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SUMMARY

The analysis of quality adjusted lifetime adds an interesting wrinkle to the field of dynamic
treatment regimes (DTRs), in that the optimal regime will not only depend on patient infor-
mation (including treatments taken, intermediate outcomes, and other patient covariates),
but it will also depend on information on the treatments themselves, e.g. monetary cost
or toxicity. The focus of this paper is to investigate a form of Q-learning using estimat-
ing equations for the quality adjusted survival outcome. We use m-out-of-n bootstrap for
inference and threshold utility analysis to show how the patient-specific optimal regime
varies according to the treatment characteristics (e.g. cost, side effects). Methodologies
developed are investigated through a simulation study and are demonstrated to construct
optimal treatment regimes for the treatment of children’s neuroblastoma.

Keywords and phrases: Counterfactuals; Dynamic treatment regime; Inverse probabil-
ity weighting; m-out-of-n bootstrap; Potential outcomes; Quality adjusted lifetime; Q-
learning; Survival analysis; Threshold utility analysis.

1 Introduction
Cost of treatment is often prohibitive for patients, especially those in developing countries, prevent-
ing them from following the optimal treatment regime for treating a condition. Additionally, in many
cases adverse effects of the treatments in the optimal regime may prevent a patient from following
the regime. This leads to a very important question for researchers to answer - should the cost of
treatment and/or adverse effect of a treatment be considered while constructing optimal treatment
regimes for a given condition? In what follows we develop a frame work for factoring the cost and

⋆ Corresponding author
© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.



128 Johnson et al.

adverse event profiles into the analysis of dynamic treatment regimes in the form of quality adjust-
ment. We define a quality function that maps the patient’s health status and treatment characteristics
(e.g. cost, adverse events) to an index ranging between zero and one, with zero indicating the worst
health state (unaffordable treatment, life-threatening adverse effects, or death) and one indicating
the best (normal health, affordable treatment, no adverse effects).

Clinical trials for cancer often measure a primary outcome and several secondary outcomes.
The secondary outcomes may include, among others, measures of toxicity and adherence. Taken
separately, these measures may sometimes lead to different optimal treatments. While one treatment
may have the largest expected primary outcome, a second one may be less toxic, and a third might
have the best adherence. To address this Gelber et al. (1989), Glasziou et al. (1990), Goldhirsch
et al. (1989) and Korn (1993) considered quality adjusted lifetime to adjust the length of life based
on its quality. In its simplest form, quality adjusted life assigns a utility weight, ranging from 0 to 1,
to separate states of health. If there are k health states, then Ui =

∑k
j=1 qjsji is the quality adjusted

lifetime (QAL) for the ith patient, where s1i, .., ski are the times spent in each state, and q1, . . . , qk
are the utility coefficients assigned to each of the health states. Note that the quality adjusted lifetime
Ui is simply a fraction of total lifetime for patient i. More recently, Zhao and Tsiatis (1997, 1999,
2000, 2001) have provided consistent and efficient estimators, and provided hypothesis tests for
distributional features of quality adjusted lifetime in the presence of right censoring. Wang and
Zhao (2007) extended this work to the regression setting, using inverse weighting techniques to
form consistent estimating equations for regression parameters.

Assuming larger outcomes are better, it is natural to search for the optimal regime, the one with
the largest expected outcome. Murphy (2003), Robins (2004), and others pioneered the use of back-
wards induction in statistics via Q-learning and g-estimation to identify such optimal regimes. These
algorithms work backwards in time by identifying at each stage which treatment has the largest ex-
pected outcome, and creating pseudo data for each subject by replacing his/her observed outcomes
with the estimated optimal expected outcome at each stage, given prior observed outcomes and co-
variate information. The optimal treatment at each stage is the one with the largest expected value
of this pseudo data. Huang et al. (2014) go on to discuss a version of Q-learning that emphasizes
the observed data rather than deterministic modeled outcomes. It preserves the randomness of the
data and better satisfies the consistency assumption frequently employed in the analysis of DTRs.

The goal of this manuscript is to develop an optimal dynamic treatment regime to maximize
quality adjusted lifetime by using a Q-learning-type approach discussed in Huang et al. (2014).
This method will be operationalized using the estimating equations of Wang and Zhao (2007), and
a threshold utility analysis will be used to show how the subject-specific optimal DTR not only
depends on patient history and intermediate outcomes, but also on quality of life, monetary cost,
and other factors during each treatment. Though we optimize quality adjusted lifetime, we provide
suggestions on how the quality adjustment can be used for any continuous outcome via Q-learning.
We use a simulation study to evaluate these methods, and then apply them to COG study A3891
concerning 379 children receiving treatment for high-risk neuroblastoma (Matthay et al., 1999).
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2 Setup

2.1 Quality-adjusted lifetime

Describe the health history for the ith patient with a continuous time stochastic process {Vi(t), t ≥
0}. Vi(t) maps to the space of health states S = {0, 1, 2, . . . ,m}, where the state ‘0’ corresponds to
the absorbing state of death. Denote the health history up to time t by V H

i (t) = {Vi(s) : s ≤ t}. Let
Vi(s) = 0 imply that Vi(t) = 0 for t ≥ s. Let Ti denote the survival time for patient i. Naturally,
Vi(t) = 0 for t ≥ Ti. Then we see that Ti =inf{t : Vi(t) = 0}. Let q() be a quality of life function
mapping Vi(t) to [0, 1], with q(0) ≡ 0. The quality adjusted lifetime for the ith patient is defined as
Q(Ti) =

∫ Ti

0
q{Vi(t)}dt.

In the presence of non-informative right censoring, one might consider the restricted survival
time where total follow-up time is limited to L, where L is some value less than the maximum
survival time for all patients. Therefore, the survival time for all patients will be truncated at L,
TL =min(T, L). For ease of notation, we will drop the superscript and simply use T . We will denote
the ith patient’s censoring time by Ci, and the survival distribution of C by K(t) = P (C > t).
Define Ui =min(Ti, Ci) and ∆i = I(Ti ≤ Ci), respectively, to be the observed time to event (death
or censoring), and the death indicator. Then Q(Ui) =

∫ Ui

0
q{Vi(t)}dt represents the quality adjusted

time to event for the ith patient.
In this construction the quality function q is not patient specific (does not have a subscript i), and

was assumed known. One view is that q exists at the population level. This means that every patient
in the analysis, and all of the patients they represent, experience the same quality of life when in a
particular health state. This allows for a threshold utility analysis, described in detail in Section 3.2,
where quality adjusted lifetime (or a function of it) is considered over the entire range of possible
values of q, to examine how the value of q affects the estimation of quality adjusted lifetime. As a
convention we will take Q(s, t) to refer to

∫ t

s
q{V (u)}du and Q(t) to refer to

∫ t

0
q{V (u)}du.

For example, consider a discrete-state health history process Vi(t) with three states: treatment,
response (well-being), and death. Suppose each of these states are mapped to [0,1] as q{Vi(t)} =

qaI{t ≤ TR
i }+1I{TR

i < t < Ti}+0I{t > Ti}. Such a mapping may be reasonable as the quality
is the least (zero) after death, one when healthy, and a constant, qa, between zero and one when
being treated due to toxicity related complications and/or monetary cost from receiving treatment
A = a. Here, time from beginning of treatment to response is denoted by TR

i . Under this scenario,

Q(Ti) =
∫ TR

i
0 qadt +

∫ Ti

TR
i

1dt = Ti − (1 − qa)T
R
i . If the patient undergoes a maintenance

treatment immediately after responding, and remains on maintenance treatment B = b until death,

Q(Ti) could be written as Q(Ti) =
∫ TR

i
0 qadt+

∫ Ti

TR
i

qbdt = qbTi−(qb−qa)T
R
i , where the constant

qb reflects the utility weight of treatment B = b for toxicity, monetary cost, and other factors.
Since quality adjusted lifetime is the area under q{Vi(t)} over the health states from 0 to T , for

any function q{Vi(t)} there exists a constant function in each health state that results in the same
area, and produces the same quality adjusted lifetime. Not coincidentally, the example above has
the health states of each patient correspond to the sequence of treatments received. When estimating
mean quality adjusted lifetime in such settings, the utility weights qa and qb factor out, producing
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E[Q(Ti)] = qaE[TR
i ] + qbE[Ti − TR

i ]. When viewed in this way, not only can the utility weights
be seen as population constants, they can alternatively be seen as adjustments to the expected utility
of each treatment for the prospective patient, depending on his or her aversion to each treatment,
with each prospective patient potentially having different values of the utility weights. Such an
interpretation of the utility weights offers even more motivation for a threshold utility analysis.

For drawing inference on quality adjusted lifetime, the survival function of quality adjusted
lifetime may be used the same way as the survival function of overall survival. In the presence
of non-informative censoring one might naturally turn to the Kaplan-Meier estimator, to estimate
S(t) = P

(
Q(Ti) > t

)
, but Gelber et al. (1989) and Pradhan & Dewanji (2009) showed that this

can result in biased estimation because the quality adjustment induces a dependence between the
survival times and censoring times. Zhao & Tsiatis (1997) offer an inverse-probability weighted
estimator, similar to that proposed by Robins & Rotnitzky (1992) and Robins et al. (1994) ,
Ŝ(t)cen = 1

n

∑n
i=1

∆i

K̂(Ui)
I[Q(Ui) > t], where K̂(Ui) is the Kaplan-Meier estimator for the censor-

ing random variable evaluated at Ui, and ∆i and K̂(Ui) can depend on t to improve efficiency. Zhao
& Tsiatis (1999) improve the efficiency of their estimator by incorporating each patient’s health his-
tory. In Zhao & Tsiatis (2000) they used the same principles to estimate the mean quality adjusted
lifetime.

Wang & Zhao (2007) extended this work to the regression setting by constructing consistent esti-
mating equations for mean quality adjusted lifetime in the presence of censoring, yielding Un(β) =∑n

i=1
∆i

K̂(Ui)
h(Xi){Q(Ui) − g(β,Xi)} = 0, where Xi denotes a (p + 1) × 1 vector of covariates

associated with patient i, with the first covariate being the constant 1, h(Xi) is a (p+ 1)× 1 vector
of functions of Xi, β is a (p + 1) × 1 vector of parameters, and g(β,Xi) = E[Q(Ti)|Xi]. The
estimator for β solving Un(β) will be used to operationalize our search for the optimal dynamic
treatment regime, described in Section 3.

2.2 Dynamic treatment regimes and corresponding terminology

Consider a two-stage sequential multiple assignment randomized trial (SMART) design where pa-
tients are randomized to one of two induction therapies, A = {a1, a2}. Patients may be resistant to
their initial treatment, or they may respond. For each of the induction therapies, if treatment response
is observed, patients are further randomized to one of two maintenance treatments, B = {b1, b2}.
This design allows for inference on four DTRs that might be carried out in clinical practice, namely,
d(Ai = aj ;Bi = bk), j, k = 1, 2, where d(Ai;Bi) stands for “Treat with Ai, if the patient re-
sponds, treat with Bi.” Our goal is to find the optimal treatment regime among these that maximizes
expected quality adjusted lifetime.

Let GH
i (t) denote all information collected on patient i prior to time t. Some or all of the

information in GH
i (t), for example serum biomarker levels, responses to questionnaires, or tumor

size, is used to define V H
i (t), which then defines Ri and TR

i , the observed response indicator and
the observed time to response given Ri = 1, respectively. GH

i (t) may include additional patient
information not used to define V H

i (t). Then, introducing further indicators for first and second
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stage treatment, the observed data for the ith patient in the presence of censoring is written as

Dδ
i =

(
Z

(A)
1i , Z

(A)
2i , Ri, RiT

R
i , RiZ

(B)
1i , RiZ

(B)
2i , Ui, ∆i, V

H
i (Ui), G

H
i (Ui)

)
,

where Z
(A)
ji =1 if patient i received the jth induction therapy, Z(A)

ji =0 otherwise, and Z
(B)
ki denotes

the bk treatment assignment indicator I{B = bk}, defined only if Ri=1. Note that Z(A)
2i = 1−Z

(A)
1i

and Z
(B)
2i = 1− Z

(B)
1i , but we explicitly define them to facilitate the use of summation.

By design, treatments are assigned independently of prognosis or any observed data measured
prior to the second stage. This condition is often referred to as no unmeasured confounders or
sequential randomization assumption. This ‘no unmeasured confounders’ condition holds even if
the second-stage randomization probabilities depend on the first-stage treatment assignments.

3 Optimization of Dynamic Treatment Regimes on Quality Ad-
justed Survival

3.1 Optimization

Following the work of Murphy (2003), Robins (2004), and Huang et al. (2014), we describe a
backward induction method to identify the optimal dynamic treatment regime, using mean quality
adjusted survival time as the criterion of optimality. From the reinforcement learning literature
in the field of DTRs, the typical Q-functions for two stages of our SMART design, assuming no
unmeasured confounders, would be

QB

(
Ai = aj , G

H
i (TR

i ), Bi = bk

)
= E

[
Q(TR

i , Ti)
∣∣∣Ai = aj , Ri = 1, GH

i (TR
i ), Bi = bk

]
QA

(
GH

i (0), Ai = aj

)
= E

[
H

(A)
i

∣∣∣GH
i (0), Ai = aj

]
,

where

H
(A)
i =

 Q(TR
i ) + max

bk
QB

(
Ai, G

H
i (TR

i ), Bi = bk

)
, if Ri = 1

Q(Ti), if Ri = 0.

Then, the optimal stage 1 treatment given baseline information is

Aopt
i = argmax

ak

E
[
H

(A)
i

∣∣∣GH
i (0), Ai = aj

]
,

and the optimal stage 2 treatment given stage 1 treatment assignment and information up to stage 2
is

Bopt
i = argmax

bk

E
[
Q(TR

i , Ti)
∣∣∣Ai = aj , Ri = 1, GH

i (TR
i ), Bi = bk

]
.

Below we walk through the backwards induction used to estimate the optimal treatment at each
stage, with a different H(A)

i shown in Huang et al. (2014) that we use in our simulation and appli-
cation.
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We start with the second stage (include only those patients who responded Ri = 1). Under
assumptions described in Section 2.2, the quality adjusted time from maintenance therapy to death
for those patients who responded is Q(TR

i , Ti) =
∫ Ti

TR
i
q{Vi(t)}dt, so that

γB ≡ E
[
Q(TR

i , Ti)
∣∣∣Ai = aj , Bi = b1, Ri = 1, GH

i (TR
i )

]
− E

[
Q(TR

i , Ti)
∣∣∣Ai = aj , Bi = b2, Ri = 1, GH

i (TR
i )

]
is the difference in expected stage 2 outcomes, given prior information. We assume the following
linear model for QB

(
Ai, Bi, Ri = 1, X̄Bi,βB ,αB

)
E
[
Q(TR

i , Ti)
∣∣∣Ai, Bi, Ri = 1, X̄Bi,βB ,αB

]
= X̄

′

BiβB + Z
(B)
1i X̄

′

BiαB , (3.1)

where X̄Bi are the first stage treatment assignment indicators and covariates from GH
i (TR

i ), and in-
cludes an element equal to 1 corresponding to an intercept term, which implies that γB = X̄

′

BiαB ,
and the estimated optimal stage two treatment given stage 1 treatment assignment and patient infor-
mation up to stage 2 is

B̂opt(X̄Bi) = argmax
bk

Ê
[
Q(TR

i , Ti)
∣∣∣Ai = aj , Ri = 1, Bi = bk, X̄Bi,βB ,αB

]
.

If γB is positive then b1 is the optimal stage 2 treatment, otherwise, b2 is optimal. Using fitted models
corresponding to equation (3.1) we can estimate the optimal quality adjusted time from maintenance
therapy to death as

H
(B)
i (α̂B) ≡

 Q(TR
i , Ti) +

∣∣X̄ ′

Biα̂B

∣∣, if Bi = bk, B̂
opt
i ̸= bk

Q(TR
i , Ti), if Bi = bk, B̂

opt
i = bk.

Moving to the first stage, under assumptions described in Section 2.2 the quality adjusted sur-
vival time with observed stage one treatment and the estimated optimal stage two treatment can be
written as

H
(A)
i (α̂B) =

 Q(TR
i ) +H

(B)
i (α̂B), if Ri = 1

Q(Ti), if Ri = 0.

Let XAi denote important covariates in GH
i (0) predictive of residual survival. We assume the fol-

lowing linear model for QA

(
Ai, XAi,βA,αA

)
E
[
H

(A)
i (α̂B)

∣∣∣Ai, XAi,βA,αA

]
= X

′

AiβA + Z
(A)
1i X

′

AiαA,

where XAi includes an element equal to 1 corresponding to an intercept term, which implies that

γA ≡ E
[
H

(A)
i (α̂B)

∣∣∣Ai = a1, G
H
i (0)

]
− E

[
H

(A)
i (α̂B)

∣∣∣Ai = a2, G
H
i (0)

]
= X

′

AiαA
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is the difference in expected outcomes at stage 1, given that each patient received his estimated
optimal stage 2 treatment. The estimated optimal stage one treatment is

Âopt(XAi) = argmax
aj

Ê
[
H

(A)
i (α̂B)

∣∣∣Ai = aj , XAi,βA,αA

]
.

If γA is positive then a1 is the optimal stage 1 treatment, otherwise, a2 is optimal. Thus if one could
estimate the quantities γA or γB , or equivalently, the parameters αB and αA, the optimal treatment
regime could be constructed given the q function for each specific stage.

To estimate these parameters, the simple weighted regression models described in Section 2.1
by Wang & Zhao (2007) can be used. Explicitly, for stage 2 we solve the estimating equation

U (B)
n (βB ,αB) =

n∑
i=1

∆i

K̂(Ui)
Ri

 X̄Bi

Z
(B)
1i X̄Bi

{
Q(TR

i , Ui)− X̄
′

BiβB − Z
(B)
1i X̄

′

BiαB

}
= 0,

for βB and αB . Similarly, for stage 1 we solve

U (A)
n (βA,αA) =

n∑
i=1

∆i

K̂(Ui)

 XAi

Z
(A)
1i XAi

{
H

(A)
i (α̂B)−X

′

AiβA − Z
(A)
1i X

′

AiαA

}
= 0

to obtain estimates of βA and αA.

3.2 Threshold utility analysis

Glasziou et al. (1990) perform a threshold utility analysis when studying the effects of adjuvant
chemotherapy on quality adjusted lifetime in patients with early breast cancer. Each patient’s sur-
vival time is quality adjusted based on periods of toxicity of treatment and relapse of disease. These
quality weights, ranging from 0 to 1, are plotted against each other and the regions where each
treatment is favored are identified via lines (planes) of indifference. This results in a type of sensi-
tivity analysis, allowing one to see all possible treatment decisions drawn depending on the quality
weights. In our DTR setting, a patient’s course of treatment often depends on his/her state of health,
be it response to treatment or relapse of the disease, so that his/her health states correspond to the
stages of the DTR. In our approach, each patient’s survival time will be weighted according to
treatment received, allowing a threshold utility analysis among treatments, and ultimately among
regimes.

Optimal decision rules for first and second stage treatments developed in Section 3 are not only
a function of the observed data (patient level information), but also of the quality of life function
q. In our development in the previous section, we assumed that this q function was known, and
we offered two interpretations of its meaning. Rather than performing a single analysis with one
q function, a sensitivity analysis can be performed using a variety of reasonable q functions to
determine for which functions of q, if any, the choice of optimal regime changes. In the special case
of constant q functions, q can be varied from 0 to 1, and a threshold utility plane can be plotted. This
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is of importance, since depending on the values of the q function, there may be different optimal
treatment regimes.

To be explicit, consider quality adjusting each patient’s survival time as

Q(Ti) =

 Tiqaj
, if Ai = aj , Ri = 0,

TR
i qaj

+ (Ti − TR
i )qbk , if Ai = aj , Ri = 1, Bi = bk,

for j = 1, 2, k = 1, 2 where qaj
, qbk ∈ [0, 1]. For those who responded (Ri = 1) and received

maintenance treatment, the quality weights qb1 , qb2 ∈ [0, 1] can be plotted against each other on the
x and y axes, with

γ̂B = Ê
[
(Ti − TR

i )qb1

∣∣∣Ai = aj , Bi = b1, Ri = 1, X̄Bi,βB ,αB

]
− Ê

[
(Ti − TR

i )qb2

∣∣∣Ai = aj , Bi = b2, Ri = 1, X̄Bi,βB ,αB

]
= X̄

′

Biα̂B

from Section 3 plotted on the z axis. This forms a two-dimensional plane in a three-dimensional
space. When quality adjusting in this way, the utility weights qb1 and qb2 factor out of the expecta-
tions and can be viewed as adjustments to the expected utility of each stage two treatment for the
prospective patient, depending on his or her aversion to each treatment. The line where γ̂B = 0 is
the estimated threshold at which the expected utility of b1 and b2 are equal, where the prospective
patient is indifferent when choosing between stage two treatments.

Similarly, for those who received an induction treatment, the quality weights qa1 , qa2 ∈ [0, 1]

can be plotted against each other on the x and y axes, with

γ̂A = Ê
[
H

(A)
i (α̂B)

∣∣∣Ai = a1, XAi
,βA,αA

]
− Ê

[
H

(A)
i (α̂B)

∣∣∣Ai = a2, XAi
,βA,αA

]
= X

′

Aiα̂A

from Section 3 plotted on the z axis, where

H
(A)
i (α̂B) =

 TR
i qaj +H

(B)
i (α̂B), if Ai = aj , Ri = 1

Tiqaj
, if Ai = aj , Ri = 0

H
(B)
i (α̂B) =

 (Ti − TR
i )qbk +

∣∣∣X̄ ′

Biα̂B

∣∣∣, if Bi = bk, B̂
opt
i ̸= bk

(Ti − TR
i )qbk , if Bi = bk, B̂

opt
i = bk.

The line where γ̂A = 0 is the estimated threshold at which the prospective patient is indifferent
when choosing between a1 and a2.

3.3 Inference

Robins (2004), Chakraborty et al. (2009), and Laber et al. (2014) are quick to point out that the
estimators derived from Q-learning have non-regular limiting distributions, because the estimated
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stage 1 pseudo data (and hence the estimated stage 1 model parameters) are a non-smooth (non-
differentiable at X̄

′

Biα̂B=0) function of α̂B . This motivated Chakraborty et al. (2013) to discuss the
m-out-of-n bootstrap in the context of DTRs, in place of standard large-sample inference methods.
The m-out-of-n bootstrap technique essentially smooths the empirical distribution function, with
more smoothing corresponding to smaller values of m, the resample size, by allowing the empirical
distribution function to tend to its limiting distribution at a faster rate than the bootstrap empirical
distribution tends to the empirical distribution. We use this technique to create confidence regions
in the threshold utility analysis, identifying regions of indifference and strong acceptance when
choosing between stage 1 and stage 2 treatments. While Chakraborty et al. (2013) provide several
data driven methods for determining the smaller resample size m, we find a suitable m through
simulation and apply this same m in the analysis of real data.

4 Simulation Study

In this section we conduct a simulation experiment to evaluate the optimization of dynamic treatment
regimes for quality adjusted lifetime described in Section 3. Similar to the COG study A3891 that
will be presented later in Section 5, we consider a 2-stage SMART design.

We generated 5,000 simulations with sample size n=1000. Patients are randomized to one of two
induction therapies with probability one-half, and the probability of non-response for each induction
therapy is the same, 0.55. Those who respond to induction therapy are further re-randomized with
probability one-half to one of two maintenance therapies. Sojourn times to response and/or death
were generated from various exponential distributions.

Table 1 shows the coverage probabilities over the 5,000 simulations for 90% point-wise bootstrap
confidence intervals for the estimated difference in mean quality adjusted lifetime between Stage 1
and Stage 2 treatments (γA and γB , respectively) when searching for the optimal treatment regime
using the simple weighted estimating equations from Section 2.1. The 5th and 95th percentiles of
the bootstrapped sampling distributions are used to create the confidence intervals. Stage 1 coverage
probabilities are estimated at qb1=0.8 and qb2=0.6. A variety of re-sample sizes were considered
for the stage 1 m-out-of-n bootstrap, and m=850 produced confidence intervals maintaining the
nominal coverage probability. The coverage probabilities for the 90% confidence intervals are close
to the nominal level for utility weights that are away from zero. This makes sense, as a value of q
close to zero greatly reduces the variability in the data, making it difficult to estimate the respective
quantities. For some combinations of qb1 and qb2 the estimated stage 2 coverage probabilities are
below the nominal level. Although no irregularity issues exist for the stage 2 estimates, the m-out-
of-n bootstrap was still employed to improve the coverage probabilities, with m=800. Using the
m-out-of-n bootstrap, the stage 1 coverage probabilities for the difference in mean quality adjusted
lifetime are well maintained. Similar simulations were performed with a sample size of n=300
and survival times close to that of the COG study A3891. This gives us an idea of an appropriate
choice of m. We found that m=240 and m=255 worked well for maintaining the nominal coverage
probabilities for stage 2 and stage 1, respectively. Similar results are shown in Table 2 to determine
m for a sample size of n = 200.
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Table 1: Coverage probabilities of 90% point-wise bootstrap confidence intervals (500 bootstrap
samples), from simulated data with 5000 replicates of n=1000, stage 2 m=800, stage 1 m=850.

A = a1 : B = b1 vs B = b2

qb1\qb2 0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.822 0.822 0.822 0.822 0.822

0.20 0.904 0.916 0.831 0.817 0.812 0.813

0.40 0.904 0.927 0.916 0.872 0.831 0.819

0.60 0.904 0.919 0.930 0.916 0.886 0.855

0.80 0.904 0.915 0.927 0.928 0.916 0.894

1.00 0.904 0.913 0.920 0.928 0.927 0.916

A = a2 : B = b1 vs B = b2

qb1\qb2 0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.929 0.929 0.929 0.929 0.929

0.20 0.919 0.901 0.919 0.928 0.929 0.930

0.40 0.919 0.909 0.901 0.912 0.919 0.923

0.60 0.919 0.913 0.903 0.901 0.904 0.916

0.80 0.919 0.914 0.909 0.902 0.901 0.903

1.00 0.919 0.916 0.910 0.907 0.901 0.901

A = a1 vs A = a2

qa1\qa2 0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.913 0.913 0.915 915 0.916 0.911

0.20 0.912 0.912 0.913 0.913 0.916 0.916

0.40 0.910 0.911 0.912 0.914 0.913 0.917

0.60 0.907 0.909 0.912 0.914 0.917 0.917

0.80 0.909 0.909 0.912 0.914 0.915 0.918

1.00 0.907 0.907 0.911 0.913 0.916 0.918
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Table 2: Coverage probabilities of 90% point-wise bootstrap confidence intervals (500 bootstrap
samples), from simulated data with 5000 replicates of n=2000, stage 2 m=1600, stage 1 m=1700.

A = a1 : B = b1 vs B = b2

qb1\qb2 0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.702 0.702 0.702 0.702 0.702

0.20 0.859 0.924 0.734 0.690 0.687 0.687

0.40 0.859 0.914 0.924 0.813 0.734 0.702

0.60 0.859 0.897 0.927 0.924 0.857 0.780

0.80 0.859 0.884 0.914 0.932 0.924 0.878

1.00 0.859 0.878 0.904 0.923 0.934 0.924

A = a2 : B = b1 vs B = b2

qb1\qb2 0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.933 0.933 0.933 0.933 0.933

0.20 0.914 0.877 0.915 0.927 0.930 0.933

0.40 0.914 0.896 0.877 0.901 0.915 0.923

0.60 0.914 0.901 0.890 0.877 0.891 0.910

0.80 0.914 0.907 0.896 0.885 0.877 0.886

1.00 0.914 0.907 0.889 0.892 0.884 0.877

A = a1 vs A = a2

qa1\qa2 0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.915 0.918 0.918 0.915 0.912 0.908

0.20 0.910 0.913 0.916 0.917 0.915 0.911

0.40 0.905 0.910 0.911 0.914 0.914 0.915

0.60 0.905 0.908 0.911 0.911 0.916 0.914

0.80 0.903 0.904 0.908 0.912 0.913 0.915

1.00 0.900 0.901 0.905 0.910 0.912 0.914
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(a) (b)

(c) (d)

(e) (f)

Figure 1: True (left column) and estimated (right column) threshold utility planes for the simulated
scenario. For each combination of qb1 and qb2 , or qa1

and qa2
, the estimated difference in mean

quality adjusted lifetime is plotted. The yellow and green represent the region of strong acceptance
for b1 and b2, or a1 and a2, respectively. The purple and red near the center of the plane have 90%
point-wise bootstrap confidence intervals that cover zero and represent the region of indifference
when choosing between b1 and b2, or a1 and a2.
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Figure 1 shows the true (left column) and estimated (right column) threshold utility planes for
the simulated scenario with n=300. The estimated threshold utility planes are for a single simulated
data set. For each combination of qb1 and qb2 , or qa1

and qa2
, the estimated difference in mean

quality adjusted lifetime is plotted. The yellow and green represent the region of strong acceptance
for choosing between b1 and b2, or a1 and a2, respectively. The purple and red near the center of the
plane have 90% point-wise bootstrap confidence intervals that cover zero and represent the region of
indifference when choosing between b1 and b2, or a1 and a2. We see that for the estimated threshold
utility planes, the estimated line of indifference does not correspond exactly with the true line of
indifference, yet the 90% confidence region does contain the true line. These threshold utility planes
allow us to visualize how the optimal regime changes depending on the values of qb1 , qb2 , qa1 , and
qa2

. For example, assume that the threshold utility planes presented on the right panel of Figure 1 are
the planes computed from the observed data. If for these treatments qa1=0.8, qa2=0.5, qb1=0.7, and
qb2=0.5, then the estimated optimal regime is d(A = a1;B = b1). However, if qa1

=0.3, qa2
=0.8,

qb1=0.4, and qb2=0.6, the estimated optimal regime would be d(A = a2;B = b2).

5 Application with Threshold Utility Analysis

In this section we apply the optimization methods discussed previously to the COG study A3891
concerning 379 children ages 6-months to 17 years old receiving treatment for high-risk neuroblas-
toma. All 379 patients were to receive five cycles of chemotherapy before beginning their induc-
tion treatment. Of these, 189 patients were randomized to receive continued chemotherapy (three
additional cycles), A = a1, and the remaining 190 were randomized to receive bone marrow trans-
plantation, A = a2. After completing the induction therapy, 203 patients were deemed responders
(those for whom the disease did not progress) and consented to further randomization to receive six
cycles of 13-cis-retinoic acid (160 mg per square meter per day for 14 consecutive days), B = b1,
or no further therapy, B = b2. Survival time was truncated to 2452 days, since this was the largest
observed death time in the study.

In what follows we assume the role of the prospective patient, considering only quality of life
as affected by toxicity of treatment when choosing between treatments. Each of the therapies in
this study comes with its own side effects. Following a cohort of lung cancer patients undergoing
chemotherapy, Winter et al. (2013) measured quality of life using the EORTC QLQ-C30 ques-
tionaire Aaronson et al. (1993) as the patients completed multiple courses of chemotherapy. In the
analysis by Winter et al. (2013) , the highest average global quality of life measure (ranging 0 to
100) over multiple courses of chemotherapy was 57. We rescaled these scores between 0 and 1 to
have the quality of life weight of those undergoing chemotherapy vary between 0.5 to 0.6. In the
case of bone marrow transplant, Felder et al. (2006) analyze the health related quality of life of
68 pediatric patients aged 4 to 18 years old receiving allogeneic bone marrow or stem cell trans-
plantation in a 5-year prospective study using The Pediatric Quality of Life Inventory(PedsQL) and
The Health Utilities Index Mark2 + 3(HUI2/3). It is reasonable to interpret these scores as quality
weights, indicating that those undergoing bone marrow transplantation have a quality of life near
0.7. Hong et al. (1986) studied the use of 13-cis-retinoic acid in 44 patients with oral leukoplakia,
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and found that cheilitis, erythema, and dry skin were most common. Based on the symptoms, mean
survival time for patients on 13-cis-retinoic acid could reasonably be quality adjusted by 0.9.

Figure 2 (top row) shows the estimated stage 2 threshold utility planes - the estimated mean
survival time for those on 13-cis-retinoic acid minus the estimated mean survival time for those on
no further treatment. The yellow and green represent the region of strong acceptance for 13-cis-
retinoic acid and no further therapy, respectively. The purple and red near the center of the plane
give point estimates that favor 13-cis-retinoic acid and no further therapy, respectively, but the 90%
point-wise bootstrap confidence intervals cover zero and represent the region of indifference when
choosing between 13-cis-retinoic acid and no further therapy.

When the survival times for stage 2 treatments are both given a weight of 1 (no quality ad-
justment), those who received no further therapy had larger survival times than those who received
13-cis-retinoic acid, following continued chemotherapy; following bone marrow transplant, those
who received 13-cis-retinoic acid had, on average, larger survival times than those who received
no further therapy. It should be noted, though, that both of these point estimates fall within the
m-out-of-n bootstrap indifference regions (the red and purple shaded areas), suggesting there is no
statistically significant difference between the stage 2 treatments following either stage 1 treatment.

As one would begin to lower either qb1 or qb2 towards 0, while holding the other fixed, we see
that the estimated difference in mean quality adjusted survival time falls in the region of statistical
significance, where one stage 2 treatment truly out performs the other, given the stage 1 treatment.
For qb1=0.9 and qb2=1, the stage 2 quality of life weights considered earlier for this study, the
point estimate for the optimal stage 2 treatment falls in the same region as that for qb1=1 and qb2=1
described above and yields 13-cis-retinoic acid for those following bone marrow transplantation,
and no further therapy for those following continued chemotherapy. If qb1 is lower than 0.9, the
optimal stage 2 treatment would be no further therapy for both induction therapies.

Figure 2 (bottom row) also shows the estimated stage 1 threshold utility plane - the estimated
mean survival time for those on continuation chemotherapy minus the estimated mean survival time
for those who received a bone marrow transplant. This figure is generated using pseudo data where
responders at stage 1 are assumed to take their optimal stage 2 treatment, and their remaining sur-
vival time is estimated using the methods from Section 3, with qb1=0.9 for 13-cis-retinoic acid and
qb2=1 for no further treatment. At qa1=0.5 and qa2=0.7 the optimal stage 1 treatment is bone mar-
row transplant, and the point estimate falls within the strong acceptance region, meaning the 90%
point-wise bootstrap confidence interval for the difference in mean survival time between continued
chemotherapy and bone marrow transplant does not contain zero. Therefore, with qa1

=0.5, qa2
=0.7,

qb1=0.9, and qb2=1, the optimal regime is to first treat with bone marrow transplantation and, if a
response is observed, treat with 13-cis-retinoic acid.
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Figure 2: Estimated stage 2 (top row) and stage 1 (bottom row) threshold utility planes for COG
study A3891. For each combination of qb1 and qb2 , or qa1 and qa2 , the estimated difference in mean
quality adjusted lifetime is plotted. The yellow and green represent the region of strong acceptance
for 13-cis-retinoic acid and no further therapy, or continued chemotherapy and bone marrow trans-
plant, respectively. The purple and red near the center of the plane have 90% point-wise bootstrap
confidence intervals that cover zero and represent the region of indifference when choosing between
treatments.
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6 Generalization to Other Outcomes
Our exploration of Q-learning to optimize a dynamic treatment regime on quality adjusted lifetime
leads one to consider Q-functions that weight the expected utility at each stage for any continu-
ous outcome, not just survival time. For a 2-stage SMART design depicted earlier with a primary
outcome Y at the end of the second stage, one can use the Q-functions

QB

(
Ai = aj , X̄Bi, Bi = bk

)
= qbkE

[
Y

(B)
i

∣∣∣Ai = aj , X̄Bi, Bi = bk

]
, (6.1)

QA

(
XAi, Ai = aj

)
= E

[
H

(A)
i

∣∣∣XAi, Ai = aj

]
, (6.2)

where

H
(A)
i =

 Y
(A)
i qaj

+ max
bk

QB

(
Ai = aj , X̄Bi, Bi = bk,

)
, if Ai = aj , Ri = 1

Y
(A)
i qaj , if Ai = aj , Ri = 0,

(6.3)

and where Y (A)
i and Y

(B)
i are the outcomes at the first and second stages, respectively, with Y

(A)
i +

Y
(B)
i = Yi. The law of total expectation can be used to improve computational efficiency when

performing a threshold utility analysis. Most authors fit a single regression model for E
[
H

(A)
i

∣∣XAi,

Ai = aj
]
; however, a Q-learning model for stage 1 could be built using
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Written this way, it is clear how the utility weights factor out of the expectations and create what
we call quality adjusted Q-learning, for any continuous outcome. This could easily be generalized
to SMARTs with an arbitrary number of stages. Modeling E

[
H

(A)
i

∣∣XAi, Ai = aj
]

in this way im-
proves computational efficiency since each of the component models only needs to be fit once before
varying the utility weights and producing a threshold utility analysis. Other authors, including Song
et al. (2011), consider Q-functions that have a single utility weight q, regardless of stage or treat-
ment, that is multiplied to every nested expectation (except the first), creating an effect similar to the
autoregressive working correlation structure from generalized linear models. Most authors interpret
this single q as a utility weight that, when compounded over the nested expectations, diminishes
the expected utility of each subsequent stage. The idea being that the prospective patient might not
complete every stage of the DTR, and the optimal regime should give more importance to earlier
treatments. However, even with this approach, most authors ignore the utility weight by setting it
equal to 1. As we showed above, we propose assigning a separate utility weight to each treatment
of each stage, representing the prospective patient’s aversion to each treatment based on discomfort,
side effects, monetary cost, ethical and/or religious beliefs, ability to complete the treatment sched-
ule, and a host of other unmeasurable factors that might vary from one prospective patient to another.
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This allows a threshold utility analysis as described in Section 3.2 for any continuous outcome Y ,
and shows us the decision making process of the prospective patient.

7 Concluding Remarks
Quality adjusted lifetime is a natural endpoint for deciding among treatments that prolong survival
time, permitting one to factor toxicity and financial burden of treatment, among other things, into
the decision. This is particularly useful in the realm of DTRs, allowing the optimal regime to depend
not only on patient level characteristics, but also on treatment characteristics. We have demonstrated
how threshold utility analysis can be combined with the standard optimization algorithm to produce
optimal regimes accounting for patient and treatment level information. For simplicity, our methods
did not include any covariate information other than response status, but additional patient character-
istics such as age, race, or sex could be included in the optimization algorithm, producing a separate
set of utility planes for, say, males and females, or young children and older children. Patient infor-
mation could also be used to improve efficiency by using the semiparametric estimating equations
in Wang & Zhao (2007) .
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