-
cients and QYi(τ |Xi) is the elementwise τ -th conditional quantile of Yi.

2.1 Quantile regression

The conditional quantile QYi
(τ |Xi) can easily be estimated, given an estimator for βτ . Koenker

and Bassett (1978) proposed the following quantile regression estimator for βτ :

β̂τ = argmin
β

n∑
i=1

ni∑
j=1

ρτ (Yij −X ′
ijβ), (2.2)

where ρτ (u) = u[τ − I(u < 0)] is the check-loss function used in quantile regression. The min-
imization in (2.2) can be done very fast, as the minimization problem can be written as a linear
programming problem. However, explicit expressions for β̂τ are not available.

When several quantiles are estimated separately, the estimated quantiles could cross and there-
fore the estimated quantile function is not monotone in τ . Monotonicity can be enforced by using
restricted quantile regression (He, 1997). This is out of the scope of the current paper, as we focus
on the performance when a single quantile of the response is estimated.

The estimation procedure (2.2) thus far considered completely observed data. We add a dropout
mechanism, where the first time point is never missing Denote the dropout indicator Di = j when
subject i drops out at occasion j and Di = ni + 1 if the profile for subject i is complete. The
response vector Yi for subject i is divided into its observed Y obs

i and missing Y mis
i components. In

the next subsections we describe two methods (MI and IPW) to deal with this missingness.
Clearly, the estimator employed does not make use of the correlation between the repeated mea-

sures. This is intentionally the case, to examine this choice’s effect. It is known that in linear models,
as well as in generalized estimating equations for repeated measures, ignoring the correlation leads
to a consistent and asymptotically normal estimator, perhaps at the expense of efficiency loss. It is
well known that linear regression as well as generalized linear regression are easy to fit, either in
closed form or at least by way of stable and fast iterative maximization of the log-likelihood func-
tion. This is in contrast to their hierarchical versions, linear mixed models and generalized linear
models (cf. Molenberghs and Verbeke 2005); especially the latter are ridden with issues of numeri-
cal inaccuracy, slow convergence, and strong dependence of starting values. Their advantage is that
these latter methods take correlation between repeated measures into account. Multivariate versions
of quantile regression definitely require more research but already at this stage, we can examine
the behavior of estimators when ignoring correlation between repetitions, i.e., with cross-sectional
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quantile methods. This behavior will be studied both in terms of statistical as well as numerical
properties.

2.2 Quantile regression-based multiple imputation

In MI, the missing Y mis
i are replaced stochastically with a set of M possible estimates Ŷ

(m)
i (for

m = 1, . . . ,M ), drawn from the predictive distribution of the missing given the observed measure-
ments. Once the data set is complete, estimation procedures (such as (2.2)) for complete data are
applied and lead toM estimates β̂τ,1, . . . , β̂τ,M for βτ . Using Rubin’s rule, the parameter estimates
from these M analyses are combined into a final parameter estimator

β̂τ =
1

M

M∑
m=1

β̂τ,m.

The quantile regression-based MI method is implemented in the Qtools package in R (Geraci,
2016). It exploits the probability integral transform theorem, i.e., if U ∼ Unif(0, 1), then F−1(U) ∼
F . In the first step M copies of U are sampled from a Unif(0, 1). In practice, the U ’s are sampled
from Unif(ω, 1 − ω) (with ω sufficiently small), to avoid computational problems in the next step.
In the second step, a quantile regression model of the form QYi

(Um|Xi) = X ′
iβ

Um is fitted for
each Um (for m = 1, . . . ,M ) using a consistent estimator, such as (2.2). Finally, the missing Y mis

i

are imputed: Ŷ (m)
i = Xiβ̂

Um .

For longitudinal data with dropouts, the MI procedure imputes progressively each variable Yij
conditional on its covariates and history, using both observed and latest-imputed values, i.e., Ŷ (m)

ij =

Q̂Yij
(Um|Yij̄ ,Xi), with Yij̄ = (Yi1, . . . , Yi(j−1))

′.

2.3 Quantile regression-based inverse probability weighting

In IPW, the contribution of each subject to the optimization problem in (2.2) is weighted. The IPW
estimator for βτ is

β̂τ = argmin
β

n∑
i=1

ni∑
j=1

Rij

πij
ρτ (Yij −X ′

ijβ),

where Rij is the missing data indicator and πij is the probability of being observed up to and
including occasion j. The former is defined as Rij = 1 if Yij is observed and Rij = 0 otherwise.
Furthermore, the probabilities πij (j = 2, . . . , ni) are obtained as follows (recall that the first time
point is always observed):

• if the subject drops out at occasion j:

πij = pij

j−1∏
l=2

(1− pil)
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• if the subject does not drop out at occasion j:

πij =

j∏
l=2

(1− pil) ,

with pil = P (Di = l|Di ≥ l,Yil̄,Xi) (the probability of dropping out at occasion l given the
subject is still in the study).

In practice, the probabilities pil are unknown and need to be estimated, for example by assuming
a logistic regression model using the outcome Yil̄ and covariates Xi as regressors.

3 Simulation Study
In a simulation study, we investigate the performance of the MI and IPW method in a quantile
regression setting. We compare these two methods with estimators based on the complete cases
(i.e., only using subjects with all measurements available) and the available cases (i.e., using all
available measurements from all subjects).

We generate data from the following heteroscedastic linear model:

Yij = β0 + tjβ1 + Ti tjβ2 + (γ0 + tjγ1 + Ti tjγ2) εij , (3.1)

for i = 1, . . . , n and j = 1, . . . , 6, where tj = j − 1 is the measurement time (note that ni = 6 for
i = 1, . . . , n), Ti represents a treatment indicator (0 for control and 1 for treatment), and εij is the
error. Assume that ε1, . . . , εn, with εi = (εi1, . . . , εi6)

′, are i.i.d. multivariate normally N6 (06,Σ)

distributed, and εi is independent of Ti.
For the simulation, we set

β =

 4

0.5

0.2

 ,γ =

 0.5

0.15

0

 , and Σ = (σjk)
6
j,k=1,

with σjk = 0.75|j−k|, 1 ≤ j, k ≤ 6. Furthermore, Ti is generated from a Bernoulli distribution with
P (Ti = 1) = 0.5. We consider three different sample sizes: n = 50, 200, and 1000.

Note that model (3.1) fits in the general model (2.1) of Section 2, with X
(1)
i = (t1, . . . , t6)

′ and
X

(2)
i = (Ti t1, . . . , Ti t6)

′. Therefore, the (elementwise) τ -th conditional quantile of Yi is given
by:

QYi
(τ |Xi) =β0 + γ0Φ

−1(τ) + tj
[
β1 + γ1Φ

−1(τ)
]
+ Titj

[
β1 + γ2Φ

−1(τ)
]

=βτ
0 + tjβ

τ
1 + Titjβ

τ
2 ,

where Φ−1(·) is the quantile function of the standard normal distribution. Since γ2 = 0, the coef-
ficient of Titj does not depend on τ (βτ

2 = β2). The estimation of βτ = (βτ
0 , β

τ
1 , β

τ
2 ) is done by

(2.2).
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3.1 Missing data mechanism

We consider dropouts at two occasions (t3 = 2 and t5 = 4), where the probability of withdrawal at
each point is determined by

P (Di = 3|Di ≥ 3,Yi3̄,Xi) =
[
1 + e−α0−α1(Yi2−µi2)

]−1

,

and
P (Di = 5|Di ≥ 5,Yi5̄,Xi) =

[
1 + e−α0−α1(Yi4−µi4)

]−1

,

respectively. µi2 = E (Yi2|Ti) and µi4 = E (Yi4|Ti) are computed by (3.1), i.e., µi2 = 4.5 and
µi4 = 5.5 if Ti = 0; µi2 = 4.7 and µi4 = 6.1 otherwise.

Setting α = (α0, α1) we consider four different missing data mechanisms: Firstly, a missing
completely at random (MCAR) mechanism by fixing α = (−0.66, 0); two stochastic missing at
random mechanisms, named MAR1 and MAR2, by setting α = (−0.68, 0.8) and α = (−0.68, 5),
respectively; finally, a deterministic missing at random mechanism, called MAR3, where a dropout
occurs at t3 if Yi2 > 4.8 and a withdrawal happens at t5 if Yi4 > 6. In all cases, we reach around
30% of missing observations.

3.2 Results and conclusion

A total of 1000 data sets were generated for each scenario. Furthermore, we analyze the methods
for quantile regression with τ equal to 0.25, 0.5, and 0.75.

Although the data-generating model in equation (3.1) is relatively simple, we evaluate the ro-
bustness of the MI procedure by considering proper and improper MI. In the former, the imputation
model includes the history (both observed and latest-imputed value) of the outcomes (Yij̄) and the
effect of treatment (Ti). On the other hand, in the latter, the imputation model leaves out treatment.

On each regression coefficient separately, we compute the relative bias and relative efficiency.
The relative bias of β̂τ

j is defined as
β̂τ
j − βτ

j

βτ
j

.

The relative efficiency of β̂τ
j is defined as the ratio of the median absolute deviation (MAD) of the

estimator β̂τ
j based on the observed data over the MAD of the (infeasible) estimator that uses the

full data. Additionally, we evaluate the coverage of the 95% confidence interval for the treatment
effect (β2), i.e., the proportion of samples for which the parameter is within the confidence interval.
The confidence intervals are computed by the xy-pairs bootstrapping (Koenker, 1994).

Tables 1, 2, 3 and 4 display the relative bias and the relative efficiency of each technique using
sample size of N = 50, N = 200 and N = 1000, respectively. As is to be expected, apart from
improper MI, all methods work fine under MCAR, given that the data used for analysis are a random
subsample of all data. Since the improper MI does not include treatment in the imputation model,
this effect is highly biased. That said, some efficiency is lost under complete cases analysis, relative
to the other methods that use all data. For the MAR settings, whereas in a likelihood or Bayesian
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estimation framework available case analysis would be unbiased, this is not the case here, especially
not for β1 and β2. This is not surprising given the frequentist nature of our estimation method, and
in line with work on, for example, generalized estimating equations (Robins et al., 1995; Bang and
Robins, 2005), and on pseudo-likelihood (Molenberghs et al., 2011; Hermans et al., 2020). Pseudo-
likelihood in their work is understood as the replacement of the likelihood function by a simpler one
that still leads to consistent and asymptotically normal estimators under broad regularity conditions.
In our simulations, bias is indeed present for all three sample sizes considered, an issue further
aggravated when n increases in terms of increasing bias.

Table 1: Relative bias of the coefficient estimators for n = 50. CC: complete cases, AC: available
cases, MIp: proper multiple imputation, MIi: improper multiple imputation, IPW: inverse probabil-
ity weighting.

Relative bias (%)

MCAR MAR1 MAR2 MAR3

Method τ β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

CC 0.25 0.09 1.29 1.08 -3.21 -4.27 -6.12 -7.00 -7.49 -32.92 -6.03 -7.90 -33.1

0.50 -0.06 0.07 -0.16 -3.44 -4.77 -7.42 -8.46 -8.20 -38.76 -7.67 -8.09 -41.18

0.75 -0.24 -0.90 -0.80 -3.68 -5.13 -8.68 -9.90 -9.14 -44.48 -9.50 -9.32 -48.68

AC 0.25 0.05 1.10 0.97 0.52 -8.91 -3.75 0.84 -22.14 -17.38 0.78 -20.45 -19.67

0.50 -0.02 -0.04 0.00 0.37 -8.80 -3.85 0.78 -22.19 -19.69 0.69 -21.33 -22.07

0.75 -0.10 -0.83 -0.79 0.31 -8.60 -4.17 0.77 -22.21 -22.04 0.64 -21.98 -24.49

MIp 0.25 0.02 0.71 1.98 0.09 0.38 0.13 0.76 -7.39 -9.46 0.75 -8.39 -7.99

0.50 0.02 -0.76 1.21 0.07 -0.95 0.04 0.26 -4.04 -3.67 0.22 -4.59 -2.17

0.75 0.03 -1.74 0.49 0.11 -1.72 -0.17 0.13 -0.73 2.54 0.11 -0.91 4.19

MIi 0.25 0.17 7.15 -32.36 0.31 5.56 -31.79 1.05 -3.60 -37.00 1.08 -6.05 -30.77

0.50 0.01 6.19 -32.90 0.10 5.47 -34.18 0.38 1.63 -37.82 0.32 0.06 -31.85

0.75 -0.16 5.46 -33.27 -0.03 5.51 -36.43 0.16 6.46 -38.34 0.11 5.75 -32.71

IPW 0.25 0.09 0.22 0.48 0.10 0.79 -0.35 0.81 -9.05 -10.54 - - -

0.50 0.00 -0.58 1.42 0.00 0.33 -1.44 0.89 -11.4 -12.14 - - -

0.75 -0.01 -0.42 -0.92 0.18 -0.36 -6.40 1.12 -13.29 -18.86 - - -

Both proper MI and IPW lead to bias reduction, although it is clear that a decent sample size is
needed: when n = 50 the bias is still noticeable, although much smaller than for complete case and
available case analysis. The bias reduces more quickly with sample size when proper MI is used,
as compared to IPW. IPW, though, suffers from two further problems. First, it is less efficient than
MI, a finding in line with Beunckens et al. (2008) and references therein. Second, it does not work
under the deterministic MAR3. This is well-known because with such a mechanism, the probability
of generating observations in certain regions of the sample space is zero, rendering it impossible to
use proper weights.

The coverage of the 95% confidence interval for the treatment effect β2 is exhibited in Table 5.
Except for proper MI, the coverage of all methods is considerably lower than 95%. Furthermore,
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Table 2: Relative efficiency of the coefficient estimators for n = 50. CC: complete cases, AC:
available cases, MIp: proper multiple imputation, MIi: improper multiple imputation, IPW: inverse
probability weighting.

Relative efficiency

MCAR MAR1 MAR2 MAR3

Method τ β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

CC 0.25 1.58 1.66 1.60 1.92 1.49 1.48 3.62 1.34 1.52 3.08 1.35 1.44

0.50 1.56 1.61 1.47 2.32 1.51 1.45 5.15 1.36 1.51 4.60 1.37 1.50

0.75 1.71 1.68 1.62 2.45 1.67 1.62 6.31 1.63 1.69 6.09 1.53 1.72

AC 0.25 1.09 1.46 1.39 1.16 1.46 1.32 1.12 2.15 1.40 1.13 1.91 1.26

0.50 0.98 1.41 1.27 1.08 1.54 1.19 1.04 2.84 1.20 1.05 2.72 1.12

0.75 1.08 1.49 1.34 1.12 1.71 1.35 1.10 3.22 1.20 1.06 3.28 1.26

MIp 0.25 1.13 1.34 1.20 1.15 1.23 1.19 1.14 1.33 1.25 1.17 1.30 1.22

0.50 1.07 1.31 1.12 1.07 1.18 1.20 1.09 1.48 1.17 1.07 1.51 1.16

0.75 1.14 1.37 1.15 1.14 1.34 1.28 1.25 1.83 1.35 1.18 1.77 1.30

MIi 0.25 1.12 1.26 1.28 1.15 1.25 1.33 1.19 1.22 1.40 1.19 1.17 1.32

0.50 1.04 1.27 1.32 1.07 1.22 1.38 1.06 1.31 1.51 1.03 1.35 1.40

0.75 1.14 1.31 1.34 1.11 1.30 1.47 1.25 1.71 1.59 1.20 1.67 1.52

IPW 0.25 1.09 1.38 1.38 1.11 1.28 1.34 1.18 1.67 1.59 - - -

0.50 1.11 1.44 1.31 1.17 1.39 1.51 1.25 2.14 1.72 - - -

0.75 1.08 1.44 1.34 1.16 1.51 1.65 1.29 2.71 1.82 - - -

it gets smaller as the sample size increases. Two reasons can explain this. Firstly, these methods
provide biased estimates for these effects. Secondly, the bootstrapping method is not considering
that the measurements are correlated, and consequently, the standard errors are underestimated. On
the other hand, the proper MI provides intervals with coverage near to the confidence level. However,
these are slightly affected by ignoring the correlation.

We conclude that, as expected, proper MI is by far the most promising method among the ones
considered. One drawback of the approach though is that it requires more computation time, which is
more pronounced when the number of imputations increases. For this reason, it may be worthwhile
to explore doubly robust approaches of the type described in Molenberghs et al. (2011) and Hermans
et al. (2020) for the context of pseudo-likelihood.
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Table 3: Relative bias and efficiency of the coefficient estimators for n = 200. CC: complete cases,
AC: available cases, MIp: proper multiple imputation, MIi: improper multiple imputation, IPW:
inverse probability weighting.

(a) Relative bias (%)

MCAR MAR1 MAR2 MAR3

Method τ β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

CC 0.25 0.08 0.89 -0.98 -3.38 -5.04 -6.86 -7.24 -7.35 -32.43 -6.29 -7.63 -32.25

0.50 0.02 0.16 -1.07 -3.48 -5.03 -7.06 -8.53 -7.67 -37.02 -7.79 -7.31 -40.18

0.75 0.02 -0.22 -1.16 -3.53 -4.97 -7.26 -9.90 -8.62 -41.38 -9.52 -8.38 -47.48

AC 0.25 0.08 0.76 -1.09 0.52 -10.57 -2.95 0.78 -22.43 -18.84 0.73 -20.54 -21.78

0.50 0.04 0.17 -1.05 0.49 -9.62 -2.72 0.86 -22.28 -20.29 0.77 -21.17 -23.98

0.75 0.03 -0.20 -1.04 0.48 -8.97 -2.50 0.89 -22.28 -21.76 0.75 -21.7 -26.17

MIp 0.25 0.06 0.63 -0.97 0.05 -0.12 0.61 0.17 -1.83 -0.72 0.17 -1.79 -1.85

0.50 0.06 -0.16 -0.89 0.07 -0.63 0.69 0.14 -1.49 -0.22 0.10 -1.17 -0.95

0.75 0.07 -0.67 -0.81 0.05 -1.00 0.79 0.08 -1.26 0.41 0.01 -0.72 0.06

MIi 0.25 0.22 6.30 -31.94 0.26 4.59 -28.16 0.46 1.82 -28.57 0.48 0.34 -23.06

0.50 0.06 6.04 -31.9 0.09 5.31 -30.86 0.18 4.87 -36.14 0.16 3.84 -31.55

0.75 -0.05 5.91 -31.82 -0.03 5.87 -33.48 0.03 7.24 -43.62 0.03 6.67 -40.04

IPW 0.25 0.04 0.42 -0.20 0.07 0.08 0.46 0.60 -5.38 -10.21 - - -

0.50 0.06 -0.04 -0.63 0.03 -0.11 1.00 1.03 -7.85 -13.45 - - -

0.75 0.02 -0.27 0.22 0.04 -0.33 0.27 1.33 -10.49 -15.54 - - -

(b) Relative efficiency

MCAR MAR1 MAR2 MAR3

Method τ β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

CC 0.25 1.47 1.52 1.60 3.25 1.63 1.54 6.84 1.69 2.28 5.88 1.62 2.25

0.50 1.46 1.54 1.48 4.30 1.73 1.51 10.54 2.08 2.76 9.64 1.94 3.07

0.75 1.61 1.56 1.51 3.99 1.80 1.40 11.26 2.41 2.67 10.78 2.34 3.10

AC 0.25 0.98 1.32 1.39 1.08 2.05 1.45 1.11 4.12 1.61 1.06 3.74 1.68

0.5 1.02 1.37 1.32 1.13 2.61 1.35 1.35 5.76 1.72 1.23 5.53 1.84

0.75 1.04 1.38 1.26 1.02 2.54 1.24 1.26 6.14 1.56 1.14 6.01 1.75

MIp 0.25 0.99 1.24 1.16 1.00 1.21 1.20 1.05 1.36 1.30 1.10 1.24 1.19

0.50 1.04 1.27 1.18 1.05 1.29 1.25 1.20 1.63 1.33 1.12 1.47 1.27

0.75 1.01 1.25 1.13 0.98 1.36 1.20 1.14 1.73 1.17 1.13 1.62 1.15

MIi 0.25 0.98 1.40 2.20 1.01 1.26 2.00 1.13 1.22 2.06 1.07 1.19 1.71

0.50 1.03 1.70 2.43 1.05 1.57 2.37 1.22 1.59 2.80 1.12 1.58 2.48

0.75 1.03 1.69 2.12 1.00 1.71 2.26 1.13 2.05 2.95 1.11 2.09 2.67

IPW 0.25 0.98 1.36 1.36 1.02 1.30 1.36 1.23 2.09 2.06 1.07 3.81 1.60

0.5 1.08 1.40 1.32 1.08 1.39 1.48 1.68 3.23 2.58 1.23 5.51 1.85

0.75 0.98 1.36 1.25 1.00 1.52 1.45 1.58 3.80 2.48 1.17 6.02 1.73
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Table 4: Relative bias and efficiency of the coefficient estimators for n = 1000. CC: complete
cases, AC: available cases, MIp: proper multiple imputation, MIi: improper multiple imputation,
IPW: inverse probability weighting.

(a) Relative bias (%)

MCAR MAR1 MAR2 MAR3

Method τ β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

CC 0.25 -0.02 0.25 -0.19 -3.51 -5.48 -7.11 -7.31 -8.00 -33.44 -6.39 -8.34 -32.2

0.50 0.00 0.11 -0.33 -3.53 -4.80 -7.88 -8.59 -7.72 -38.07 -7.83 -7.34 -40.56

0.75 0.01 0.02 -0.47 -3.59 -4.41 -8.64 -9.98 -8.33 -42.47 -9.57 -8.10 -48.18

AC 0.25 -0.01 0.25 -0.32 0.46 -10.9 -3.41 0.76 -23.2 -19.71 0.69 -21.28 -22.02

0.50 -0.01 0.13 -0.33 0.45 -9.37 -3.88 0.83 -22.46 -21.28 0.76 -21.32 -24.56

0.75 -0.01 0.05 -0.34 0.45 -8.37 -4.34 0.88 -22.01 -22.85 0.75 -21.47 -27.07

MIp 0.25 0.00 -0.13 -0.14 0.01 -0.38 0.03 0.01 -0.59 -0.50 0.03 -0.71 -0.59

0.50 0.01 -0.14 -0.26 0.01 -0.22 -0.15 0.02 -0.32 -0.48 0.03 -0.35 -0.57

0.75 0.00 -0.18 -0.37 0.00 -0.16 -0.33 -0.01 -0.22 -0.44 0.00 -0.16 -0.51

MIi 0.25 0.13 5.67 -31.1 0.17 4.53 -28.11 0.26 3.17 -27.37 0.29 1.72 -21.37

0.50 0.01 6.01 -31.15 0.03 5.78 -31.33 0.06 6.04 -36.3 0.07 4.93 -31.4

0.75 -0.10 6.20 -31.19 -0.08 6.65 -34.54 -0.03 8.16 -45.29 0.00 7.38 -41.55

IPW 0.25 -0.01 0.24 -0.09 0.00 0.04 0.21 0.17 -2.25 -5.69 - - -

0.50 -0.01 0.13 -0.18 -0.01 0.06 -0.04 0.68 -4.79 -9.43 - - -

0.75 -0.01 0.06 -0.27 -0.01 0.10 -0.29 1.00 -6.58 -13.16 - - -

(b) Relative efficiency

MCAR MAR1 MAR2 MAR3

Method τ β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

CC 0.25 1.59 1.48 1.65 7.59 2.14 1.73 15.89 3.11 5.18 13.87 3.28 4.95

0.50 1.59 1.47 1.53 10.16 2.73 1.73 24.54 4.39 6.35 22.36 4.19 6.81

0.75 1.58 1.51 1.52 10.10 2.76 1.69 27.92 5.18 6.06 26.67 5.02 6.91

AC 0.25 1.02 1.32 1.46 1.31 4.14 1.38 1.68 8.98 3.06 1.57 8.19 3.39

0.50 1.01 1.36 1.35 1.41 5.24 1.32 2.34 12.83 3.54 2.15 12.15 4.09

0.75 1.09 1.36 1.25 1.39 5.13 1.24 2.40 13.64 3.25 2.02 13.24 3.83

MIp 0.25 1.04 1.17 1.20 1.00 1.15 1.26 1.05 1.36 1.29 1.07 1.21 1.23

0.50 1.03 1.25 1.23 1.03 1.28 1.20 1.18 1.62 1.36 1.18 1.55 1.33

0.75 1.07 1.32 1.12 1.10 1.32 1.15 1.32 1.83 1.20 1.32 1.80 1.19

MIi 0.25 1.02 2.28 4.79 1.07 1.78 4.35 1.15 1.42 4.33 1.17 1.22 3.29

0.50 1.03 3.38 5.26 1.06 3.29 5.23 1.18 3.41 6.13 1.19 2.75 5.28

0.75 1.12 3.85 4.46 1.14 4.07 4.93 1.35 4.95 6.48 1.34 4.54 5.89

IPW 0.25 1.15 1.32 1.47 1.08 1.30 1.52 2.45 3.38 3.58 - - -

0.50 1.05 1.36 1.40 1.06 1.35 1.48 2.69 4.84 4.14 - - -

0.75 1.15 1.37 1.27 1.23 1.45 1.49 3.11 6.10 4.20 - - -
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4 Age-related Macular Degeneration Trial
The age-related macular degeneration (ARMD) trial is a randomized multi-centric clinical trial com-
paring an experimental treatment (interferon-α) to a corresponding placebo in the treatment of pa-
tients with ARMD, a medical condition in which individuals progressively lose sight. The full results
of this trial have been reported by Pharmacological Therapy for Macular Degeneration Study Group
(1997). The data are available in the R package nlmeU. The outcome of interest is the visual acuity
over time measured as the ability to read lines of letters on standardized vision charts. Here, we fo-
cus on the comparison between placebo and the highest dose (6 millions units daily) of interferon-α
at three different quantiles (0.25, 0.5 and 0.75). To handle missingness, we implement a quantile
regression-based MI and IPW procedure. For the latter, patients with intermittent missing data are
ignored.

The ARMD data contains the patients’ visual acuity at four different time points (4 weeks,
12 weeks, 24 weeks, and 52 weeks) of the two treatment groups. Although the total number of
longitudinal profiles is 240, only 188 (78.33%) of these have the four follow-up measurements been
made, 40 (18%) exhibit monotone missingness, and 8 (3.33%) have intermittent missing values.
From the dropouts, 6 subjects have no follow-up measurements.

Defining Zij as the visual acuity loss (difference in the visual acuity and the baseline value)
measured at patient i in week tj , the quantile model takes the form:

QZij (τ |Ti, tj) = βτ
0 + Ti β

τ
1 + tj β

τ
2 + Ti tj β

τ
3 , (4.1)

where Ti = 0 if patient i is in the control group, and Ti = 1 if patient i is in the treatment group.
For the MI procedure, the model to impute the logarithm of the visual acuity at time tj (log Yij)

includes its history (logYij̄), treatment effect (Ti) and level of lesion at baseline (a four-point cate-
gorical variable) as covariates. The logarithmic transformation is applied to ensure that all imputed
values are positive. Furthermore, 20 multiply imputed datasets are generated. For the quantile
regression-based IPW, the following weight model is assumed:

logit
[
P
(
Di = j|Di ≥ j,Yij̄ , Ti, tj

)]
= ηij (4.2)

where:
ηij = ψ0 + Yi,j−1ψ1 + Tiψ2 + tjψ3 + L1iψ4 + L2iψ5 + L3iψ6,

Yi,j−1 is the outcome at previous time tj−1, and L1i, L2i and L3i are the three dummy variables
associated to the level of lesion at baseline.

Parameter estimates and corresponding standard errors for the model in equation (4.2) are dis-
played in Table 6. The standard errors were computed using the xy−pair bootstrap method (Parzen
et al., 1994). There is a significant effect of treatment, level of lesion, and time on the probability of
dropout. On the contrary, the previous outcome does not have a significant impact. This shows that
there is no strong evidence for MAR.

Table 7 shows the parameter estimates and their standard errors for the model in equation (4.1)
using the available cases (AC), multiple imputation (MI), and inverse probability weighting (IPW).
There is no substantial difference in the estimates of AC and IPW-based models. Nevertheless, some
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Table 6: ARMD data. Parameter estimates and their standard error for a logistic model for dropouts
Effect parm. est. s.e.

Intercept ψ0 -2.34 0.694

Previous outcome ψ1 -0.02 0.009

Treatment ψ2 0.87 0.345

Time ψ3 0.04 0.009

Lesion level 1 ψ4 -1.37 0.463

Lesion level 2 ψ5 -1.75 0.498

Lesion level 3 ψ6 -2.76 0.711

differences are observed in the MI-based model. The estimates associated to treatment at baseline
(β1) and treatment effect (β3) are different for all quantile levels. For the latter, it is even significant
for quantile 0.5. There are no noticeable differences for the rest of estimates based on these three
methods.

Table 7: ARMD data. Parameter estimates and their standard error for quantile regression with
τ = 0.25, 0.5, and 0.75 using available cases (AC), multiple imputation (MI), and inverse probability
weighting (IPW).

AC MI IPW

Effect parm. est. s.e. est. s.e. est. s.e.

Intercept β0.25
0 -4.75 0.987 -4.63 0.997 -4.75 1.034

Treatment β0.25
1 -1.75 1.802 -1.36 1.952 -1.75 1.988

Time β0.25
2 -0.31 0.073 -0.33 0.076 -0.31 0.081

Treatment×Time β0.25
3 -0.06 0.096 -0.11 0.111 -0.06 0.113

Intercept β0.5
0 -0.42 0.522 -0.43 0.533 -0.5 0.552

Treatment β0.5
1 -0.67 0.804 -0.39 0.903 -0.58 0.919

Time β0.5
2 -0.15 0.034 -0.14 0.036 -0.13 0.035

Treatment×Time β0.5
3 -0.08 0.060 -0.13 0.066 -0.11 0.066

Intercept β0.75
0 3.90 0.898 3.84 0.911 3.9 0.897

Treatment β0.75
1 -1.32 1.246 -1.07 1.251 -1.32 1.226

Time β0.75
2 -0.08 0.037 -0.07 0.038 -0.08 0.037

Treatment×Time β0.75
3 -0.07 0.054 -0.08 0.054 -0.07 0.057

5 Conclusion

We considered a linear regression model for longitudinal data with missingness in the response.
The impact of methods dealing with missing data on the estimation of the regression coefficients,
when a conditional quantile of the response is estimated, was investigated in a simulation study. In
the simulation study an analysis based on the complete cases, the available cases, a quantile-based
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multiple imputation estimation, and a quantile-based inverse probability weighting estimation were
compared. Multiple imputation is the most promising method as it reduces the bias and is more effi-
cient. A drawback might be its computation time. In our simulations and data analysis, the datasets
were relatively small. However, when several imputations are used (which is often not needed) and
with very large datasets, the imputation process can be computationally intensive. Moreover, the ef-
ficiency can be reduced by not considering relevant covariates on the imputation model. All results
are obtained while ignoring the correlation between repeated measures when analyzing the data, but
not when drawing imputations. As expected, this does not jeopardize the validity of the estimators,
although properly accommodating for dependence within a repeated measures sequence may lead
to increased efficiency.

The missing data mechanisms considered in this paper are of an MAR nature, and sometimes
MCAR but never MNAR. As has been shown repeatedly, MNAR cannot be ruled out in practice
based on data-analytic considerations alone. It is commonly accepted that, to address this problem,
a sensitivity analysis to varying the missing-data assumptions would be needed (Little et al., 2010).
This requires further research in the quantile-regression context and clearly falls outside of the scope
of the current paper.
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