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SUMMARY

Joint models are often used to analyze survival data with longitudinal covariates or
biomarkers. Latent random effects that are used to describe the relationship between lon-
gitudinal and survival outcomes are typically assumed to follow a multivariate Gaussian
distribution. A joint likelihood analysis of the data provides valid inferences under a cor-
rectly specified random effects distribution. However, the maximum likelihood method
may produce biased estimators under a misspecified random effects distribution, and hence
may provide invalid inferences. In this paper, we explore the empirical properties of the
maximum likelihood estimators under various types of random effects, and propose a skew-
normal distribution to address uncertainties in random effects. An extensive Monte Carlo
study shows that our proposed method provides robust and efficient estimators under var-
ious types of model misspecifications. We also present an application of the proposed
method using a large clinical dataset obtained from the genetic and inflammatory markers
of sepsis (GenIMS) study.
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1 Introduction

One of the fundamental aspects of joint modeling is the parameterization of the dependence struc-
ture among multivariate outcomes. Commonly used parameterization approaches include (a) inter-
action and lagged effects, (b) time-dependent slopes, (c) cumulative effects, and (d) random effects
(Rizopoulos, 2015). A comprehensive list of association structures used in the joint modeling of lon-
gitudinal and survival data may be found in Hickey et al. (2016). In this paper, we focus on studying

⋆ Corresponding author
© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.



188 Sattar and Sinha

joint models based on random effects. Joint models with random effects provide a general frame-
work for describing the dependence structure (Verbeke and Davidian, 2009). However, the standard
likelihood analysis may be sensitive to deviations from underlying distributional assumptions and
hence suggests potential lack of robustness (Diggle et al., 2009). The impact of misspecified ran-
dom effects distributions on joint modeling is unclear, and has not received much attention from the
scientific community.

Misspecification of random effects distribution has been studied in the context of linear and gen-
eralized linear mixed models (Neuhaus et al., 2013). These models generally require a parametric
specification of the random effects distribution, e.g., the normal distribution. Random effects may
be incorporated into a mixed model as a subject specific random intercept only or subject specific
random intercept and slope. Misspecification of one or more of the random effects terms has been
studied in the literature (Neuhaus et al., 1992; Verbeke and Lesaffre, 1997; Heagerty and Kurland,
2001; McCulloch and Neuhaus, 2011). Depending on the random effect and its misspecification,
there could be a certain degree of bias in the estimation of some parameters (Litire et al., 2008;
Neuhaus et al., 2013). Pantazis and Touloumi (2007) study the impact of misspecification of the
random effects distribution on modeling informatively censored bivariate longitudinal data using
simulations, where the study shows that estimators of fixed effects regression parameters are con-
sistent, but standard errors of the estimates can be underestimated. Li et al. (2012) consider joint
analysis of bivariate longitudinal ordinal outcomes and competing risks survival times using non-
parametric random effects distributions, where the authors consider bimodal, gamma, and uniform
random effects distributions to demonstrate the robustness of the proposed nonparametric method.
The skew-normal random effects distribution has been used in the context of longitudinal models
(Arellano-Valle et al., 2005; Rastegaran and Zadkarami, 2015). Arellano-Valle et al. (2005) relaxed
the normality assumption of random effects and error distribution for a linear mixed effects model
by using the skew-normal distribution. Rastegaran and Zadkarami (2015) apply the skew-normal
random effects distribution for modeling a longitudinal ordinal categorical response variable in the
presence of non-ignorable missing data. Kim and Albert (2016) introduce a skewed multivariate
random effects distribution in joint modeling of longitudinal continuous and discrete outcomes.

Random effects in joint models play an important role in studying the association between lon-
gitudinal and survival data, where “shared random effects” are often used to establish the relation-
ship between the two outcome processes. Also, “association parameters” are used to determine the
strength of relationship between the outcomes (Chen et al., 2011; Sattar et al., 2015; Sattar and
Sinha, 2017; Alam et al., 2021). A comprehensive review of the joint modeling of longitudinal and
survival data can be found in Tsiatis and Davidian (2004), Gould et al. (2015), Hickey et al. (2016),
and Furgal et al. (2019). Typically, random effects linking various outcome processes are assumed to
follow a normal distribution. Under a correctly specified normal distribution for the random effects,
the joint modeling approach provides consistent and efficient estimators of the model parameters
(Hogan and Laird, 1998). Effects of violations of the normality assumption on the random effects
have not been studied much in the literature in the context of joint models. In this paper, we study
the impact of misspecified random effects distributions on maximum likelihood estimators in joint
models. We aim to provide a general framework for analyzing joint models assuming a flexible
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skew-normal distribution for random effects. As a flexible approach, the proposed skew-normal dis-
tribution is able to capture potential asymmetry in the random effects, and hence can provide robust
and efficient estimators.

Our motivation for studying the impact of a misspecified random effects distribution on joint
models arises from multiple endpoints of a clinical study, named genetic and inflammatory marker
of sepsis (GenIMS) study (Kellum et al., 2007). The GenIMS study, a large cohort study of patients
with community acquired pneumonia (CAP), investigates the association among a group of inflam-
matory and coagulation biomarkers, and their effects on a clinical endpoint of “pneumonia-to-death”
of sepsis patients. The patients were enrolled in the study through the emergency departments of
28 hospitals during 2001–2003. A goal of the study was to understand the dynamic behavior of
the biomarkers in relation to severe sepsis, a primary cause of pneumonia-to-death. Blood samples
were drawn from the hospitalized patients daily for the first seven days of hospitalization and weekly
thereafter. The primary outcome variables in the GenIMS study were the incidence of severe sep-
sis and the 90-day mortality of patients. In this paper, we consider jointly analyzing a coagulation
biomarker, named D-dimer, and the 90-day mortality endpoint. We also examine the relationship
between a set of clinically relevant predictors of longitudinally measured D-dimer biomarker and the
survival outcome. We use a linear mixed model for the longitudinal D-dimer data, where the clinical
covariates of interests include “inpatient coagulation medication (Anticoa)” and “prior antibiotics
use (Ant7pres)”. In modeling the survival outcome, pneumonia-to-death, we use a similar set of
covariates with a focus on the Charlson comorbidity score. The Charlson score includes diabetic
information which is an important risk factor for many diseases including sepsis and death. Further
details about the biomarkers and the GenIMS data analysis are provided in Section 4.

In summary, our study contributes to the joint modeling literature in several ways: it (1) in-
vestigates impacts of the misspecification of random effects, (2) extends the normal random effect
approach to a flexible skew-normal approach, and (3) demonstrates the usefulness of the proposed
method using both Monte Carlo simulations and applications. The proposed method is also applica-
ble to a general joint modeling framework for multiple outcomes. The paper is organized as follows.
In Section 2, we present the model and notation for joint models, and also investigate asymptotic
properties of the estimators in joint models under misspecified random effects distributions. Section
3 investigates the finite-sample properties of the estimators based on a simulation study. Section 4
presents the findings of the real data analysis from the GenIMS study. We conclude the paper with
some discussion in Section 5.

2 Model and Notations

In the following, we introduce submodels for the longitudinal and survival outcomes, where a linear
mixed model is used for longitudinal data and a frailty model is used for survival data. The two
outcome processes are linked through a set of shared random effects. We introduce a flexible skew-
normal distribution as a robust alternative to the commonly used normal distribution to accommodate
potential asymmetry in the random effects.
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2.1 Longitudinal models

Suppose yij represents the longitudinal outcome from subject i measured at time tij (i = 1, . . . , N ;

j = 1, . . . , ni). Assume that the outcome variable may be described as a function of available
covariates by the linear mixed model

yij = x′
ijβ + z′ijvi + ϵij , (2.1)

where xij = (x1ij , . . . , xpij)
′ is a p-dimensional vector of covariates associated with the fixed

effects and zij = (z1ij , . . . , zqij)
′ is a q-dimensional vector of covariates associated with the ran-

dom effects. The random effects vi are assumed to be independent and follow a density function
fvi(vi|θ) with the mean vector 0 and covariance matrix G(θ), depending upon a vector of variance
components θ. The random errors ϵij are assumed to be independent and follow a density function
fϵij (ϵij |σ2

ϵ ) with the mean 0 and variance component σ2
ϵ . Also, ϵij are assumed to be independent

of the random effects vi.
Model (2.1) may be written in the matrix form as

yi = Xiβ + Zivi + ϵi, (2.2)

for i = 1, . . . , N , where yi = (yi1, . . . , yini
)′, Xi is an ni × p design matrix for the fixed effects

with its jth row being equal to xij , Zi is an ni × q design matrix for the random effects with its jth
row being equal to zij , and the vector of random errors ϵi = (ϵi1, . . . , ϵini

)′.
From (2.2), the conditional density of the ith response vector yi = (yi1, . . . , yini

)′ given the
random effects vi may be written as

fyi|vi(yi|vi,β, σ
2
ϵ ) = (2πσ2

ϵ )
−ni/2exp

{
− 1

2σ2
ϵ

(yi −Xiβ − Zivi)
′(yi −Xiβ − Zivi)

}
. (2.3)

The conditional mean of the response vector yi given the random effects vi is obtained as E(yi|vi) =

Xiβ + Zivi, and its conditional variance is obtained as Var(yi|vi) = σ2
ϵ Ini

, where Ini
is an

ni × ni identity matrix. The marginal mean and variance of the response vector yi are obtained as
E(yi) = Xiβ and Var(yi) = Vi = ZiG(θ)Z′

i + σ2
ϵ Ini

.
Note that when making an inference based on only the longitudinal outcomes, one can fit the

linear mixed model (2.2) using the standard weighted least squares method. For given random
effects variance components α = (θ′, σ2

ϵ )
′, the best linear unbiased estimator (BLUE) of the fixed

effects regression coefficients β may be obtained as

β̃(α) =

(
N∑
i=1

X′
iV

−1
i Xi

)−1( N∑
i=1

X′
iV

−1
i yi

)
, (2.4)

whereas the best linear unbiased predictor (BLUP) of the random effects vi may be obtained as

ṽi(α) = GZ′
iV

−1
i (yi −Xiβ̃). (2.5)

The variance components α are unknown in practice. Several methods are available for estimating
variance components, which include the widely used maximum likelihood (ML) and restricted max-
imum likelihood (REML) methods. For example, under the assumption that the random effects vi
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and random errors ϵij are normally distributed, the ML estimators α̂ of α = (α1, . . . , αq+1)
′ may

be obtained by solving the likelihood score equations

N∑
i=1

{
(yi −Xiβ)

′V−1
i

∂Vi

∂αl
V−1

i (yi −Xiβ)− tr
(
V−1

i

∂Vi

∂αl

)}
= 0, (2.6)

using a numerical method, for l = 1, . . . , q + 1, where θ = (θ1, . . . , θq)
′ ≡ (α1, . . . , αq)

′ and
σ2
ϵ = αq+1.

The empirical best linear unbiased estimators of β and empirical best linear unbiased predictors
(EBLUPs) of vi may be obtained by replacing α with the estimator α̂, so that β̂ = β̃(α̂) and
v̂i = ṽi(α̂).

2.2 Frailty models

A frailty model is commonly used to study the heterogeneity among individuals when fitting a
survivor function or a hazard function. Let si denote the true survival time (event time) and ci
the censored survival time for the ith individual (i = 1, . . . , N ). Let Ti = min(si, ci) denote
the observed survival time and δi the censoring status of the survival time for the ith individual,
with δi = 0 if Ti is censored, and δi = 1, otherwise. Consider a set of m baseline covariates
wi = (wi1, . . . , wim)′ observed from the ith individual. To study the effects of covariates, we
consider a frailty model in the form

hi(Ti|vi,γ, τ ,φ) = h0(Ti|τ ) exp(w′
iγ +φ′vi), (2.7)

for i = 1, . . . , N , where hi(Ti|vi,γ, τ ,φ) denotes the conditional hazard function of the ith indi-
vidual given the frailty vi and h0(Ti|τ ) denotes the baseline hazard function depending on unknown
parameters τ . The frailties vi (i = 1, . . . , N ) are assumed to be independent and follow a density
fvi(vi|θ) with the mean vector 0 and covariance matrix G(θ). Given frailty random effects vi,
from (2.7) the conditional density of the observed survival data (Ti, δi) for the ith individual may be
obtained as

fTi,δi|vi(Ti, δi|vi,γ, τ ,φ) =
[
fTi|vi(Ti|vi,γ, τ ,φ)

]δi[
Si(Ti|vi,γ, τ ,φ)

]1−δi

=
[
hi(Ti|vi,γ, τ ,φ)

]δi
Si(Ti|vi,γ, τ ,φ),

where fTi|vi(Ti|vi,γ, τ ,φ) denotes the conditional density of the survival time Ti given the frailty
vi and Si(Ti|vi,γ, τ ,φ) denotes the conditional survivor function given the frailty vi.

Note that the aforementioned longitudinal and survival outcome processes are linked through
the shared random effects vi, where the association parameters φ = (φ1, . . . , φq)

′ determines the
degree of association between the two outcome processes.
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2.3 Joint models

Recall the longitudinal and survival submodels discussed earlier. Given the observed data (Ti, δi, yi),
the contribution of the ith subject to the log-likelihood of ξ = (γ′, τ ′,φ′,β′,θ′, σ2

ϵ )
′ is given by

li(ξ|Ti, δi,yi) = log

∫ [
fTi,δi|vi(Ti, δi|vi,γ, τ ,φ) fyi|vi(yi|vi,β, σ

2
ϵ ) fvi(vi|θ)

]
dvi, (2.8)

for i = 1, . . . , N , where the conditional density of the survival time Ti is given by

fTi,δi|vi(Ti, δi|vi,γ, τ ,φ)

=
[
hi(Ti|vi,γ, τ )

]δi
Si(Ti|vi,γ, τ )

=
[
h0(Ti|τ ) exp(w′

iγ +φ′vi)
]δi × exp

{
−
∫ Ti

0

h0(s; τ) exp(w′
iγ +φ′vi) ds

}
,

and the conditional density fyi|vi(yi|vi,β, σ
2
ϵ ) of the longitudinal responses yi = (yi1, . . . , yini)

′

is given by

fyi|vi(yi|vi,β, σ
2
ϵ ) =

ni∏
j=1

fyij |vi(yij |vi,β, σ
2
ϵ ).

The density fyij |vi(yij |vi,β, σ
2
ϵ ) is assumed to be normal with mean µij = x′

ijβ + z′ijvi and vari-
ance σ2

ϵ . Here the two outcome processes are linked through the random effects vi and association
parameters φ = (φ1, . . . , φq)

′. When φ = 0, a joint analysis of the two outcome processes would
be equivalent to their separate analyses.

The maximum likelihood estimator of ξ may be obtained by maximizing the observed data log-
likelihood

l(ξ) =

N∑
i=1

li(ξ|Ti, δi,yi) (2.9)

with respect to ξ using a numerical method. Equivalently, we can solve the likelihood score equation
Φ(ξ) = 0, where the score function Φ(ξ) may be obtained as

Φ(ξ) =

N∑
i=1

∫
A(ξ,vi) fvi(vi|Ti, δi,yi; ξ) dvi, (2.10)

with A(ξ,vi) being the “complete data” score function, given by

A(ξ,vi) =
∂

∂ξ

[
log fTi,δi|vi(Ti, δi|vi,γ, τ ,φ)+log fyi|vi(yi|vi,β, σ

2
ϵ )+log fvi(vi|θ)

]
. (2.11)

The function f(vi|Ti, δi,yi; ξ) represents the conditional density of the random effects vi, given
the observed data (Ti, δi,yi). This density function does not have a closed form, in general, and
numerical methods are needed to compute the log-likelihood, score function and Fisher information.
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The score equation Φ(ξ) = 0 may be solved numerically using an iterative method, such as the
Newton-Raphson method. Given some initial estimate ξ(0), the Newton-Raphson method obtains
the estimates using the iterative equations

ξ(r+1) = ξ(r) −
{
Φ(1)

(
ξ(r)

)}−1 {
Φ
(
ξ(r)

)}
,

for r = 0, 1, 2, . . ., where Φ(ξ(r)) is the likelihood score function Φ(ξ), evaluated at ξ(r), and
Φ(1)(ξ(r)) is the first derivative of the score function Φ(ξ) with respect to ξ, evaluated at ξ(r). We
can show that

Φ(1)(ξ) =
∂

∂ξ
Φ(ξ)

=

N∑
i=1

∫
∂

∂ξ
A(ξ,vi) fvi(vi|Ti, δi,yi; ξ) dvi

+

N∑
i=1

∫
A(ξ,vi) A

′(ξ,vi) fvi(vi|Ti, δi,yi; ξ) dvi

−
N∑
i=1

∫
A(ξ,vi) fvi(vi|Ti, δi,yi; ξ) dvi

∫
A′(ξ.vi) fvi(vi|Ti, δi,yi; ξ) dvi.

At convergence, we obtain the maximum likelihood (ML) estimates ξ̂ of the model parameters ξ.
Under the assumption that the density fvi(vi|θ) of the random effects vi is correctly specified, the
ML estimator ξ̂ follows an asymptotic normal distribution with the mean ξ and an approximate vari-
ance V (ξ̂) = I−1(ξ), where I(ξ) is the observed Fisher information, given by I(ξ) = −Φ(1)(ξ).

2.4 Joint analysis under misspecified random effects

It is well-known that the maximum likelihood estimators are the most efficient under correctly spec-
ified distributions. However, under misspecified distributions, the ML method may provide system-
atic bias in the estimation. In this section, we investigate the properties of the maximum likelihood
estimator ξ̂ for the case when the density fvi(vi|θ) of the random effects vi is incorrectly specified.

Recall that the maximum likelihood estimator ξ̂N ≡ ξ̂ are obtained by solving

N−1
N∑
i=1

∫
A(ξ,vi) fvi(vi|Ti, δi,yi; ξ) dvi

∣∣∣∣
ξ̂N

= 0, (2.12)

where fvi(vi|Ti, δi,yi; ξ) denotes the conditional distribution of vi, given the observed data
(Ti, δi,yi) for the ith individual. If the marginal density fvi(vi|θ) of vi is misspecified, then the
ML estimator ξ̂N converges to ξ∗ that minimizes the Kullback-Leibler information criterion (White,
1982), or equivalently, satisfies the estimating equation

lim
N→∞

N−1E

[
N∑
i=1

∫
A(ξ,vi) fvi(vi|Ti, δi,yi; ξ) dvi

]
ξ∗

= 0, (2.13)
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where the expectation E is taken with respect to the underlying “true distribution” with parameters
ξ0.

Following White (1982), we can show that ξ̂N follows an asymptotic normal distribution, i.e.,
√
N(ξ̂N − ξ∗) ∼ N(0, C(ξ∗)), (2.14)

where C(ξ∗) is obtained from a sandwich-type variance-covariance matrix C(ξ), given by C(ξ) =

M(ξ)−1Q(ξ)M(ξ)−1, evaluated at ξ = ξ∗, with

M(ξ) = lim
N→∞

N−1E

[
N∑
i=1

∂

∂ξ

∫
A(ξ,vi) fvi(vi|Ti, δi,yi; ξ) dvi

]
,

and

Q(ξ) = lim
N→∞

N−1E

[
N∑
i=1

∫
A(ξ,vi) fvi(vi|Ti, δi,yi; ξ) dvi×∫

A′(ξ,vi) fvi(vi|Ti, δi,yi; ξ) dvi

]
.

The above variance-covariance matrix C(ξ) may be approximated by

CN (ξ) = MN (ξ)−1 QN (ξ)MN (ξ)−1, (2.15)

where

MN (ξ) = N−1
N∑
i=1

∂

∂ξ

∫
A(ξ,vi) fvi(vi|Ti, δi,yi; ξ) dvi,

and

QN (ξ) = N−1
N∑
i=1

∫
A(ξ,vi) fvi(vi|Ti, δi,yi; ξ) dvi

∫
A′(ξ,vi) fvi(vi|Ti, δi,yi; ξ) dvi.

Under appropriate regularity conditions as given in White (1982), we can show that as N → ∞,
CN (ξ̂N ) → C(ξ∗) a.s. In the next section, we study the asymptotic bias (ξ∗ − ξ0) of the estimator
ξ̂N based on a Monte Carlo study. Specifically, we calculate the empirical bias [(1/S)

∑S
s=1 ξ̂

(s)
N −

ξ0] based on S replicates of data sets, where ξ̂(s)N is the estimator ξ̂N obtained from the sth replicate
(s = 1, . . . , S). The empirical results are obtained under various misspecified random effects dis-
tributions, where we study the robustness properties of the proposed estimators under skew-normal
random effects.

3 Simulation Study
We ran a series of simulations using a linear mixed model for longitudinal outcomes and a Weibull
frailty model for survival outcomes. Specifically, the longitudinal outcomes were obtained from the
linear mixed model

yij = β0 + β1Visitij + β2Treati × Visitij + β3xi + vi + ϵij , (3.1)
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for i = 1, . . . , N, j = 1, . . . , ni, where the random errors ϵij are assumed to be independent
N(0, σ2

ϵ ). The random effects vi are assumed to follow a distribution with mean 0 and variance σ2
v ,

independent of ϵij . The group indicator Treati is 0 if the ith subject is in the control group and 1, if
in the treatment group, where we consider equal number of subjects in each group. The values of the
baseline covariate xi, representing measurements on a biomarker, were generated from the normal
distribution N(µx, σ

2
x) with µx = 1.8 and σ2

x = 2.9. Also, Visitij represents the follow-up times at
which the longitudinal measurements are obtained.

The survival outcomes were obtained from the Weibull frailty model

hi(Ti|vi,γ, λ, τ, φ) = λτT τ−1
i exp

(
γ1Treati + γ2xi + φvi

)
, (3.2)

for i = 1, . . . , N . The above two outcome processes are linked through the shared random effects vi,
where the “association parameter” φ measures the strength of association between the two processes.

The data were generated using two combinations of sample sizes, N = 250 and 500. Each
simulation run was based on S = 1000 replicates of data sets. The model parameters were fixed at
(β0, β1, β2, β3) = (10.0,−0.25, 1.5, 0.5), (σ2

v , σ
2
ϵ ) = (1.0, 0.5), (log λ, τ) = (−4.6, 0.8), (γ1, γ2)

= (1.5, 0.5), and φ = 0.5. The censored survival times were obtained by setting log λ = −4.7,
which resulted in roughly 48% right-censored values.

To study the effects of misspecified random effects, vi were generated from the following three
combinations of distributions:

Normal: vi ∼ N(0, σ2
v),

Chi-square: vi = σv

(
ui − E(ui)√

Var(ui)

)
, with ui ∼ Chi-square(7 df),

Gamma: vi = σv

(
ui − E(ui)√

Var(ui)

)
, with ui ∼ Gamma(2, 0.8).

Models (3.1) and (3.2) were fitted under the following two combinations of random effects
distributions:

Normal: vi ∼ N(0, σ2
v) (naive method),

Skew-normal: vi = σv(ui − E(ui))/
√

Var(ui) (robust method),

where the skew-normal density of ui is given by

fui
(ui|σ2

v , δ) =
2

σv
ϕ

(
ui

σv

)
Φ

(
δ

(
ui

σv

))
,

with ϕ(z) and Φ(z) being the standard normal and cumulative standard normal distributions, respec-
tively. Note that the choice of the shape (skewness) parameter δ = 0 leads to the normal distribution
N(0, σ2

v). We estimate δ and other model parameters simultaneously by the joint maximum like-
lihood approach discussed earlier. We then study the empirical properties of the estimators under
both correctly specified and misspecified random effects distributions.
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Table 1 presents empirical biases, mean squared errors (MSEs) and coverage probabilities of the
maximum likelihood estimators for N = 250. Table 2 repeats the results for N = 500. The esti-
mates were obtained under the assumption that the random effects followed normal or skew-normal,
when the true distribution is, in fact, either symmetric (normal) or skew-symmetric (chi-square or
gamma). It is clear from the tables that the estimates of the regression coefficients (β0, β1, β2, β3)

and (γ1, γ2) in the longitudinal and survival submodels are roughly unbiased under all scenarios con-
sidered. The coverage probabilities of the estimates are also close to the nominal 95% confidence
level.

When the true distribution of vi is normal, the ML method based on the normality assumption
appears to provide better estimates, as compared to the skew-normal distribution. This is expected
since the ML estimates are generally the most efficient under the correctly specified model. How-
ever, it is interesting to note that the proposed skew-normal distribution also provides estimates that
are almost as efficient as those obtained from the correctly specified normality assumption. For ex-
ample, when estimating (β3, γ2), effects of xi on longitudinal and survival outcomes, the efficiencies
of the estimates from the skew-normal approach are obtained as (0.1849/0.1856, 0.5012/0.5000)×
100 = (99.6%, 100.2%), as shown in Table 1 for N = 250. We can expect to lose such a small effi-
ciency from the skew-normal approach when the true distribution is, in fact, normal. However, our
main interest is in the non-normal distribution of vi, where the skew-normal approach is expected to
perform better than the normal approach.

When the true distribution of vi is chi-square, the skew-normal approach appears to provide gen-
erally better estimates as compared to the normal approach. For example, when estimating (β3, γ2),
the skew-normal approach provides corresponding efficiencies of (0.1718/0.1354, 0.5271/0.5077)×
100 = (126.9%, 103.8%), as shown in Table 1 for N = 250. Also, for N = 500, Table 2
shows corresponding efficiencies of the estimates as (0.0867/0.0677, 0.2415/0.2341) × 100 =

(128.1%, 103.2%).
We observe a similar pattern when the true distribution of vi is gamma. For example, when esti-

mating (β3, γ2), the skew-normal approach provides corresponding efficiencies of (0.1689/0.1218,
0.5212/0.4907) × 100 = (138.7%, 106.2%), as shown in Table 1 for N = 250. For N =

500, Table 2 shows the corresponding efficiencies as (0.0842/0.0594, 0.2633/0.2466) × 100 =

(141.8%, 106.8%).
The gain in efficiency by the skew-normal approach is even more dramatic when estimating the

variance component and association parameter (σ2
v , φ) under the misspecified model. For example,

when the true distribution of vi is chi-square, it is clear from Table 1 that the skew-normal approach
provides corresponding efficiencies of the estimates of (σ2

v , φ) as (2.2395/1.7361, 2.3081/1.6342)×
100 = (129.0%, 141.2%).

In summary, the proposed skew-normal approach appears to be robust against misspecified ran-
dom effects distributions. One can encounter considerable loss of efficiency from the ordinary nor-
mal approach if the random effects distribution is, in fact, non-normal. In such cases, the skew-
normal approach should be considered as a robust and efficient approach to analyzing joint models.
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Table 1: Empirical percentage relative biases, mean squared errors (MSEs) and coverage probabil-
ities (CPs) of the maximum likelihood estimators obtained under misspecified random effects dis-
tribution. Parameters are fixed at (β0, β1, β2, β3) = (10.0,−0.25, 1.5, 0.5), (σ2

v , σ
2
ϵ ) = (1.0, 0.5),

(log λ, τ) = (−4.6, 0.8), (γ1, γ2) = (1.5, 0.5), and φ = 0.5. Number of subjects N = 250.

Fitted model: Normal Fitted model: Skew-normal

Effect (vi) Model Coef %Bias 100×MSE CP %Bias 100×MSE CP

Normal Long β0 0.0396 1.0848 0.944 0.0354 1.0918 0.946

β1 1.3340 0.0120 0.946 1.3431 0.0119 0.952

β2 0.6977 0.1202 0.940 0.7194 0.1203 0.938

β3 0.7267 0.1849 0.944 0.7114 0.1856 0.942

σ2
v 1.5090 1.3819 0.954 0.6332 1.4259 0.962

σ2
ϵ 0.0021 0.0957 0.956 0.2705 0.0952 0.962

Surv log λ 3.1361 15.6034 0.962 3.0395 15.4625 0.958

τ 3.4927 0.4638 0.950 3.4158 0.4600 0.954

γ1 1.7661 4.8398 0.954 1.8178 4.8421 0.954

γ2 1.3998 0.5012 0.940 1.1126 0.5000 0.944

φ 8.2848 1.6533 0.942 8.0126 1.6215 0.946

Chi-sq Long β0 0.1702 1.0408 0.938 0.0408 0.9130 0.944

β1 1.1291 0.0116 0.956 1.0828 0.0109 0.950

β2 0.2265 0.1156 0.960 0.3843 0.1028 0.952

β3 0.2477 0.1718 0.946 0.5145 0.1354 0.936

σ2
v 9.7347 2.2395 0.762 4.0706 1.7361 0.896

σ2
ϵ 1.5906 0.1073 0.934 0.1571 0.0941 0.952

Surv log λ 4.1703 17.5516 0.956 3.9072 16.8945 0.964

τ 4.2017 0.5108 0.950 4.0630 0.4990 0.950

γ1 2.5822 4.9831 0.958 2.4463 4.9218 0.962

γ2 3.1719 0.5271 0.956 2.8380 0.5077 0.956

φ 14.6827 2.3081 0.924 8.1480 1.6342 0.948

Gamma Long β0 0.2336 1.0139 0.944 0.0547 0.8861 0.938

β1 0.8918 0.0119 0.942 0.5455 0.0105 0.942

β2 0.1315 0.1153 0.946 0.2785 0.0962 0.958

β3 0.6613 0.1689 0.948 0.4543 0.1218 0.950

σ2
v 11.0333 2.4494 0.706 7.4246 1.9467 0.826

Continued on next page
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Table 1 – Continued from previous page

Fitted model: Normal Fitted model: Skew-normal

Effect (vi) Model Coef %Bias 100×MSE CP %Bias 100×MSE CP

σ2
ϵ 2.1181 0.1103 0.940 0.1271 0.0934 0.948

Surv log λ 3.6902 16.8862 0.948 3.3809 15.9310 0.950

τ 3.6948 0.5059 0.950 3.6869 0.5011 0.950

γ1 1.8704 4.8890 0.950 1.7088 4.8325 0.950

γ2 4.1824 0.5212 0.944 3.8619 0.4907 0.954

φ 14.2490 2.3849 0.914 7.3589 1.5997 0.924

Table 2: Empirical percentage relative biases, mean squared errors (MSEs) and coverage probabil-
ities (CPs) of the maximum likelihood estimators obtained under misspecified random effects dis-
tribution. Parameters are fixed at (β0, β1, β2, β3) = (10.0,−0.25, 1.5, 0.5), (σ2

v , σ
2
ϵ ) = (1.0, 0.5),

(log λ, τ) = (−4.6, 0.8), (γ1, γ2) = (1.5, 0.5), and φ = 0.5. Number of subjects N = 500.

Fitted model: Normal Fitted model: Skew-normal

Effect (vi) Model Coef %Bias 100×MSE CP %Bias 100×MSE CP

Normal Long β0 0.0915 0.5515 0.954 0.0838 0.5509 0.958

β1 1.5145 0.0068 0.920 1.4812 0.0068 0.920

β2 0.4520 0.0530 0.938 0.5127 0.0538 0.936

β3 0.2382 0.0914 0.968 0.3263 0.0916 0.966

σ2
v 1.1513 0.6972 0.938 0.7181 0.7100 0.940

σ2
ϵ 0.0511 0.0478 0.962 0.0323 0.0477 0.960

Surv log λ 2.9720 8.5403 0.944 2.9315 8.4901 0.942

τ 3.1240 0.2521 0.938 3.0985 0.2513 0.938

γ1 1.7599 2.4166 0.930 1.5324 2.4010 0.932

γ2 1.7542 0.2501 0.954 1.6169 0.2490 0.956

φ 7.1983 0.8488 0.940 6.8569 0.8320 0.948

Chi-sq Long β0 0.0698 0.5211 0.964 0.0268 0.4607 0.964

β1 1.1031 0.0062 0.956 1.1245 0.0059 0.944

β2 0.1826 0.0528 0.954 0.3311 0.0473 0.948

β3 0.0925 0.0867 0.952 0.5127 0.0677 0.964

σ2
v 7.5146 1.2343 0.794 1.6451 0.8533 0.924

Continued on next page
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Table 2 – Continued from previous page

Fitted model: Normal Fitted model: Skew-normal

Effect (vi) Model Coef %Bias 100×MSE CP %Bias 100×MSE CP

σ2
ϵ 1.3141 0.0551 0.950 0.0941 0.0475 0.956

Surv log λ 2.5892 8.0840 0.956 2.3658 7.7542 0.958

τ 2.9776 0.2473 0.950 2.8237 0.2394 0.956

γ1 2.2858 2.4745 0.944 2.1673 2.4414 0.942

γ2 0.4531 0.2415 0.962 0.2851 0.2341 0.962

φ 11.5990 1.1565 0.876 5.2110 0.7503 0.914

Gamma Long β0 0.1770 0.5285 0.920 0.1258 0.4311 0.934

β1 1.1329 0.0062 0.920 0.9569 0.0055 0.922

β2 0.1617 0.0526 0.972 0.2429 0.0433 0.958

β3 0.3894 0.0842 0.954 0.8621 0.0594 0.944

σ2
v 11.6540 1.9978 0.614 7.5705 1.2889 0.794

σ2
ϵ 1.9810 0.0614 0.952 0.1123 0.0465 0.962

Surv log λ 2.9267 8.5055 0.946 2.5556 7.9383 0.952

τ 2.9849 0.2482 0.940 2.9634 0.2451 0.934

γ1 0.7488 2.3576 0.956 0.6135 2.3270 0.956

γ2 2.8847 0.2633 0.946 2.3389 0.2466 0.948

φ 12.9543 1.2985 0.890 5.9240 0.7856 0.930

4 Application: GenIMS Data Analysis

Here we present an application of the proposed method using the GenIMS data introduced in Sec-
tion 1. The study enrolled a total of 2320 patients aged 18 years or older who were diagnosed
with the community-acquired pneumonia (CAP). This large observational cohort study was con-
ducted in western Pennsylvania, Connecticut, southern Michigan, and western Tennessee in the
USA through the emergency departments of 28 academic and community hospitals during Decem-
ber 2001 – November 2003. Although 2320 individuals were enrolled initially, after discharge from
emergency departments and changes in primary diagnosis, the inpatient CAP cohort consists of a
group of 1886 patients. During the study, the cohort recorded a total of 212 deaths. Details about
the study can be found in Kellum et al. (2007).

A primary objective of the GenIMS study was to investigate the association between the risk
factors (covariates) and 90-day mortality of the patients. Blood samples were taken from the patients
immediately after their enrollment in the study, daily for the first 7 days and weekly thereafter
while the patient remained in the hospital. In this study, survival outcomes Ti were obtained as
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Figure 1: Logarithm of D-dimer levels of sepsis patients from the GenIMS study. Boxplots of overall
D-dimer levels are shown for seven hospital days (Day 1–7)

the 90-day mortality of the pneumonia patients, whereas longitudinal measurements yij on a D-
dimer biomarker were taken from each patient daily for a period of up to seven days. The baseline
covariates considered for the analysis include “Age10” (age in years/10), “Sex” (0=male, 1=female),
and binary indicators of “Charlson”, “Ant7pres”, “Statin”, and “Anticoa”.

Figure 1 displays boxplots of the logarithm of the longitudinal D-dimer levels of the sepsis
patients for seven hospital days (Day 1–7). The D-dimer levels are shown for two groups of patients
divided according to their prior antibiotics use (Ant7pres: yes or no). The boxplots indicate that the
D-dimer levels are generally low for patients taking the antibiotics.

For the longitudinal measurements yij , we use a linear mixed model with a random intercept
term, given by

yij = β0+β1Dayij+β2Age10i+β3Sexi+β4Ant7presi+β5Anticoai+β6Statini+vi+ϵij , (4.1)

for i = 1, . . . , N , where the random errors ϵij are assumed to be independently distributed as
N(0, σ2

ϵ ). The intercept random effects vi are assumed to be independent and follow a distribution
with mean 0 and variance σ2

v , independent of ϵij .
For the survival times Ti, we use a frailty model in the framework of the Weibull proportional

hazards model with the scale parameter λ and shape parameter τ , given by

hi(Ti|vi, γ, λ, τ, φ) = λτT τ−1
i exp(γ1Age10i + γ2Sexi + γ3Charlsoni+

γ4Ant7presi + γ5Statini + φvi), (4.2)

where hi is the hazard function for the ith patient.
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Table 3 presents the maximum likelihood estimates, their standard errors, z-values, and 95%
lower and upper confidence limits (LL and UL) of the model parameters obtained by the naive
method assuming normal random effects and also by the proposed robust method assuming skew-
normal random effects. The estimates of the covariate effects and variance components obtained by
the two methods are somewhat similar. However, the standard errors of the estimates in the longitu-
dinal model as obtained by the skew-normal approach are generally smaller than those obtained by
the normal approach. For example, when estimating (β3, β4, β5, β6), the skew-normal approach pro-
vides corresponding standard errors of the estimates as (0.0630, 0.0790, 0.0651, 0.0775), whereas
the normal approach provides corresponding standard errors of (0.0641, 0.0810, 0.0669, 0.0803). It
is also worth noting that the estimate of the skewness parameter δ appears to be positive, δ̂ = 2.051,
with a standard error of 0.4047, which justifies the use of the skew-normal distribution for the ran-
dom effects.

From the joint analysis, it appears that the D-dimer levels increase over time, are higher for older
patients, and decrease with the use of antibiotics. From the survival model, it appears that older
patients, males, and patients with larger Charlson score are at higher risk of death from pneumonia.
The treatments Ant7pres and Statin appear to reduce the risk of death. Also, the frailty variance
component σ2

v appears to be significant with an estimate of 0.8535 and a corresponding standard
error of 0.0467. The association parameter φ also appears to be highly significant, which justifies
the use of the joint model for analyzing the two outcome processes.

5 Discussion
The purpose of this paper was to provide a suitable robust alternative to the naive normal random
effects approach to estimating parameters in joint models. We have studied both asymptotic and
finite-sample properties of the estimates under misspecified random effects. Our Monte Carlo study
shows that the proposed skew-normal random effects approach provides estimates that are generally
more efficient than those obtained under the naive normal random effects approach. The GenIMS
data analysis presented earlier shows that the estimates of the model parameters are similar by the
two methods, but the skew-normal approach provides smaller standard errors as compared to the
normal approach. As an exploratory data analysis, one can fit the given data using both methods. If
the results are similar by the two methods, then normal random effects may be used for simplicity.

In our numerical analysis, we have considered a univariate shared random effect term for which
it is not so difficult to calculate the joint likelihood, score function and Fisher information using a
numerical integration method. For multidimensional random effects, however, an exact likelihood
analysis requires intensive computation involving irreducibly high-dimensional integrals. We intend
to develop an approximate likelihood method to reduce the computational burden in a future study.
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