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SUMMARY

In the modern era of advanced medicine, often a fraction of patients might be cured from
a disease and hence the survival probability may plateau at a non-zero value and a cure
rate model is needed to capture such survival fractions. A semiparametric accelerated fail-
ure time (AFT) cure model is developed for time-to-event data with a positive surviving
fraction. The error distribution of the AFT model for susceptible subjects is expressed
as a nonparametric mixture of normal densities which can approximate an arbitrary dis-
tribution satisfying mild regularity conditions. A Bayesian inferential framework leads to
efficient estimation of the posterior distribution of parameters. Posterior consistency of the
proposed estimator is established under some regularity conditions providing large sample
justification of the proposed model. Markov chain Monte Carlo methods are used to gen-
erate samples from the posterior distribution of the regression coefficients to aid statistical
inference. Simulation studies are conducted to evaluate the performance of the proposed
model in finite samples and an analysis of breast cancer data is also presented to illustrate
the method.

Keywords and phrases: Long-term survival; Markov chain Monte Carlo method; Mixture
density; Posterior consistency.
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1 Introduction
A cure model is useful for modeling failure/survival times when a proportion of subjects may never fail and
effectively are cured from a disease. As an example, consider a clinical trial for adjuvant therapy for breast
cancer originally analyzed by Farewell (1986). Time to relapse or death is used as a failure endpoint and patients
are randomized to one of the three treatments. As shown in Figure 1, both the Kaplan–Meier survival curves and
the estimated curves based on our proposed model which will be discussed later level off significantly above
zero for each treatment group after an extended follow-up over 9 years. Because of this ‘plateau’ feature, long-
term cure may be interpreted as occurring among those patients who remain alive and no longer experiencing
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Figure 1: Breast cancer data set: Estimated survival curves using (i) nonparametric Kaplan-Meier
estimator and (ii) posterior median of the survival estimates based on the proposed CRAFT model
(weighted by lymph nodes and clinical stage) for each of the three treatments

excess mortality due to breast cancer relative to the general population. Cure models provide a means of
adjusting the standard survival model to account for this cured fraction. Some popular applications of cure
models include Burnett et al. (2000), Secasan et al. (2005), and Dickman and Adami (2006).

There are two commonly used modeling strategies for survival data with a cure fraction. One approach
is to use a promotion time cure model of bounded cumulative hazard functions or its variant (Yakovlev and
Tsodikov, 1996; Tsodikov, 1998; Chen et al., 1999; Zeng et al., 2006). Such cure models are motivated from a
nice biological interpretation, but the short-term and long-term effects generally cannot be separated. Another
popular approach is to consider a two-component mixture cure model (Berkson and Gage, 1952), where the
short-term (latency) and long-term (incidence) effects are modeled separately with a natural interpretation. For
example, the incidence rate is commonly modeled by logistic regression. However, many other link functions
such as the probit or complementary log-log can also be used. In addition, quite a few methods have been
explored to model the latency. Farewell (1982) originally suggested parametric modeling of the latency by a
Weibull distribution. Taylor (1995) used a nonparametric approach in the absence of covariates for the latency
component, while Kuk and Chen (1992), Sy and Taylor (2000), and Peng and Dear (2000) considered Cox’s
proportional hazards (PH) model (Cox, 1972). However, it is quite common that the proportional hazards as-
sumption may be violated in practice. For example, as given in Figure 1, the Kaplan-Meier curves for treatments
A and B crossed each other, which is an indication of violation of the PH assumption. We will give a detailed
analysis of this breast cancer data in Section 6. When the PH assumption is in question, other semiparametric
models, such as the linear transformation model and the AFT model can provide useful alternatives and pos-
sibly a better fit to the data. For mixture cure modeling, Lu and Ying (2004) studied the linear transformation
cure models using martingale-based estimating equations while (Yamaguchi, 1992) considered the parametric
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AFT model with the generalized gamma distribution, and (Li and Taylor, 2002) and Zhang and Peng (2007)
explored the semiparameytric AFT cure model using EM-type estimation methods. However, it is to be noted
that none of transformation models (which includes PH, AFT, proportional odds etc.) account for the crossing
of survival functions. More general conditional hazard function models (e.g., HARE or Bernstein polynomials
hazard functions proposed by Osman and Ghosh (2012)) are better suited to capture various features of survival
functions. In particular, consider the simplest case of a binary covariate z ∈ {0, 1} and survival time T and
let S(t|z) = Pr(T > t|z) denote the conditional survival function. Under PH assumption, S1(t) = S0(t)

η

for some η > 0 where S0(t) = S(t|z = 0) is the baseline survival function. Clearly, S1(t) ≷ S0(t), ∀t if
and only if η ≶ 1, and thus, the two survival functions can’t cross for any η ̸= 1. Similarly, under AFT which
assumes S1(t) = S0(tη) or under PO which assumes (1 − S1(t))/S1(t) = η(1 − S0(t))/S0(t) for some
η > 0, by similar arguments as shown above will not allow for the crossing of survival curves for any η ̸= 1.
So, the choice of semi-parametric models needs to be done carefully as illustrated by Sheng and Ghosh (2019).
However, in this paper we limit the scope to only AFT models with a cure rate fraction case.

For survival data with cure, a challenging problem is the identifiability of the cure fraction in finite samples
since a cure is never observed with censoring. Due to this latent feature, it is more natural to study cure
rates within a Bayesian framework where prior information is assumed for both short-term and long-term
parameters. It is most common that Bayesian methods have been mainly studied for the bounded cumulative
hazards modeling of survival data with cure (Chen et al., 1999; Ibrahim et al., 2001; Zeng et al., 2006; Chi
and Ibrahim, 2007; Cooner et al., 2007; Kim et al., 2007; Nieto-Barajas and Yin, 2008; Yin, 2008). However,
relatively fewer Bayesian methods have been explored for mixture modeling of cure. Moreover, even less
attention is paid to establish posterior consistency in a rigorous manner.

In this paper, we study a Bayesian mixture Cure Rate AFT model, or ”CRAFT” model, where the error dis-
tribution in the AFT component is modeled as a flexible mixture of normal densities. For survival data without
cure, several authors have investigated the standard AFT model using various priors on the error distribution
(Kuo and Mallick, 1997; Walker and Mallick, 1999; Campolieti, 2001; Hansen and Johnson, 2004), which have
provided very flexible fits of the data and preserved the semiparametric nature of the model. With suitable prior
specifications, we establish the consistency of the posterior distribution for the CRAFT model and Markov
chain Monte Carlo methodology is used to obtain estimates from the posterior distribution.

The rest of the paper will proceed as follows. Section 2 introduces the CRAFT model and specifies the prior
distributions. Section 2.1 provides results on the consistency of the posterior distributions. Implementation
methods for obtaining estimates based on the posterior distributions are presented in Section 2.2. Simulation
studies are conducted to evaluate the performance of our method in Section 3 and an analysis of breast cancer
data is given in Section 4. The technical details and some additional figures are presented in the Appendices.

2 The CRAFT Model with Unspecified Error Distribution

Let ηi indicate whether the ith subject is susceptible (ηi = 1) or not (ηi = 0) to the event of interest. Let
Ti be the time to occurrence of the event which can be represented as Ti = T ∗

i ηi + ∞ · (1 − ηi) where T ∗
i

denotes the latent survival time when the ith subject is susceptible and we interpret 0 · ∞ = 0. Also, let
Ci denote the random censoring time for the i-th patient. Given a p-dimensional vector of covariates Zi, we
assume that Ti is independent of Ci. However, in practice we may not observe the Ti’s due to censoring, but
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instead observe Xi = min (Ti, Ci) and the censoring indicator ∆i = I(Ti ≤ Ci). Thus, we observe the triplet
{Xi,∆i, Zi} which are assumed to be independent across i = 1, . . . , n. We denote the set of observed data as
O = {Xi,∆i, Zi, i = 1, . . . , n}. We use a logistic model for the incidence and a semiparametric accelerated
failure time (AFT) model for the latency. The incidence rate can be modeled as

P (η = 1 | z) = p(γ̃, z) = F0(γ̃
Tz̃), (2.1)

where γ̃ = (γ0, γ
T)T is a (p + 1)-dimensional vector of unknown parameters, z̃ = (1, zT)T, and F0(·) is a

known link function, usually chosen to be a cumulative distribution function. We use the logistic link function
where F0(u) = {1+exp (−u)}−1. Notice that many other link functions such as the probit or complementary
log-log could have been used in place of the above logistic link or p(γ̃, z) could also have been modeled using
basis expansion non-parametrically. Next, the distribution of the latent survival time T ∗ can be expressed by
the following AFT model:

log T ∗ = βTz + ϵ, (2.2)

where β is a p-dimensional vector of unknown latency regression coefficient parameters, ϵ represents measure-
ment error, and var(ϵ) = σ2

ϵ . For simplicity, we assume that the same vector of covariates z is present in the
incidence and latency components, but some of variables can be dropped by setting corresponding regression
coefficients to zero if needed or by using suitable variable selection priors (e.g., spike-n-slab priors). Also, we
assume that the error ϵ follows an infinite mixture of normals with an unknown mixing distribution H(·), where
H(·) is an unknown cumulative distribution function satisfying∫

(µ− µϵ)
2dH(µ) =

(
k0

k0 + 1

)
σ2
ϵ , (2.3)

µϵ =
∫
µdH(µ), and k0 > 0 is chosen arbitrarily. For identifiability we assume that k0 is fixed and can be

suitably chosen. More explicitly, the probability density function, g(ϵ) of ϵ is given by

g(ϵ) =

∫
(k0 + 1)1/2

σϵ
ϕ

(
ϵ− µ

σϵ/(k0 + 1)1/2

)
dH(µ), (2.4)

where ϕ(·) is the standard normal density. Notice that the density in Equation (2.4) satisfies the condition
var(ϵ) = σ2

ϵ for any cumulative density function H(·) and k0 > 0.
In terms of prior specification, we assume that the mixing distribution H(·) ∼ ΠH . Given H , µ ∼ H .

Additionally, we assume the precision parameter σ2
ϵ ∼ Πσ2

ϵ
, the regression parameter β ∼ Πβ , and the

incidence parameter γ̃ ∼ Πγ̃ . Let Π stand for product measure Πβ × Πγ̃ × ΠH × Πσ2
ϵ

. Define the set of
parameters to be estimated as θ = {β, γ̃,H(·), σ2

ϵ}. Additional assumptions are discussed in the next section
which are used to establish posterior consistency. Having defined both the incidence and latency, the conditional
survival function of the CRAFT model is

P (T > t | Z = z) = S{t | θ, z}

= 1− p(γ̃, z) + p(γ̃, z)P (T ∗ > t | Z = z), (2.5)

where

P (T ∗ > t | Z = z) = ST∗{t | θ, z}

=

∫ {
1− Φ

(
log t− µ− βTz

σϵ/(k0 + 1)1/2

)}
dH(µ), (2.6)
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and Φ(·) is the standard normal cumulative distribution function. The corresponding density function for
survival times T is given by

f{t | θ, z} = p(γ̃, z)

∫
ϕ

(
log t− µ− βTz

σϵ/(k0 + 1)1/2

)
(k0 + 1)1/2

σϵt
dH(µ). (2.7)

Based on right-censored data, the observed likelihood can then be written as

L(θ;O) =

n∏
i=1

{
f(xi | θ, zi)

}δi
{
S(xi | θ, zi)

}1−δi

, (2.8)

where S(· | θ, z) and f(· | θ, z) are defined above in Equations (2.5)-(2.7). Having specified the observed
likelihood in Equation (2.8) and prior distributions above, the posterior distribution of the parameters θ given
the observed data O is

π(θ | O) ∝ L(θ;O)Πβ(β)Πγ̃(γ̃)ΠH(H)Πσ2
ϵ
(σ2

ϵ ).

In practice, we can choose the prior distributions arbitrarily as long as it satisfies some mild regularity conditions
as described in the next section.

2.1 Consistency of Posterior Distribution
Asymptotic consistency is a desirable large sample property of the posterior distribution. As Ghosal (2000)
discusses, it guarantees that the posterior distribution will concentrate in arbitrarily small neighborhoods of the
true value of the parameter, and hence with a sufficiently large amount of data, the truth may be discovered
accurately. Diaconis and Freedman (1986) and Ghosh and Ramamoorthi (2003) provide nice discussions and
examples of posterior consistency. Moreover, once a consistency is established for a broad class of prior
distributions, it also provide robustness of the posterior distribution showing that the inference is not sensitive
to the choice of the prior distributions if we had relatively large sample sizes. A formal definition of posterior
consistency is as follows.

Definition 2.1 (Posterior Consistency). Suppose X1, X2, · · · are independent and identically distributed ac-
cording to an unknown density f∗. We take the parameter space as F- a set of probability densities on the space
of the observations and consider a prior distribution Π on F . Then the posterior distribution Π(·|X1, . . . , Xn)

of f ∈ F given a sample X1, . . . , Xn is obtained as,

Π(A | X1, . . . , Xn) =

∫
A

∏n
i=1 f(Xi)dΠ(f)∫

F
∏n

i=1 f(Xi)dΠ(f)
.

We say that the posterior achieves weak posterior consistency at f∗ if for any weak neighborhood U of f∗,
Π(U |X1, . . . , Xn) → 1 almost surely as n → ∞.

Sufficient conditions for posterior consistency involving appropriate tests and the prior positivity of a neigh-
borhood defined by the Kullback-Leibler divergence are presented in a theorem by Schwartz (1965). Barron
et al. (1999), Ghosal et al. (1999), Ghosh and Ramamoorthi (2003), and Amewou-Atisso et al. (2003) explore
useful extensions of Schwartz’s theorem for density estimation in mixture models with and without covariates.
In-depth justifications and proofs of consistency for the semiparametric accelerated failure time model with in-
finite Weibull density mixture using Dirichlet priors for the mixing distribution have been presented by Ghosh
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and Ghosal (2006). We extend Ghosh and Ghosal’s methodology to show consistency for our CRAFT model
with infinite normal mixture and hence provide a large sample justification of our Bayesian analysis.

The following assumptions are sufficient to establish posterior consistency.

(A1) The domains of Z, β, γ̃, and σ2
ϵ , and the support of H are compact.

(A2) The zero vector is a possible value of the covariate Z, which if not, the covariates may be shifted to
satisfy this condition.

(A3) The true density f∗ of T given Z = z is a mixture of normal densities

f∗(t | z) = p(γ̃∗, z)

∫ ∞

0

(k0 + 1)1/2

σϵ∗t
ϕ

(
log t− βT

∗z − µ

σϵ∗/(k0 + 1)1/2

)
dH∗(µ)

where β∗, γ̃∗, σ
2
ϵ∗ , and H∗ are the true values of the parameters β, γ̃, σ2

ϵ , and H , respectively.

Notice that the above assumption can be relaxed using the some of the results obtained by Wu and Ghosal
(2008). However, since a mixture of normal densities can be used to approximate any bounded continuous den-
sity in total variation norm, the assumption about f∗(t | z) is not too restrictive. We have fixed, independently
distributed variables, with absolutely continuous distribution supporting the vector 0 in Rp. Denote the density
of Z at z by q(z). Let hθ(x, δ, z) be the joint density of (X,∆, Z), so

hθ(x, δ, z) =

 f{x | θ, z}q(z) δ = 1

S{x | θ, z}q(z) δ = 0.
(2.9)

where S{x | θ, z} and f{x | θ, z} are defined in Equations (2.5)–(2.7). The class of distributions that are sup-
ported in a given compact domain is also compact with respect to the weak topology on the space of probability
measures. So the parameter space of (β, γ̃, σ2

ϵ , H) with respect to the product of Euclidean and weak topology
is also compact. Hence, the following main theorem applies which verifies that the posterior distribution is
consistent.

Theorem 1. Suppose that the prior densities π(β), π(γ̃), and π(σ2
ϵ ) for β, γ̃, and σ2

ϵ have compact supports
containing β∗, γ̃∗, and σ2

ϵ∗ , the base measure of H has compact support that contains the support of H∗, and
H∗ satisfies the constraint in Equation (2.3). Then under the assumptions (A1)-(A3), the posterior distribution
Π((β, γ̃, σ2

ϵ , H) ∈ · | (X1,∆1), . . . , (Xn,∆n)) of (β, γ̃, σ2
ϵ , H) given (X1,∆1), . . . (Xn,∆n) is consistent

with respect to the Euclidean distances on β, γ̃, and σ2
ϵ and the weak topology on H , that is, given any ϵ > 0

and a weak neighborhood N of H∗,

Π{(β, γ̃, σ2
ϵ , H) :

|β − β∗| < ε, |γ̃ − γ̃∗| < ε, |σ2
ϵ − σ2

ϵ∗ | < ε,H ∈ N | (X1,∆1), . . . , (Xn,∆n)} → 1

(2.10)

almost surely in P∞
(β∗,γ̃∗,σ2

ϵ∗ ,H∗)
- probability.

In showing consistency we have provided a large sample justification of our Bayesian method. The proof
of Theorem 1 which establishes the Kullback–Leibler property for the CRAFT model is given in Appendix A.



A Bayesian Semiparametric Accelerated Failure Time Cure Rate Model . . . 107

2.2 Posterior Estimation using MCMC
In practice, the mixing distribution is often well approximated by a finite, possibly sample size-dependent,
discrete distribution (Li and Barron, 2000; Komárek et al., 2005). Also, for this CRAFT model the posterior
distribution of the parameters cannot be obtained in closed form. However, using a finite discrete approximation
to the infinite normal mixture allows off-the-shelf openware programming tools like JAGS (Plummer (2003)) to
perform Markov chain Monte Carlo sampling from the posterior distribution. So for practical implementation,
we approximate the error density in Equation (2.4) by

gLn(ϵ) =

Ln∑
l=1

wl
(k0 + 1)1/2

σϵ
ϕ

(
ϵ− µl

σϵ/(k0 + 1)1/2

)
, (2.11)

where Ln is the number of normal mixtures, µ1 < · · · < µLn is a suitably chosen completely known ordered
sequence of knots in R, and w = (w1, . . . , wLn)

T are unknown non-negative mixture coefficients satisfying
the restrictions (i)

∑Ln
l=1 wl = 1 and (ii)

∑Ln
l=1 µ

2
lwl − (

∑Ln
l=1 µlwl)

2 = {k0/(k0 + 1)}σ2
ϵ , where k0 is

a suitably chosen positive number. The first restriction guarantees that gLn(ϵ) is a density function while the
second restriction ensures that the variance constraint from Equation (2.3) holds in the finite mixture. We define
L with a subscript n to reflect the dependency between the number of normal densities and the sample size,
which will be discussed in more detail later on.

Prior distributions may now be specified for a finite number of mixture coefficients w as well as β, γ̃, and
σ2
ϵ . If we choose to use a suitable Dirichlet distribution to model the weight vector w then Equation (2.11)

provides an approximation to a mixture of Dirichlet process priors (Ishwaran and Zarepour, 2002). However, in
this paper we develop a more flexible prior for w which is required to satisfy the additional variance constraint
for model identifiability while also automatically penalizing for poor choices of Ln. Extending Komárek
et al. (2005)’s penalty term to our Bayesian framework, a prior for w is constructed which avoids over-fitting
by utilizing finite highter order differences between adjacent mixture coefficients. A fine grid of knots ensures
accurate estimation of the error density while the penalty term restricts the flexibility of the curve. We represent
the w′

ls as a multivariate logit model; as

wl =
eαl∑L
l=1 e

αl

(l = 1, . . . , Ln − 1),

wLn = 1−
Ln−1∑
l=1

wl,

where αLn = 0 and αl ∈ R for l = 1 . . . , Ln−1. Thus there is no restriction on the αl’s for l = 1, . . . , Ln−1

and this parameterization allows restriction (i) above to inherently hold.
We derive a prior for α = (α1, . . . , αLn−1)

T which in turn induces a prior on w in a similar spirit as the
penalty term used by Komárek et al. (2005). We assume that α ∼ NLn−1{0, λ−1(DT

mDm)−} where Dm is
a (Ln −m− 1)× (Ln − 1) matrix to represent mth order differences (see Appendix B for more details) and
(DT

mDm)− is the Moore-Penrose generalized inverse. Notice that Dm is a matrix of rank (Ln −m− 1) and
hence, α has a singular normal distribution (Rao, 1973). But if we define τ = Dmα then τl

iid∼ N(0, λ−1) for
l = 1, . . . , Ln −m− 1.

Finally, we consider priors for β and γ̃ with large variances, and use β ∼ N(0, Dβ) and γ̃ ∼ N(0, Dγ̃).
Each of the variances Dβ and Dγ̃ are adjusted to provide reasonable parameter spaces for each of the incidence
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and latency terms. Also, a noninformative inverse Gamma prior is set for the error variance, σ2
ϵ ∼ IG(a0, b0)

where a0 > 0 and b0 > 0 are suitably chosen to obtain a prior with large variance.

Ghosh and Ghosal (2006) show explicitly how to perform Markov chain Monte Carlo sampling from the
posterior distribution. Latent variables L∗ = (L∗

1, . . . , L
∗
n) which indicate the group membership to the µl

node along with probability vector w = (w1, . . . , wLn)
T are introduced. The CRAFT model can then be

re-written in hierarchical format as the following:

log Ti | L∗
i , ηi ∼

 Normal{βTzi + µL∗
i
, σ2

ϵ/(k0 + 1)}, δi = 1, ηi = 1

Normal{βTzi + µL∗
i
, σ2

ϵ/(k0 + 1)}I(log xi,∞), δi = 0, ηi = 1

ηi | z̃i ∼ Bernoulli{p(γ̃, zi)}

L∗
i | w ∼ Multinomial{(1, . . . , Ln), w}

w = Multivariate Logit(α), (τ = Dmα)

τ ∼ Normal(0, λ−1ILn−m−1)

β ∼ Normal(0, Dβ)

γ̃ ∼ Normal(0, Dγ̃)

σ2
ϵ ∼ Inverse Gamma(a0, b0)

Note that P (L∗
i = l) = wl for l = 1, . . . , Ln. This hierarchical format is easier to implement in JAGS

(http://mcmc-jags.sourceforge.net/). We select knots ranging from µ1 = −M to µLn = M

where µl = −M + 2M(l − 1)/(Ln − 1), l = 1, . . . , Ln for some suitably chosen large M > 0. This should
be a wide enough range to account for densities that may have large tails, such as the extreme value or logistic
distributions. Ishwaran and Zarepour (2002) suggest using Ln = n1/2 for large n and Ln = n for small n
while Ghosh and Ghosal (2006) say that more work is necessary to determine an optimal number. We will
select an order of Ln in a similar fashion, that should allow each normal density to overlap with a few of its
neighborhoods and may increase with n. Alternatively, a reversible jump MCMC procedure which has recently
become available in WinBUGS could have been used to select Ln (Lunn et al., 2008). Selecting m = 2, 3, or 4
in the difference operator matrix seems to provide good smoothing of the density in simulations. Also, we set
λ = 1 but in the future it may be determined by a cross-validation procedure suggested by Komárek et al.
(2005) or estimated using a prior distribution.

With this hierarchical formulation of our model specifications, Markov chain Monte Carlo sampling may
be easily performed to generate samples from the marginal posterior distributions of each of the parameters.
The posterior mean and standard deviation are used for the measure of center and spread for the mixture
coefficients, while the posterior median and standard deviation are used for all other estimated parameters.
One can implement this by using the jags.model function available in the rjags package of R which
calls JAGS to generate samples from the posterior distributions using Markov chain Monte Carlo methods.
Convergence diagnostics were performed using the “CODA” package available in R. See Appendix C for
a snippet of the JAGS code. Many other R packages (e.g., runjags) can be used (e.g., see https://

bayessm.wordpress.ncsu.edu/ for various examples).

http://mcmc-jags.sourceforge.net/
https://bayessm.wordpress.ncsu.edu/
https://bayessm.wordpress.ncsu.edu/
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3 Numerical Illustrations using Simulated Data
We conduct several numerical studies using simulated data to explore how well the estimators obtained from
the posterior distributions are performing under a variety of settings. We consider two types of covariates, a
continuous valued z1 uniformly distributed between 0 and 1 and binary-valued z2 variable obtained from a
Bernoulli distribution with mean 0.5. Covariates are centered by their population mean, which is 0.5 for both
variables. Such centering is known to reduce the posterior cross correlations between the regression coefficients
and hence, leads to more efficient Markov chain Monte Carlo sampling mixing (Roberts and Sahu, 2001).

The incidence portion of the model is log{p(γ̃, z)/[1 − p(γ̃, z)]} = γ0 + γ1z1 + γ2z2. We set γ0 =

0.5 or 1.0, γ1 = 1.0, and γ2 = −1.0. Cure fraction and censoring percentages correspond to 39% and
42% when γ0 = 0.5 and 28% and 32% when γ0 = 1.0. The latency portion of the model is log T ∗ =

β0 + β1z1 + β2z2 + ϵ where β0 = −1, β1 = −1.0 and β2 = 1.0. We consider symmetric, skewed, and bi-
modal distributions for ϵ, each of which has mean 0 and variance 0.25. These include (i) Logistic(0, 0.28) with
density function g(ϵ; a, b) = exp{−(ϵ−a)/b}/(b[1+exp{−(ϵ−a)/b}]2), (ii) EV(0.23, 0.39) where EV rep-
resents the extreme value distribution with density function g(ϵ; a, b) = b−1 exp{(ϵ− a)/b} exp[− exp{(ϵ−
a)/b}], and (iii) mixture of two normal densities: N(−0.45, 0.04) and N(0.45, 0.055), with density function
g(ϵ;µ1, µ2, σ

2
1 , σ

2
2) = (2πσ2

1)
−1/2 exp{(ϵ− µ1)

2/(2σ2
1)}+ (2πσ2

2)
−1/2 exp{(ϵ− µ2)

2/(2σ2
2)}.

The censoring times are generated from a uniform(0, 10) distribution. The observed times are hence the
minimum of the failure and censoring times. We use sample sizes of n = 100 or 200 subjects. In terms of prior
specification, we set β1, β2, γ1, γ2 ∼ N(0, 3) and the incidence intercept γ0 ∼ N(0, 1.5), which leaves prior
densities to be relatively flat compared to that of the posterior density, making the choice of priors insensitive
to posterior inference. However, recall that any prior distribution that has relatively much larger dispersion
compared to that of posterior can be used as indicated by the theoretical result (see Section 2.1), any prior
with full support of the parameter space is sufficient for asymptotic consistency. Also, we set a0 = 0.1 and
b0 = 10(k0 + 1) so σ2

ϵ ∼ IG(0.1, 10(k0 + 1)). The mixture of normal densities used to estimate the error
term range from µl = −4, . . . , 4 with Ln = 17 nodes which roughly scales like O(

√
n). We set m = 2 in the

difference operator matrix to control the smoothing of the normal mixtures. The prior on τl used in the error
densities is τl ∼ N(0, λ−1) for l = 1, . . . , 14 where λ = 1. For each simulation, the posterior generation in
WinBUGS is based on 4000 burn-ins and an additional 2000 runs from three parallel chains, for a total of 6000
Markov chain Monte Carlo samples per simulated data.

For all these simulation scenarios, 1000 Monte Carlo samples were generated to study the sampling vari-
ability of the posterior estimates of β1, β2, γ0, γ1, and γ2. In order to measure the empirical performance of
these posterior estimates, we computed the bias of the posterior median, the Monte Carlo standard error of the
posterior median (MCSE), the Monte Carlo average of the posterior standard deviation (ESE), and the nominal
coverage probabilities of covering the true value based on the 95% posterior interval (CP). Original simulations
resulted in considerable biases associated with the γ0 estimates, even with a more precise prior. To increase
precision, we consider censored subjects with event times greater than the maximum of the uncensored failure
times as cured.

Tables 1-3 provide results of the Monte Carlo simulations for different density types ranging from symmet-
ric to skewed to bi-modal. The posterior medians perform well in all simulations except for the γ1 estimates,
corresponding to the continuous covariate. For all error densities, these estimates tend to be biased when
n = 100. In the higher cure fraction case, the bias diminishes for n = 200. In the lower cure fraction cases, the
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Table 1: Results of the simulation study based on a CRAFT model with symmetric error distribution
(using 1000 MC replications).

Symmetric n = 100 n = 200

TRUE BIAS MCSE ESE CP BIAS MCSE ESE CP

β1 −1.0 0.01 0.23 0.24 0.95 0.01 0.16 0.16 0.95

β2 1.0 0.00 0.14 0.14 0.97 0.00 0.09 0.10 0.96

γ0 0.5 0.02 0.22 0.23 0.96 0.00 0.16 0.16 0.94

γ1 1.0 −0.14 0.68 0.73 0.96 −0.04 0.50 0.53 0.96

γ2 −1.0 0.00 0.44 0.45 0.95 0.01 0.31 0.32 0.95

β1 −1.0 0.01 0.20 0.22 0.96 0.01 0.15 0.15 0.95

β2 1.0 −0.01 0.12 0.13 0.97 0.00 0.09 0.09 0.96

γ0 1.0 0.01 0.25 0.25 0.95 0.02 0.17 0.17 0.95

γ1 1.0 −0.19 0.70 0.77 0.96 −0.08 0.54 0.57 0.96

γ2 −1.0 0.02 0.46 0.48 0.97 0.03 0.34 0.34 0.95

biases are statistically insignificant at a sample size of n = 200 and becomes almost zero for larger sample size
simulations (not shown) corroborating the large sample consistency. Overall, the posterior medians perform
well and any biases are due to small sample sizes. Coverage probabilities are close to their nominal values
in all settings. The Monte Carlo standard errors of the posterior medians and Monte Carlo averages of the
posterior standard deviations are fairly close and any differences reduce to a minimal amount when n = 200.
Again, the posterior estimates seem to be performing well, with the only complication being some bias in the
continuous covariate effects in small sample sizes. Also, the estimated mixture densities capture the true un-
derlying error distributions very well for all simulation scenarios. As illustration, Figure 2 shows the estimated
and true survival distributions when n = 200 and γ0 = 1 for each of the three error distributions. It may be
noted that above findings are limited by the case studies that we have performed under different design settings
and in general, it is not possible to determine sample sizes to achieve a desired reduction in biases.

4 Analysis of Breast Cancer Data

Farewell (1986) analyzed the breast cancer data set described in the introduction to demonstrate the effective-
ness of a Weibull-cure mixture model. Kuk and Chen (1992), Peng and Dear (2000), and Lu and Ying (2004)
have each re-analyzed the same data set for different proportional hazards cure models. Lu and Ying (2004)
also analyzed the breast cancer data set for a proportional odds cure model.
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Table 2: Results of the simulation study based on a CRAFT model with skewed error distribution
(using 1000 MC replications).

Skewed n = 100 n = 200

TRUE BIAS MCSE ESE CP BIAS MCSE ESE CP

β1 −1.0 0.01 0.22 0.24 0.96 0.01 0.16 0.16 0.95

β2 1.0 0.00 0.13 0.14 0.96 0.00 0.09 0.09 0.96

γ0 0.5 0.02 0.22 0.23 0.96 0.00 0.16 0.16 0.94

γ1 1.0 −0.13 0.68 0.73 0.96 −0.04 0.50 0.53 0.96

γ2 −1.0 0.00 0.44 0.45 0.95 0.01 0.31 0.32 0.95

β1 −1.0 0.01 0.20 0.22 0.97 0.00 0.14 0.15 0.95

β2 1.0 0.00 0.12 0.13 0.97 0.00 0.08 0.09 0.97

γ0 1.0 0.02 0.25 0.25 0.95 0.02 0.17 0.17 0.96

γ1 1.0 −0.18 0.70 0.77 0.97 −0.08 0.54 0.57 0.96

γ2 −1.0 0.02 0.46 0.48 0.96 0.03 0.34 0.34 0.94

The data set consists of n = 139 patients. In addition to the two treatment indicator variables, two ad-
ditional binary covariates are considered: a clinical stage indicator and an indicator for the number of lymph
nodes. In the original data set as presented by Farewell (1986) two more covariates were included, pathological
stage and histological stage, but unfortunately these data are no longer available. The censoring percentage is
68%, with 95 patients censored and 44 uncensored. Recall Figure 1 shows the Kaplan–Meier survival curves
for each of the three treatment groups, each of which levels off significantly above zero and provides empirical
evidence in support for a cure model for the data set.

There is some empirical evidence that the proportional hazards assumption may not be valid. This is
seen by plotting the logarithm of the cumulative hazard function for the uncensored patients in each treatment
group, based on the Kaplan–Meier curve, as performed by Zhang and Peng (2007) for a different data set.
The uncensored subjects are assumed to be reasonably close to those that are uncured. In this instance, the
logarithm of the cumulative incidence function of the uncensored subjects nearly approximates that of the
uncured subjects. This is also shown in Figure 3, where treatment A does not seem parallel to the other
treatments. This provides empirical evidence that the proportional hazards assumption may not hold. However,
the crossing of the cumulative hazard (and hence that of survival curves) may also indicate violation of AFT
model.

We fit the breast cancer data set under several settings of our proposed semiparametric Bayesian model.
The logarithm of the failure times are centered by either their mean, or the mean of those observations that
experience a failure. This allows the normal mixture nodes to range from -4 to 4 and easily capture the spread of
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Table 3: Results of the simulation study based on a CRAFT model with bimodal error distribution
(using 1000 MC replications).

Bimodal n = 100 n = 200

TRUE BIAS MCSE ESE CP BIAS MCSE ESE CP

β1 −1.0 0.04 0.20 0.22 0.97 0.01 0.11 0.12 0.97

β2 1.0 −0.01 0.11 0.13 0.98 −0.01 0.06 0.07 0.97

γ0 0.5 0.01 0.23 0.23 0.94 0.01 0.16 0.16 0.95

γ1 1.0 −0.16 0.66 0.73 0.97 −0.07 0.52 0.53 0.96

γ2 −1.0 0.06 0.43 0.45 0.95 −0.01 0.31 0.32 0.96

β1 −1.0 0.02 0.17 0.19 0.97 0.01 0.10 0.10 0.95

β2 1.0 0.00 0.10 0.11 0.97 0.00 0.06 0.06 0.96

γ0 1.0 0.01 0.24 0.25 0.95 0.01 0.18 0.17 0.94

γ1 1.0 −0.12 0.72 0.77 0.96 −0.10 0.54 0.57 0.95

γ2 −1.0 0.04 0.47 0.48 0.95 0.01 0.36 0.34 0.95

the data. The data is fit under all combinations of Ln = 17 or 25 and m = 2, 3, or 4. The priors on wl penalize
high-dimensional models and help avoid overly complex models. Hence, provided that model complexity
measures remain stable, there is no need for model selection to include a second penalization for complex
models as measured by DIC. Instead model selection is based on goodness of fit, measured by deviance. In
terms of prior specification, we set β1, β2, γ1, γ2 ∼ N(0, 3) and the incidence intercept γ0 ∼ N(0, 1.5). Also,
a0 = 0.1 and b0 = 10(k0 + 1) so σ2

ϵ ∼ Ga(0.1, 10(k0 + 1)). Posterior estimation is based on 4000 burn-ins
and an additional 5000 runs from three parallel chains, for a total of 15,000 Markov chain Monte Carlo samples
per estimate.

Based on small levels of deviance while maintaining stable DIC values, we select the model where Ln = 17

and m = 4. The logarithm of the failure times are centered by the mean of those observations that are
uncensored. The CODA package (Plummer et al. (2006)) available in R is used to perform Markov chain
Monte Carlo diagnostics for the chosen model. The Gelman–Rubin 97.5% shrink factors for all statistics are
≤ 1.03, indicating good mixing and good convergence to the appropriate distributions. Appendix D provides
additional diagnostic information including the trace and posterior density plots for the incidence and latency
parameters and a plot of the posterior means of the mixing coefficients. The former indicates that the chains
have thoroughly mixed while the later indicates that the number and location of nodes used in the normal
mixture seem to be capturing the spread of the data well.

The results based on the above model parameters are summarized in Table 4. Descriptive statistics based
on posterior distributions for the covariates in both the incidence and latency portions of the model include the
posterior median and the posterior 2.5% and 97.5% percentiles.
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Figure 2: True and estimated (based on CRAFT model) survival probabilities for data generated
from symmetric (logistic), skewed (extreme value), and bimodal (mixture of two normals) distribu-
tions when n = 200 and γ0 = 1 for Monte Carlo simulations of size 1000.
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Figure 3: Breast cancer data set: The logarithm of the cumulative hazard function curves for each
of the three treatments

Point estimates will not be compared to previous authors because the interpretation is different, as we are
using the accelerated failure time model. A formal Bayesian testing for significance can be performed using
Bayes factor, but conclusions may also be based on the concentration of posterior distribution around zero,
namely, between the 2.5% and 97.5% percentiles. These results can be compared to p-values obtained from
previous results. In general, statistical significance tends to be in agreement with those found by Peng and Dear
(2000) and Lu and Ying (2004), as described below.

In terms of latency parameters, treatment A and clinical stage indication both have positive significant ef-
fects on short term survival times. Peng and Dear (2000) found these same results. For the incidence parameters
based on a 0.05 cut-off criterion, both lymph nodes and clinical stage are significant with negative and positive
effects; respectively, on long-term survival. Also, zero is just inside the tail cut-off value of 97.5% for the
posterior distribution of treatment B, showing evidence of a positive effect on long-term survival. These three
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Table 4: Breast cancer data: Bayesian posterior summaries for both the latency and incidence statis-
tics associated with treatment A or B, clinical stage indication, and number of lymph nodes in the
breast cancer data set using the CRAFT model

Latency: β 2.5% 50% 97.5%

Trt A 0.16 0.98 1.70

Trt B −0.46 0.14 0.87

Clinical Stage I 0.01 0.77 1.39

Lymph Nodes −0.88 −0.34 0.35

Incidence: γ 2.5% 50% 97.5%

Trt A −1.57 −0.46 0.66

Trt B −1.99 −0.97 0.03

Clinical Stage I −1.79 −0.89 −0.01

Lymph Nodes 0.38 1.41 2.62

Intercept −0.59 0.24 1.13

statistics were all found to be significant or nearly significant for both Peng and Dear (2000) and Lu and Ying
(2004).
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Figure 4: Breast cancer data: posterior median of the error density estimates from the CRAFT model
using a mixture of 17 normal distributions

In addition to descriptive statistics, the estimated survival distributions based on posterior medians are
computed for each treatment, weighting by lymph nodes and clinical stage. Weighting is performed based on
the corrected group prognosis method (Chang et al., 1982). For a particular treatment, four survival curves are
computed corresponding to each level of lymph nodes and clinical stage. The estimated survival curve is then
constructed as the weighted average of these four curves, where the weights are proportional to the number
of subjects at each level of lymph nodes and clinical stage. Figure 1 provides this plot, overlayed with the
Kaplan-Meier estimates (KMEs) for each treatment, illustrating that the estimated survival curves appear to be
capturing the survival distribution relatively well in the long-run. Estimated curves deviates from the empirical
KMEs at shorter survival times (as the KMEs are not adjusted for baseline covariates), but the estimated curves
still seem to capture the crossing survival curves feature. Figure 4 is a plot of the estimated error density based
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on posterior medians, indicating that the number and location of normal mixtures seem to be capturing the error
density well. Clearly, a specific parametric family would not be able to adapt to such trimodal features unless
specifically known beforehand.

5 Conclusion
We have introduced a semiparametric accelerated failure time cure model within a Bayesian framework. Mod-
eling the error term as a mixture of normal densities provides an intuitive and useful means for semiparametric
estimation. However, several mixtures densities may have been considered instead of the normal. Specifically,
combining our work with that of Ghosh and Ghosal (2006), posterior consistency based on a mixture of Weibull
densities holds and could have sufficed in the cure rate accelerated failure time model. Also, we assume that
the same vector of covariates z is present in the incidence and latency components. In practice, it is possible to
partition the covariates into these two model components (Li and Taylor, 2002) or use variable selection meth-
ods (Mitchell and Beauchamp, 1988; Kinney and Dunson, 2007) to choose appropriate subsets of covariates for
the incidence and latency. The penalized prior has been adapted from Komárek et al. (2005) to control smooth-
ing but with the smoothing parameter fixed at a reasonable level. Future work may investigate selection of an
optimal smoothing mechanism and/or an optimal number of normal densities used in the mixture. And lastly,
although the model has been developed for a univariate response with right-censored data, it may be extended
to multivariate survival analysis or to other various censoring scenarios, such as interval-censored data.
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A Proof of Theorem 1
Lemma A.1. The model given in Equation (2.9) of our paper is identifiable

Proof of Lemma A.1
Let hβ1,γ1,σϵ1

,H1
(x, δ,z) = hβ2,γ2,σϵ2

,H2
(x, δ,z) for all (x, δ,z), as defined in Equation (2.9). We

will work with each component of hβ,γ,σϵ,H
(x, δ,z) separately. Let σ2

j = σ2
ϵj/(k0+1), j = 1, 2, so we may

reparameterize the mixing distribution in terms of σ2
j . First, let δ = 0 so we work with the second component.

Then for all (x,z),

p(γ1,z)

∫
Φ

[
log x− β′

1z − µ

σ1

]
dH1(µ) = p(γ2,z)

∫
Φ

[
log x− β′

2z − µ

σ2

]
dH2(µ).

Now, letting x → ∞ and applying Monotone Convergence Theorem (MCT), the above equation reduces to

p(γ1,z)

∫
dH1(µ) = p(γ1,z)

∫
dH2(µ).

But
∫∞
0

dH(µ) = 1 for any mixing distribution. Hence, p(γ1,z) = p(γ2,z) implies that γ1 = γ2 assuming
that Fo(·) is a strictly increasing function.

Next, let δ = 1 so we work with the second component. Because γ1 = γ2, for all (x,z), we have∫
1

σ1x
ϕ

[
log x− β′

1z − µ

σ1

]
dH1(µ) =

∫
1

σ2x
ϕ

[
log x− β′

2z − µ

σ2

]
dH2(µ). (A.1)

Setting z = 0, the above equation reduces to∫
1

σ1x
ϕ

[
log x− µ

σ1

]
dH1(µ) =

∫
1

σ2x
ϕ

[
log x− µ

σ2

]
dH2(µ) (A.2)

for all x ∈ (0,∞). Multiplying both sides of A.2 by eiwx and integrating with respect to x we obtain∫ ∞

0

∫
eiwx 1

σ1x
ϕ

[
log x− µ

σ1

]
dH1(µ)dx =

∫ ∞

0

∫
eiwx 1

σ2x
ϕ

[
log x− µ

σ2

]
dH2(µ)dx,

where i =
√
−1 is the imaginary unit. By change of variables, u1 = (log x−µ)/σ1 and u2 = (log x−µ)/σ2

and using Fubini’s Theorem we have∫ ∫
eiw(µ+σ1u1)ϕ(u1)du1dH1(µ) =

∫ ∫
eiw(µ+σ2u2)ϕ(u2)du2dH2(µ).

After re-arranging we have∫
eiwµ

∫
eiwσ1u1ϕ(u1)du1dH1(µ) =

∫
eiwµ

∫
eiwσ2u2ϕ(u2)du2dH2(µ).

The inside integrals are the characteristic functions for the standard normal distributions and therefore we have,∫
eiwµe−

1
2
σ2
1w

2

dH1(µ) =

∫
eiwµe−

1
2
σ2
2w

2

dH2(µ).

Let ΨH(w) =
∫
eiwµdH(µ) be the characteristic function for H(·). Then the above equation simplifies to

e−
1
2
σ2
1w

2

ΨH1(w) = e−
1
2
σ2
2w

2

ΨH2(w).
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Taking the logarithm on both sides of the equation we have

σ2
1w

2 − 2 logΨH1(w) = σ2
2w

2 − 2 logΨH2(w), (A.3)

for all w ∈ R. Differentiating both sides of the above equation with respect to w twice results in

2σ2
1 − 2

d2

dw2
logΨH1(w) = 2σ2

2 − 2
d2

dw2
logΨH2(w).

Note that

d2

dw2
logΨH(w)

∣∣∣∣
w=0

=
Ψ′′

H(w)ΨH(w)−Ψ′
H(w)2

Ψ2
H(w)

∣∣∣∣
w=0

= Ψ′′
H(0)−Ψ′

H(0)2

= −VarH [µ],

since ΨH(0) = 1, Ψ′
H(0) = −iEH [µ], and Ψ′′

H(0) = −EH [µ2]. Hence we have

σ2
1 + VarH1 [µ] = σ2

2 + VarH2 [µ]

Recall that VarH [µ] = k0
k0+1

σ2
ϵ and σ2

ϵj = σ2
j (k0 + 1). Thus, it follows that σ2

1 = σ2
2 , which in turn

implies that σ2
ϵ1 = σ2

ϵ2 . By Equation (A.3) this also means that ΨH1(w) = ΨH2(w) for all w ∈ R. By
uniqueness of characteristic functions, H1(·) = H2(·). Returning to Equation (A.1) and using DCT, it follows
that

∫
1
σ
ϕ((µ+ β′z − log(x))/σ)dH(µ) → dH(log(x)− β′z) as σ → 0 for any x > 0 and thus we obtain

for all z, β′
1z=β′

2z and hence, β1 = β2. Alternatively, we can also multiply the equation (A.1) by log x and
then integrating both sides with respect to x we can obtain for all z, β′

1z=β′
2z. This completes the proof of

identifiability.

Lemma A.2. Consider the product topology on (β,γ, σϵ, H), where β,γ, and σϵ, are given the usual Eu-
clidean topology and H the weak topology. On densities hβ,γ,σϵ,H

(x, δ,z), put the total variation (or the L1)
distance defined as

||hβ1,γ1,σϵ1
,H1

− hβ2,γ2,σϵ2,H2
|| =

∫ ∫ ∞

0

|hβ1,γ1,σϵ1
,H1

(x, δ,z)− hβ2,γ2,σϵ2
,H2

(x, δ,z)|dxdz.

Then

||hβν ,γν ,σϵν ,Hν
− hβ,γ,σϵ,H

|| → 0

if and only if (βν ,γν , σϵν , Hν) → (β,γ, σϵ, H). In other words, the variation topology on the densities is
equivalent to the product topology on the indexing parameters.

Proof of Lemma A.2
The proof follows similarly as Lemma 2 in Ghosh and Ghosal (2006). In fact, the ’only if’ portion follows

directly as in Ghosh and Ghosal (2006) and using the identifiability property verified in Lemma 1. We provide
details to the ’if’ part, as the cure fraction and normal mixture provide a few differences in proof.

It suffices to show that the densities converge pointwise and then apply Scheffe’s theorem. Fix (x, δ,z).
We show the proof for δ = 1.
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Because µ has a compact range, the integrand ϕ

(
log x−β′z−µ

σϵ/(k0+1)

)
√

k0+1
σϵ

of hβ,γ,σϵ,H
as a family of func-

tions of (β,γ, σϵ) indexed by µ is equicontinuous. Also p(γ,β) is fixed and does not depend on µ. For a
given ε > 0, find ν large enough so that the integrands are ε-close for all µ. For such a ν,

|hβν ,γν ,σϵν ,Hν
− hβ,γ,σϵ,H

| ≤ |hβν ,γν ,σϵν ,Hν
− hβ,γ,σϵ,Hν

|+ |hβ,γ,σϵ,Hν
− hβ,γ,σϵ,H

|.

For n ∈ N , let {pn} and {An} be sequences of real numbers. Then the following inequality holds:

|pnAn − pA| ≤ |pn − p||A|+ |pn||An −A|

≤ |pn − p||A|+ |An −A| if |pn| ≤ 1 (A.4)

Let pn = p(γn,z) and An represent the density function of the error distribution, which is the same density
as Ghosh and Ghosal (2006). Then |hβν ,γν ,σϵν ,Hν

− hβ,γ,σϵ,H
| is equivalent to |pnAn − pA|. Because

pν(γ,z) converges pointwise to p(γ,z), there exists an n > n1 for which |pn − p| < ϵ
2|A| in the first term

on the RHS of Equation (A.4). Since |p(γn,z)| ≤ 1, and as shown in the proof of Lemma 2 in Ghosh and
Ghosal (2006), there also exists an n > n2 for which |An−A| < ϵ

2
in the second term on the RHS of Equation

(A.4). Therefore the RHS is less than ϵ
2|A| |A|+ ϵ

2
= ϵ. Hence, |hβν ,γν ,σϵν ,Hν

− hβ,γ,σϵ,H
| < ϵ. Applying

Scheffe’s theorem proves the ’if’ part of the theorem.

Lemma A.3. For all ε > 0,

Π

{
(β,γ, σϵ, H) :

∫ ∫
hβ0,γ0,σϵ0

,H0
log

hβ0,γ0,σϵ0 ,H0

hβ,γ,σϵ,H

dxdz < ε

}
> 0.

Proof of Lemma A.3
The log likelihood ratio is given by

∆(β,γ, σϵ, H) =


log

fβ,γ,σϵ,H
(x,δ,z)

fβ0,γ0,σϵ0
,H0

(x,δ,z)
if δ = 0

log
Sβ,γ,σϵ,H

(x,δ,z)

Sβ0,γ0,σϵ,H0
(x,δ,z)

if δ = 1.

We shall prove the δ = 1 case, while the δ = 0 case is straighforward. Notice that β,γ, σϵ,z are
all bounded. Thus the integrand within fβ,γ,σϵ,H

is bounded above and below by functions of the form

k1e
c1xe−x2/c2 . Also, p(γ,z) is bounded between 0 and 1. Taking the ratio and then logarithm, ∆ in the tails

(in x) is bounded by a multiple of a power of x. The rest of the proof follows as that in Lemma 3 of Ghosh and
Ghosal (2006) and Theorem 3 of Ghosal et al. (1999).

Proof of Theorem 1 Lemma A.2 shows that it suffices to consider neighborhoods with respect to the L1-
distance. Also the space is compact. The condition of prior positivity has been verified in Lemma A.3. Hence,
the proof is complete.

B Explanation of the Difference Operator Matrix
We provide an explanation of the difference operator matrix for the m = 1 and m = 2 cases.
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First, for when m = 1, the penalty term includes:

Ln∑
l=2

{∆1αl}2 =

Ln∑
l=2

(αl − αl−1)
2 = (D1α)′(D1α) = α′D′

1D1α

where

D1α =



−1 1 0 0 0 . . . 0 0

0 −1 1 0 0 . . . 0 0

0 0 −1 1 0 . . . 0 0
...

0 0 0 0 0 . . . −1 1


(Ln−1)×Ln



α1

α2

α3

...

αLn


=



α2 − α1

α3 − α2

α4 − α3

...

αLn − αLn−1


Secondly, when m = 2, the penalty term includes

∆2αl = (αl − αl−1)− (αl−1 − αl−2) = αl − 2αl−1 + αl−2 l = 3, . . . , Ln

Hence,
Ln∑
l=3

{∆2αl}2 = (D2α)′(D2α) = α′D′
2D2α

where

D2α =



1 −2 1 0 0 0 . . . 0 0 0

0 1 −2 1 0 0 . . . 0 0 0

0 0 1 −2 1 0 . . . 0 0 0
...

0 0 0 0 0 0 . . . 1 −2 1


(Ln−2)×Ln



α1

α2

α3

...

αLn



=



α3 − 2α2 + α1

α4 − 2α3 + α2

α5 − 2α4 + α3

...

αLn − 2αLn−1 + αLn−2



C JAGS Code for the CRAFT Model Under Right Censoring
for (i in 1:n.obs){

cen[i] ˜ dbern(pi[i])

logit(pi[i]) <- inprod(gamma[1:p],x[i,1:p])

logtime[i] ˜ dnorm(logmean[i],omega0)



A Bayesian Semiparametric Accelerated Failure Time Cure Rate Model . . . 123

logmean[i] <- eta[latent[i]]+mu[i]

latent[i] ˜ dcat(prob[])

mu[i]<-inprod(beta[1:p-1],x[i,2:p])}

for (i in (n.obs+1):n){

cen[i] ˜ dbern(pistar[i])

logit(pi[i]) <- inprod(gamma[1:p],x[i,1:p])

mu[i]<-inprod(beta[1:p-1],x[i,2:p])

pistar[i] <- pi[i]*max(inprod(prob[],phistar[i,]),

step(logtime[i]-maxlogtime))

for(l in 1:N){

phistar[i,l]<-phi((logtime[i]-eta[l]-mu[i])*sqrt(omega0))}}

inversevariance<-1/3

inversevariancesmall<-2/3

gamma[1] ˜ dnorm(0,inversevariancesmall)

for (j in 2:p){

gamma[j] ˜ dnorm(0,inversevariance)}

for (j in 1:p-1){

beta[j] ˜ dnorm(0,inversevariance)}

omega0 ˜ dgamma(.1,.1)

sigma0 <- 1/sqrt(omega0)

for (k in 1:(N-1)){

expalpha[k]<-exp(alpha[k])

prob[k] <-exp(alpha[k])/(1+sum(expalpha[]))}

prob[N]<-1-sum(prob[1:(N-1)])

for (k in 1:(N-1-m)){

delta[k] ˜ dnorm(0,lambda1)}

for (k in 1:(N-1)){

alpha[k] <- inprod(Dcoef[k,],delta[])}
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D Additional Figures

Figure 5: Breast cancer data: trace and posterior density curves for both the latency and incidence
statistics associated with treatment A or B, clinical stage indication, and number of lymph nodes
using the CRAFT model
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Figure 6: Breast cancer data: posterior means of the mixing weights using the CRAFT model
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