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SUMMARY

This paper introduces a new flexible link for zero inflated Conway Maxwell Poisson (COM-
Poisson) distribution. Zero inflated Poisson regression has been widely used for modeling
rare events with excess zeros. In recent years, the zero inflated Conway Maxwell Poisson
regression has been proposed. The advantage of COM-Poisson is its ability to handle both
under- and over-dispersion through controlling one special parameter in the distribution,
which makes it more flexible than current frequently used models, i.e., Poisson and Neg-
ative Binomial. The usual link function for zero inflated models is the logit link, which
assumes the response curve between covariates and the probability of zeros is symmetric.
This assumption is not always true. To add more flexibility, we propose a new flexible link
function for the zero inflated Conway Maxwell Poisson regression, the generalized extreme
value (GEV) model, which can capture different skewness with a shape parameter. Thus
we can let data tell the skewness of the link function. Simulation studies and an application
on traffic accident data are conducted to show the flexibility of our proposed model against
the commonly used models.

Keywords and phrases: COM-Poisson model, Bayesian inference, GEV link, Model Com-
parison, Zero Inflated

1 Introduction

Regression is the commonly used statistical method to explore the relationship between the vari-
able of interest and predictors. The variable of interest is count data in many applications, and
the commonly used model for count response variable is Poisson regression. To accommodate the
mean variance equivalence assumption of Poisson distribution, Negative Binomial regression is of-
ten adopted for over-dispersed data. Generalized Poisson regression (Famoye, 1993) can model both
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over- and under-dispersion. However, it belongs to exponential family only for a constant disper-
sion parameter (Cui et al., 2006). The dispersion parameter of generalized Poisson model cannot
be linked with predictors. A more general distribution for count data is Conway Maxwell Poisson
distribution (Shmueli et al., 2005), which can also handle both over- and under-dispersed data by in-
troducing a dispersion parameter. A dual-link generalized linear model based on Conway Maxwell
Poisson is well developed (Guikema and Goffelt, 2008; Sellers and Shmueli, 2010). Both mean
and dispersion parameter can be modelled by predictors. Thus in this paper, we focus on Conway
Maxwell Poisson model.

As for rare events like disease and accident, there are usually excess zeros. Zero inflated model,
which is a mix of degenerate distribution at zero with count distributions, is a common way to deal
with excess zeros. In most cases, zero inflated Poisson model is considered (Lambert, 1992). For
additional over-dispersion, zero inflated Negative Binomial model is adopted (Ridout et al., 2001).
Recently zero inflated Conway Maxwell Poisson model has been proposed (Barriga and Louzada,
2014; Sellers and Raim, 2016). The usual link function for zero inflated models is the logit link,
which is a symmetric link. It assumes that the probability of zeros approaches to 0 at the same speed
as approaching to 1. This assumption is not always true. A wrong choice of link function can result
in poor fit of the model and the importance of choosing the appropriate link function has been shown
in many previous studies (Nagler, 1994; Chen et al., 1999). Whether the link function is symmetric
or skewed and in which direction it is skewed is often unknown to us. Thus in this paper, we propose
the flexible generalized extreme value (GEV) link (Wang and Dey, 2010, 2011), which has a shape
parameter to capture the skewness, to the zero inflated Conway Maxwell Poisson model. The shape
parameter can be estimated by data, thus we can let data tell the skewness of the link function.

Considering traffic accident is rare event and usually exhibits excess zeros, we use traffic ac-
cident data as an application of proposed zero inflated Conway Maxwell Poisson model with GEV
link. Poisson and Negative Binomial regression have been commonly applied on traffic accident data
(Fridstrøm et al., 1995; Poch and Mannering, 1996). Aguero-Valverde compared Negative Binomial,
Poisson Lognormal, zero inflated Poisson, zero inflated Negative Binomial and zero inflated Poisson
Lognormal regressions with and without temporal effect and found Negative Binomial model with
fixed over time random effects has best model fit (Aguero-Valverde, 2013). Generalized Poisson
regression has been applied on traffic accident data and shown superiority than Poisson regression
(Famoy et al., 2004). Recently, Conway Maxwell Poisson model has also been applied on traffic ac-
cident (Lord et al., 2008) and performs as good as Negative Binomial model. Zero inflated Conway
Maxwell Poisson model has not been applied on traffic accident data yet.

This paper is organized as follows. In Section 2, we will review the Conway Maxwell Poisson
distribution and the zero inflated Conway Maxwell Poisson model with GEV link. Simulation stud-
ies are shown in Section 3. In simulation studies, we first compare zero inflated Poisson model with
GEV link with zero inflated Poisson model with logit link. We then compare zero inflated Conway
Maxwell Poisson model with zero inflated Poisson model using GEV link under different scenarios.
In Section 4, we show the application on traffic accident data, including data description, estimated
parameters and model comparisons. Conclusions are given in Section 5.
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2 Methodology

2.1 COM-Poisson distribution

Conway Maxwell Poisson (COM-Poisson) distribution, which was first introduced in 1962 for mod-
eling queues and service rates by Conway and Maxwell (1962), has recently been re-introduced by
statisticians to model count data. In this paper, we use the re-parameterization of the COM-Poisson
distribution proposed by Guikema and Goffelt (2008), which provides good basis for developing
generalized linear model. The probability mass function is shown in equation 2.1.

P (Y = y |µ, ν) =
(µy

y!

)ν 1

Z(µ, ν)
, (2.1)

where µ is mean parameter, ν is dispersion parameter, and Z(µ, ν) =
∑∞

j=0(µ
j/j!)ν is the nor-

malization constant, which is analytically intractable. In this paper, we use the truncation method to
approximate the normalization constant. Shmueli et al. (2005) derived the approximation of mean
and variance of COM-Poisson distribution by approximating Z(µ, ν) using asymptotic expression.
By modifying that, the approximated mean and variance for the re-parameterized COM-Poisson
distribution are shown in equation 2.2 and the mode of the COM-Poisson distribution is ⌊µ⌋.

E(Y ) ≈ µ+
1

2ν
− 1

2
,

V ar(Y ) ≈ µ

ν
.

(2.2)

The dispersion parameter ν makes COM-Poisson distribution more flexible than Poisson distri-
bution. When ν < 1, COM-Poisson can model the over-dispersion of count data. While ν > 1,
it can capture the under-dispersion of count data. In this set up, µ closely approximate the mean,
unless µ or ν is small. Both mean and dispersion parameters can be linked with predictors as shown
in equation 2.3. For i = 1, 2, . . . , n,

logµi = Xi
′β,

log νi = −Xi
′δ.

(2.3)

Then E(Yi) ≈ exp{x′
iβ} and V (Yi) ≈ exp{x′

iβ + x′
iδ}. Both mean and variance are allowed to

vary for different values of predictors.

2.2 Zero inflated Conway Maxwell Poisson model

To capture excess zeros, a new parameter p is added in zero inflated model, where p is the proba-
bility of excess zeros and (1 − p) is the probability of the count generating from a COM-Poisson
distribution. The probability mass function of zero inflated COM-Poisson is in equation 2.4. For
i = 1, 2, . . . , n,

P (Yi = yi|µi, pi) =

 pi +
1−pi

z(µi,νi)
when yi = 0,

(1− pi)
(

µy
i

yi!

)νi
1

Z(µi,νi)
when yi > 0.

(2.4)
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The parameter p is modeled as pi = F (x′
iα) where F is a cumulative distribution function, and

the inverse function of F determines the link function, that is F−1(pi) = X ′
iα. The usual link for

p is the logit link, which is F−1(pi) = log{pi/(1− pi)}. In this paper, we use a more flexible link
function, the generalized extreme value (GEV) link to fit the probability p of zeros. GEV link is
proposed based on the GEV distribution (Wang and Dey, 2010, 2011). The cumulative distribution
function of GEV distribution is shown in equation 2.5,

G(x) = exp

[
−

{
1 + ξ

(x− µ)

σ

}−1/ξ

+

]
, (2.5)

where ξ ∈ R is the shape parameter controlling the tail behavior of the distribution and x+ =

max(x, 0). When ξ → 0, G(x) = exp[− exp{−(x− µ)/σ}], and it gives the Gumble distribution.
The GEV link is obtained by setting the F as the GEV distribution with µ = 0 and σ = 1 as equation
2.6, assuming Zi is a binary variable,

pi = P (Zi = 1) = 1− exp
{
− (1− ξx′

iα)
−1/ξ
+

}
= 1−GEV (−x′

iα; ξ). (2.6)

The flexibility of GEV link comes from its ability to fit the skewness in the response curve with
the free shape parameter ξ. When ξ < ln 2 − 1, the GEV link model is negatively skewed, and
when ξ > ln 2 − 1, it is positively skewed. The range of skewness provided by GEV link is also
much wider than commonly used skewed Cloglog link and the skewed generalized t-distribution
link. Symmetric link is a special case which can be approximated by the class of GEV links.

2.3 Model comparison criteria

We use mean absolute error (MAE), Deviance Information Criteria (DIC) (Spiegelhalter et al., 2002)
and Log-pseudo marginal likelihood (LPML) (Ibrahim et al., 2001) to measure the model perfor-
mance. MAE is the mean absolute value of the difference between fitted value and the observations.
DIC measures how well the model fits the data and also penalizes the complexity of model. It is
defined in equation 2.7

DIC = D̄ + pD, (2.7)

where D = −2 logL(θ|y), which is the deviance. D̄ = E(D) is the posterior mean of deviance,
and pD is the effective number of parameters, and is given by pD = D̄ − D(θ̄), where D(θ̄) is a
point estimate of the deviance obtained by plugging in the posterior mean of θ. Preferred model will
have lower DIC.

LPML is used to measure the predictive ability of the model, which is the sum of log conditional
predictive ordinate (CPO). CPO is based on leave one out cross validation, which estimates the
probability of yi when observing y−i. y−i is our sample when leave yi out. Definition of CPO is
shown in equation 2.8 and LPML is shown in equation 2.9. Preferred model will have higher LPML.

CPOi = f(yi|y−i)

=

[ ∫
1

f(yi|θ)
f(θ|y)dθ

]−1 (2.8)
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Figure 1: cumulative distribution functions of link functions with different skewness

LPML =
1

n

n∑
i=1

log(CPOi). (2.9)

3 Simulation

Model performances of zero inflated Poisson model with logit link and with GEV link are compared
using simulated data under three scenarios. We simulate data following zero inflated Poisson model,
with symmetric, positive skewed and negative skewed link functions. We use logit link as the sym-
metric link. As for skewed link, we use GEV link with ξ = 0.3 as positive skewed link and with
ξ = −0.5 as negative skewed link. The cumulative distribution function of the three link functions
that we use to simulate data are shown in the Figure 1. Black line represents logit link. Blue line is
the GEV link with ξ = −0.5, which is negative skewed and red line is the GEV link with ξ = 0.3,
which is positive skewed.

For each scenario, 5000 observations are generated. For each observation (i = 1, 2, . . . , 5000),
first we generate a binary variable with probability pi = F (X ′

iα) being 1, where F is the corre-
sponding cumulative distribution of the link function, α = (α0, α1) is the coefficient and X =

(X0, X1) is the covariate. X0 = 1 is the intercept and set to be 1. X1 is generated following normal
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distribution with mean 1 and standard deviation 2. If this binary variable is 1, then we generate
the observation yi = 0. If the binary variable is 0, then we generate the observation following a
Poisson distribution with mean parameter λi = X ′

iβ, where β = (β0, β1) is the coefficient. The
coefficients for link function we set α0 = −1 and α1 = 0.5, and the coefficients for mean parameter
we set β0 = 1 and β1 = 0.5. For each scenario, we conduct the simulation on 50 dataset generated
from the same model, and show the estimated coefficients in the Table 1. The coefficients are esti-
mated under Bayesian framework. Non informative Normal priors are used for all the parameters.
Metropolis-Hasting algorithm and Gibbs sampler are used to sample parameters from their poste-
rior distributions. First 5000 iterations were discarded as burnin and the following 15000 iterations
were collected as samples to study the posterior distributions of parameters. Traceplots, Gelman-
Rubin convergence diagnostic (Gelman and Rubin, 1992; Brooks and Gelman, 1998) and Geweke’s
diagnostics (Geweke, 1992) were used to measure the convergence of the Gibbs sampler. High per-
formance computing (HPC) and parallel computation are adopted to save running time. The three
criteria that we use to measure model fitting are shown in Table 2.

Table 1: Coefficient Estimates

β̂0 (C95) β̂1 (C95) α̂0 (C95) α̂1 (C95)

symmetric logit 0.982 (0.880) 0.489 (0.920) -0.983 (0.960) 0.492 (0.960)

gev 0.982 (0.890) 0.490 (0.910) -0.971 (.930) 0.310 (.000)

positively skewed logit 0.972 (0.540) 0.515 (0.520) -0.797 (0.080) 0.761 (.000)

gev 0.999 (0.940) 0.502 (0.940) -1.005 (.953) 0.501 (0.953)

negatively skewed logit 1.013 (0.807) 0.495 (0.853) -1.235 (.000) 0.875 (.000)

gev 1.001 (0.953) 0.500 (0.967) -1.004 (0.967) 0.500 (0.947)

Note: The C95 shows the coverage rate that the 95% credible interval of the parameter covers

the true value that we set.

Table 2: Calculated Model Comparison Criteria

symmetric positively skewed negatively skewed

logit gev logit gev logit gev

MAE 3.237 3.231 2.229 2.118 2.398 2.400

DIC 16751.52 16751.66 13718.72 13666.81 14700.4 14692.26

LPML -1.68 -1.69 -1.37 -1.37 -1.47 -1.47
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“Symmetric”, “positively skewed” and “negatively skewed” represent the three link function we
use to generate the data. “logit” and “gev” represent the link function we use in the zero inflated
Poisson model to fit the simulated data. As for parameter estimates, our comparison focus on β. If
the true link function is different from the link function that we use, we do not expect the estimated
α being the same as the α that we set. From Table 1 we can see the estimated coefficients β̂0 and β̂1

and the coverage rate of them using two links are close to each other. The α̂1 of model using GEV
link is different from the true value we set as we expect. When the true link function is positively
skewed or negatively skewed, we can find the estimated β̂0 and β̂1 when using model with logit link
are not that close to true value. Especially for the positively skewed true link scenario, the coverage
rate of β0 and β1 are just above 0.5. Thus if we use wrong link function, the mean coefficient
estimate will also be influenced. The α̂0 of model using logit link is smaller than the true value
and the α̂1 is greater than the true value if the true link function is not symmetric. The estimated
coefficients using model with GEV link are all very close to the true value that we set.

From Table 2 we can find LPML of models using logit link and using GEV link perform similar.
Based on DIC, GEV link performs better than logit link. GEV link improves MAE slightly when
comparing with logit link for some scenarios, but the MAE of both models are small and close to
each other. Overall speaking, zero inflated Poisson with GEV link performs as good as logit link
when the true link function is logit and performs better than logit link when the true link is skewed
based on this simulation study.

We also perform another simulation study to compare the zero inflated Conway Maxwell Poisson
model with the zero inflated Poisson model under 9 different scenarios, the combination of over-,
equi- and under-dispersion of data with positive, negative and symmetric link function of probability
of zeros. Both zero inflated Conway Maxwell Poisson model and zero inflated Poisson model are
using GEV link for this study. Due to the longer running time of zero inflated Conway Maxwell
Poisson model, we generate 2000 observations for each dataset and conduct simulation on 10 dataset
generated from the same model for each scenario. As for the positive, negative and symmetric link
function, we use the same parameter settings as the previous one. For equi-dispersed scenario, we
generate data from zero inflated Poisson distribution. For over- and under-dispersed scenario, we
generate data from zero inflated Conway Maxwell Poisson with different dispersion parameter ν.
The dispersion parameter is linked with predictors with a log link as introduced in methodology
section, that is log νi = −Xi

′δ, where δ = (δ0, δ1). We set δ1 = 0, δ0 = −0.5 for over-dispersed
data and δ0 = 1 for under dispersed data. The data generation steps are the same. We first generate
the binary variable with probability p linked with predictors using three link functions. For equi-
dispersed scenario, when the binary variable is 0, we generate the observation following Poisson
distribution. As for over- and under-dispersed scenarios, we generate the observation following
Conway Maxwell Poisson distribution. When generating observations following Conway Maxwell
Poisson distribution, we use the rejection sampling method (Chanialidis et al., 2018). The simulation
results are shown in the Table 3 and Table 4.
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Table 4: Calculated Model Comparison Criteria

symmetric positively skewed negatively skewed

dispersion ZIP ZICMP ZIP ZICMP ZIP ZICMP

equi- MAE 3.158 3.402 2.021 1.962 2.191 2.020

DIC 6761.777 6764.828 5506.459 5502.06 5897.797 5901.16

LPML -1.706 -1.708 -1.410 -1.415 -1.509 -1.510

over- MAE 2.206 2.416 1.518 1.236 1.536 1.883

DIC 8140.254 7750.584 6543.176 6355.126 7048.478 6809.183

LPML -2.049 -2.030 -1.723 -1.611 -1.769 -1.723

under- MAE 1.826 2.629 1.149 0.981 2.072 2.097

DIC 6809.81 6196.5 5528.427 5132.184 5955.469 5404.814

LPML -1.604 -1.56 -1.294 -1.318 -1.413 -1.379

In Table 4, “equi-”,“over-”,“under-” represent the scenarios when the generated data are equi-,
over- and under-dispersed. “ZIP” means the model we use to fit the data is zero inflated Poisson
and “ZICMP” means the model we use to fit the data is zero inflated Conway Maxwell Poisson. As
for equi-dispersed data, the estimated coefficients of both models are close to the true parameters
that we set, except the α̂1 and ξ when the true link is symmetric, which is what we expect. As for
over- and under- dispersed version, the most estimated coefficients of zero inflated Poisson model
are different from what we set. When we take a look at the model comparison criteria in Table 4,
zero inflated Conway Maxwell Poisson model improves the MAE for some scenarios. The MAE of
both models are small and close to each other. For equi-dispersed scenario, DIC and LPML of both
models are close to each other. Zero inflated Conway Maxwell Poisson model performs as good
as zero inflated Poisson model when the data is equi-dispersed. As for over- and under- dispersed
situation, we can see an obvious drop of DIC and increase of LPML when we use zero inflated
Conway Maxwell Poisson model. From the simulation results, we can see the flexibility of zero
inflated Conway Maxwell Poisson model and it can handle different scenarios quite well.

4 Real Data Analysis

We then applied the zero inflated Poisson and zero inflated Conway Maxwell Poisson model with
GEV link to the infrastructure safety evaluation dataset. Vehicle accidents are rare events, which
are commonly modeled by zero inflated Poisson. In this study, we would like to show that the
zero inflated Conway Maxwell Poisson model performs better than the commonly used zero inflated
Poisson model. Suppose Yi represents the number of crashes for ith observation. We assume Yi ∼
ZIP (µiEi, pi) for zero inflated Poisson model and Yi ∼ ZICMP (µiEi, νi, pi) for zero inflated
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Conway Maxwell Poisson model where µi is the mean parameter, Ei is the exposure, νi is the
dispersion parameter and pi is the probability of zeros. Huang (2017) shows that exposures can be
taken into account by including offset in the Conway Maxwell model. µi, νi and pi are modeled by
covariates as shown in methodology parts, that is

logµi = Xi
′β,

log νi = −Xi
′δ,

pi = 1−GEV (−x′
iα; ξ),

where i = 1, 2, . . . , n.

4.1 Data description

The dataset is shared by Mao et al. (2019), requested from the state department of transportation.
This dataset was collected in the State of Washington from 2012 to 2015, over 5238 short road seg-
ments. The total number of crashes was 32,298 for a total of 10,894,920 passing vehicles, resulting
in the average crash rate being 2.96 × 10−3 crashes/passing vehicle. Here we treat exposure as
the number of passing vehicles. There is 59.9 percent of zero responses in the dataset. We split the
dataset into two segments, 80% used for model training and the other 20% used for testing prediction
effect. The number of crashes is the outcome variable, and the covariates are shown in Table 5. We
present the frequency, proportion, corresponding crash counts and the number of passing vehicles
(exposures) of each level for each covariate of both training portion and testing portion in Table 5.

Total mean of crashes are 6.26 for training data and 5.80 for testing data. Total variance of
crashes are 343.90 for training data and 281.07 for testing data. The crash rate is high when the
number of intersection is greater than 1 and when there is exit from the highway.

4.2 Model fitting results

Same procedure as described in simulation section was conducted. Besides MAE, DIC and LPML,
we add one more criterion, prediction error (PE), which is the mean absolute difference between
predicted value on test 20% portion and the true value.

Posterior mean, 95% credit interval of coefficients for Zero Inflated Poisson model were shown
in Table 6. βp is the coefficient for mean parameter and αp is the coefficient for probability p of
zeros. ξp is the parameter of GEV link. For each variable, the first level is treated as the reference
level. The result of zero inflated COM-Poisson was listed in Table 7. δcmp is the coefficient for
dispersion parameter.
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Zero inflated Poisson has slightly smaller MAE and PE than the zero inflated Conway Maxwell
Poisson model, but the MAE and PE of both models are very close to each other. In addition, DIC
and LPML of zero inflated Conway Maxwell Poisson model has been improved a lot comparing
with zero inflated Poisson model. In addition, some coefficients of dispersion parameter of Conway
Maxwell Poisson model are significant, meaning the outcome variable is not equi- dispersed, indi-
cating that Poisson model is not a good choice. Overall speaking, zero inflated Conway Maxwell
Poisson model is preferred than zero inflated Poisson on this data set.

When we take a look at the coefficient estimates, both models get same sign of the estimated
coefficient, except when the number of intersections being 4. The estimated coefficient is negative
under zero inflated Conway Maxwell Poisson, which is different from the zero inflated Poisson,
but this one is not significant under the 95% credible interval. The coefficient of p, the probability
of zeros, of zero inflated Conway Maxwell Poisson also has different sign from the zero inflated
Poisson model. The difference might be from the differently estimated skewness parameter ξ of the
GEV link. Both estimated ξ are greater than log 2− 1, meaning the link of the probability p of zeros
is positively skewed, which cannot be captured by the usual used logit link.

Conway Maxwell Poisson model can provide more information, which is the dispersion. From
the estimated δ, we can get an idea of how dispersed each strata is. For example, the estimated δ of
RTE type SR is significantly positive, meaning this strata is more over dispersed than RTE type I.

5 Conclusion

In this paper, we propose a zero inflated Conway Maxwell Poisson model with the flexible GEV
link function, with an application on vehicle crashes. We compare the model performance of zero
inflated Poisson model using GEV link with logit link and have shown the flexibility of using GEV
link in simulation study. In simulation study, we also compare the model performance of zero
inflated Conway Maxwell Poisson model with zero inflated Poisson model using GEV link under
several scenarios. Based on the simulation study results, we have shown the better performance of
zero inflated Conway Maxwell Poisson model. This application demonstrates first time zero inflated
COM-Poisson applied on traffic accident data. We consider three predictors, RTE type, whether
there is entrance or exit and the number of intersections. From the real data application, we found
zero inflated COM-Poisson model performs better than zero inflated Poisson model.
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