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SUMMARY

Multiple imputation methods are widely used in practice for missing data. An important
consideration for a multiple imputation method is the choice of an imputation model which
generates the imputations for each missing value, especially when the missing rate is not
low. Mixed effects models are commonly used for modelling longitudinal data which ex-
hibit large between-individual variations. In this case, a good imputation model should
generate imputations at the individual level to incorporate the large between-individual
variations. In this article, we propose a multiple imputation method for nonlinear mixed ef-
fects models with missing responses. We consider an iterative linearization method where
the imputations are generated based on a “working” linear mixed effects model. We evalu-
ate the proposed method via simulations and apply the method to a real dataset.
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1 Introduction
Missing data arise frequently in longitudinal studies. Sometimes we need to impute the missing
values, especially when the missing data are not missing completely at random (Rubin, 1976). For
example, if a longitudinal variable is used as a time-dependent covariate in a Cox proportional
hazards model for survival analysis, the missing values in the time-dependent covariate need to be
imputed at event times. Multiple imputation methods are widely used in practice to impute missing
data and incorporate missing data uncertainty (e.g., Rubin, 1996; Murray, 2018). For a multiple
imputation method, each missing value is imputed by several plausible predicted values based on an
imputation model, leading to several “complete datasets”. Each “complete dataset” is analyzed using
a method for complete data. The results from the complete-data analyses are then combined to form
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an overall conclusion. A main advantage of a multiple imputation method is that the missing data
uncertainty is incorporated. Moreover, the imputed complete datasets may be analyzed by different
data analysts in various ways using existing software.

Mixed effects models are popular in the analysis of longitudinal data, especially when the
between-individual variations are large. Here we focus on nonlinear mixed effects (NLME) mod-
els, which include linear mixed effects (LME) models as special cases. NLME models are often
mechanistic or scientific models in the sense that they are usually derived based on the underlying
data-generation processes. These models have been used for modelling some important longitudinal
processes, such as studies of growth and decay, HIV viral dynamics, and pharmacokinetics analysis
(e.g., Davidian and Giltinan, 1995; Wu, 2009). In this article, we consider a multiple imputation
method for missing data in NLME models. Wu and Wu (2002) considered a multiple imputation
method for missing covariates in NLME models. Here we consider a multiple imputation method
for missing responses in NLME models. The method can be useful when the response of the NLME
model is used as a time-dependent covariates in a survival model or in another longitudinal model
such as a generalized linear mixed model. We assume that the missing data are missing at random.

There is an extensive literature on missing data and multiple imputation methods (e.g., Rubin,
1976, 1996; Little and Rubin, 2002; Sinha et al., 2014; Murray, 2018). A key step for a multiple
imputation method is to build a good imputation model which is used to generate plausible imputed
values for each missing data. Mixed effects models are usually used for modelling longitudinal data
with large between-individual variations. In this case, a desirable imputation model should generate
imputations at the individual level, rather than the population level, since imputations generated from
a population-average model do not reflect the large variations between individuals. In this article,
we propose a multiple imputation method which generates imputations at the individual levels for
missing responses in an NLME model. The basic idea of the proposed method is first to linearize the
NLME model in a way similar to that of Lindstrom and Bates (1990), and then we generate multiple
imputations based on the resulting working linear mixed effects (LME) model from the linearization.
Parameter estimates are also obtained based on this working LME model. This process is iterated
until convergence. At convergence, we combine the final estimates and their standard errors using
standard formulas for multiple imputations.

This article is organized as follows. In Section 2, we describe the proposed method in details. In
Section 3, we evaluate the proposed method via simulations. A real dataset is analyzed in Section 4.
We conclude the article with some discussions in Section 5.

2 A Multiple Imputation Method for NLME Models with Miss-
ing Data

2.1 NLME models

NLME models are extensions of LME models to nonlinear regressions for modelling longitudinal
data. Random effects are introduced in the nonlinear regression models to incorporate between-
individual variations and within-individual correlations. The nonlinear regressions are usually de-
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rived based on understandings of the underlying scientific or biological processes in a given ap-
plication. For example, the viral load trajectories during an anti-HIV treatment can be modelled by
two-compartment exponentially decay models based on some biological arguments represented by a
set of differential equations to describe the virus production and elimination process (Wu and Ding,
1999). We describe a general NLME model as follows.

Let yi = (yi1, . . . , yini)
T be ni repeated measurements of the response y for individual i,

i = 1, 2, . . . , r. A general NLME model can be written as follows

yij = g(tij ,βij) + eij , (2.1)

βij = h(xij ,β,bi), i = 1, 2, . . . , r, j = 1, 2, . . . , ni, (2.2)

bi ∼ N(0, D), ei ∼ N(0, Ri), (2.3)

where g(·) is a known nonlinear function, h(·) is usually a linear function, βij and β are individual-
specific time-varying parameters and fixed-effects parameters respectively, xij contains possibly
time-varying covariates for individual i, Ri is a covariance matrix for the repeated observations
within individual i, D is a unstructured covariance matrix for the random effects bi, ei = (ei1, ei2,

. . . , eini)
T are random errors for observations within individual i, and bi’s are random effects. We

assume that ei and bi are independent. For simplicity, we choose Ri = σ2Ini
, where Ini

is the
identity matrix, i.e., the within-individual repeated measurements are assumed to be conditionally
independent given the random effects. Let θ = (β, σ,D) denote all parameters.

Parameter estimation and inference for a NLME model is usually based on the likelihood method.
The likelihood is given by

L(θ|y) =
r∏

i=1

∫
f(yi|xi,β, σ,bi)f(bi|D) dbi, (2.4)

where the unobservable random effects are integrated out. For a NLME model, the likelihood (2.4)
usually does not have analytic or closed form expressions, since the NLME model is nonlinear in
the unobserved random effects bi. Monte Carlo or stochastic Expectation-Maximization (EM) algo-
rithms have been proposed, but they are often computationally intensive (Wu, 2009). A commonly
used and computationally efficient approach is to use the linearization method of Lindstrom and
Bates (1990), which is implemented in the R package nlme and lme4.

We can rewrite NLME model (2.1) and (2.2) as a single equation

yij = g
(
tij , h(xij ,β,bi)

)
+ eij ≡ uij(xij ,β,bi) + eij , i = 1, . . . , r, j = 1, . . . , ni, (2.5)

where uij(·) is a nonlinear function. Let ui = (ui1, . . . , uini
)T . Beginning with some starting

values, the linearization method of Lindstrom and Bates (1990) iterates the following steps until
convergence. At each iteration, denote the current estimates of (β,bi) by (β̂, b̂i), suppressing the
iteration number, where b̂i is the empirical Bayesian estimate of bi. The procedure of Lindstrom
and Bates (1990) is equivalent to iteratively solving the following “working” LME model

ỹi = Wiβ + Tibi + ei, (2.6)
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where

ỹi = yi − ui

(
xi, β̂, b̂i

)
+Wiβ̂ + Tib̂i,

Wi =
∂ui

(
xi,β, b̂i

)
∂βT

∣∣∣
β=β̂

, Ti =
∂ui

(
xi, β̂,bi

)
∂bT

i

∣∣∣
bi=b̂i

.

At each iteration we obtain the updated estimates (β̂, b̂i) of the parameters and random effects from
the working LME model (2.6) using standard methods (Laird and Ware, 1982) and then proceed
with next iteration until convergence.

2.2 A multiple imputation method

In this section, we propose a multiple imputation method for missing responses in NLME models
when the missing data are missing at random in the sense of Rubin (1976). The method may be
useful when the response of the NLME model is used as a time-dependent covariate in a survival
model in a joint model setting, since in this case the missing response values may need to be imputed
at event times. The method may also be used when the response values are (left) censored, such as
viral load values below a detection limit in HIV studies.

We can write the response vector for individual i as yi = (yobs,i,ymis,i), where yobs,i and
ymis,i are the observed components and missing components of yi respectively and yij is the re-
sponse value at time tij . The basic idea of the proposed method is to first linearize the NLME
model using the first-order Taylor approximation about the estimated parameters and random ef-
fects, then use a multiple imputation method to impute the missing data based on the working LME
model, and finally iterate the procedure until convergences. For the working LME model, we can use
existing software for multiple imputations, such as the mice package (van Buuren and Groothuis-
Oudshoorn, 2011) in R.

Specifically, we first choose starting values for the unknown parameters β and random effects
bi, denoted by β(0) and b

(0)
i . For example, we may choose β(0) and b

(0)
i to be the estimates based

on complete data. At iteration k, (k = 1, 2, 3, . . .), we proceed with the following steps.
Step 1. Take a first-order Taylor expansion of the NLME model (2.5) about the current estimates
of the parameters and random effects β(k) and b

(k)
i respectively, and obtain the following working

LME model,
ỹ
(k)
i = W

(k)
i β + T

(k)
i bi + ei, (2.7)

where

ỹ
(k)
i = yi − ui

(
xi, β̂

(k)
, b̂

(k)
i

)
+Wiβ̂

(k)
+ Tib̂

(k)
i ,

W
(k)
i =

∂ui

(
xi,β, b̂i

)
∂βT

∣∣∣
β=β̂

(k) , T
(k)
i =

∂ui

(
xi, β̂,bi

)
∂bT

i

∣∣∣
bi=b̂

(k)
i

.

Suppose that yij is missing, then ỹ
(k)
ij is also missing. Let ỹ(k)

i = (ỹ
(k)
i1 , . . . , ỹ

(k)
ini

) where some ỹ(k)ij ’s
may be missing.
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Step 2. We generate multiple imputations for the missing yij’s based on the following imputation
model

ỹ
(k)
i = Uiα1 +W

(k)
i α2 + ϵi, i = 1, 2, . . . , r, (2.8)

where Ui is a design matrix containing information about the missing ỹ
(k)
ij ’s, such as the fitted

slopes of individual i based on observed data, α1 and α2 are unknown parameter vectors, and ϵi is
a vector of random errors. We may also use the working LME model (2.7) as the imputation model.
However, model (2.8) can be more general than model (2.7) in the sense that it can contain additional
information useful for creating imputations, and model (2.7) may be considered as a special case of
model (2.8). As noted in Little and Rubin (2002), it is desirable to create multiple imputations based
on a more general imputation model than the data analysis model. For each missing ỹ

(k)
ij , we impute

m values (say, m = 5), so we obtain m “complete datasets”.
Step 3. For each “complete dataset” from Step 2, we fit the working LME model (2.7) in Step 1
and obtain updated parameter and random effects estimates β(k+1) and b

(k+1)
i . The m estimates

are then combined by simply taking averages of the m estimates. For simplicity, we still denote the
combined estimates by β(k+1) and b

(k+1)
i . Then, we go back to Step 1 for next iteration.

Iterating Steps 1 to 3 until convergence, we obtain a sequence of (combined) estimates {β(k), k =

1, 2, . . .}. We may claim convergence when two consecutive estimates are close, say |β(k+1)−β(k)|
is very small. Suppose that β̂ is the (combined) estimate from the last iteration at convergence. The
standard error of β̂ can be obtained using standard formula for multiple imputation method (Little
and Rubin, 2002), i.e.,

Var(β̂) = (1 +
1

m
)

1

m− 1

m∑
i=1

(
β̂
(i)

− β̂
)
2 +

1

m

m∑
i=1

Var
(
β̂
(i))

(2.9)

and SE(β̂) =

√
Var(β̂).

3 Simulation Study
In this section, we conduct a simulation study to evaluate the performance of the proposed multiple
imputation method, and compare it with the naive complete-case (CC) method which simply deletes
all incomplete observations.

We choose sample size r = 50, and let each individual has ni = 10 (or ni = 20) repeated
measurements over time. When ni = 10, the measurement times are set to be {0, 1, 2, 3, 5, 9, 18, 35,
50, 70}. When ni = 20, the measurement times are set to be {0, 1, 2, 3, 5, 7, 9, 12, 14, 19, 21, 25, 30,
35, 40, 46, 51, 57, 65, 70}. We choose the models and its parameter values to be similar to that in the
data analysis application presented in next section. That is, we consider the following NLME model

yij = log10
(
eP1i−λ1ijtij + eP2i−λ2itij

)
+ eij , i = 1, 2, ..., r, j = 1, 2, ..., ni, (3.1)

P1i = P1 + b1i, λ1ij = λ1 + βxij + b2i, P2i = P2 + b3i, λ2i = λ2 + b4i, (3.2)

where yij is the response value for patient i at time tij , bi = (b1i, b2i, b3i, b4i)
T are random effects,

and eij is the random error. We assume that eij i.i.d. ∼ N(0, σ2), and bi ∼ N(0, D). The true
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values of the fixed effects are set to be (P1, λ1, β, P2, λ2) = (12, 0.3, 0.1, 7.5, 0.02), and the
covariance matrix for the random effects is set to be

D =


0.636 −1.418× 10−2 0.613 3.736× 10−3

−0.014 6.601× 10−4 −0.024 −3.853× 10−5

0.613 −2.385× 10−2 1.218 1.487× 10−2

0.004 −3.853× 10−5 0.015 5.322× 10−4

 .

The value of σ will have two different values: 0.2 and 0.5.
The values of the time-varying covariate xij are generated from the following LME model:

xij = a1i + a2i × tij + a3i × t2ij + εij , i = 1, 2, ..., r, j = 1, 2, ..., ni, (3.3)

a1i = a1 + α1i, a2i = a2 + α2i, a3i = a3 + α3i, (3.4)

where xij is the measured covariate for patient i at time tij , εi = (εi1, εi2, ..., εini
)T are the mea-

surement errors, a = (a1, a2, a3)
T is the vector of fixed effects, and αi = (α1i, α2i, α3i)

T is the
vector of random effects. We assume that εij i.i.d. ∼ N(0, σ2

1), and αi ∼ N(0, A). The true values
of the fixed effects are set to be a = (1.37, 0.015,−0.00015)T , the value of σ1 is set to be 0.15, and
the covariance matrix for the random effects is set to be

A =

 7.173× 10−2 −1.028× 10−3 6.658× 10−6

−1.028× 10−3 7.147× 10−5 −6.916× 10−7

6.658× 10−6 −6.916× 10−7 7.121× 10−9

 .

The missing data mechanism is assumed to be MAR: we assume that subjects with a smaller increase
in covariate value during the first month will tend to have a larger chance of missing responses. The
rationale is that, in the AIDS study, increasing value of CD4 indicates decreased inflammation.

We evaluate the methods by comparing the bias (in %) and mean square error (MSE) of the
parameter estimates with respect to their true values, as well as the estimated coverage probabilities
of the 95% confidence intervals of the true parameter values. Tables 1 and 2 show the simulation
results for the selected cases. The other cases, including more repeated measurements and larger
within-individual variations, are not presented here since the results are similar. All simulations are
repeated 1000 times. The simulation results show that, compared with the complete case method, the
multiple imputation method tends to estimate most parameters with a lower bias, smaller MSE, and
better coverage rate. The performance of the multiple imputation method improves as the missing
rate is higher, compared to the complete case method. Note that, the parameter λ2 may be unstable
or poorly estimated due to its small true values and large between-individual variations in the later
period.

4 Real Data Example
In an AIDS study designed to evaluate an anti-HIV treatment, 45 HIV infected patients were treated
with an antiviral regimen. Viral load (copies/mL) was repeatedly quantified for each patient in the
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Table 1: Simulation results (ni = 10, missing rate = 20%, σ = 0.2)

True Parameters CC Method MI Method

P1 = 12 Estimate 12.018 12.002

S.E. 0.123 0.124

Bias (%) 0.152 0.017

Coverage 0.940 0.933

MSE 0.015 0.015

λ1 = 0.3 Estimate 0.364 0.336

S.E. 0.073 0.072

Bias (%) 21.197 12.007

Coverage 0.845 0.932

MSE 0.009 0.006

β = 0.1 Estimate 0.058 0.070

S.E. 0.048 0.046

Bias (%) -41.703 -30.496

Coverage 0.831 0.933

MSE 0.004 0.003

P2 = 7.5 Estimate 7.503 7.432

S.E. 0.186 0.194

Bias (%) 0.045 -0.911

Coverage 0.946 0.928

MSE 0.035 0.042

λ2 = 0.02 Estimate 0.020 0.018

S.E. 0.004 0.004

Bias (%) -0.351 -8.010

Coverage 0.945 0.925

MSE 1.558× 10−5 1.979× 10−5

next three months after initiation of the treatment. Immunologic marker known as CD4 cell counts
(cells/µL) was also measured along with viral load. Table 3 contains summary statistics of viral
load measured in the first, second, and third month respectively. The dataset contains missing values
in the viral load measurements, but the CD4 counts are all available. The viral load missing rate is
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approximately 15%. Most of the missing values occur during the third month. Since we do not know
the reason for these missing viral load measurements, it might be inappropriate to assume MCAR,
but a MAR may be more reasonable.

Table 2: Simulation results (ni = 10, missing rate = 40%, σ = 0.2)

True Parameters CC Method MI Method

P1 = 12 Estimate 12.028 12.002

Sample S.E. 0.132 0.135

Bias (%) 0.237 0.019

Coverage 0.936 0.922

MSE 0.018 0.018

λ1 = 0.3 Estimate 0.376 0.301

Sample S.E. 0.100 0.101

Bias (%) 25.433 0.476

Coverage 0.859 0.959

MSE 0.016 0.010

β = 0.1 Estimate 0.053 0.086

Sample S.E. 0.062 0.062

Bias (%) -47.390 -14.193

Coverage 0.852 0.959

MSE 0.006 0.004

P2 = 7.5 Estimate 7.512 7.419

Sample S.E. 0.209 0.229

Bias (%) 0.166 -1.083

Coverage 0.936 0.908

MSE 0.044 0.059

λ2 = 0.02 Estimate 0.020 0.018

Sample S.E. 0.005 0.005

Bias (%) 0.089 -10.809

Coverage 0.936 0.881

MSE 2.160× 10−5 3.010× 10−5

HIV viral dynamic models are useful to describe the virus elimination and production processes
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Table 3: Summary statistics of viral loads (in log10 scale)

n Median Q1-Q3 Missing data (%)

1st month 246 3.998 3.376-4.826 14 (5.69%)

2nd month 56 2.716 2.204-3.255 15 (26.79%)

3rd month 62 2.230 1.699-2.857 25 (40.32%)

Note: n is the number of measurements; Q1 indicates the first quartile, and Q3
indicates the third quartile.

Table 4: Data analysis results

Parameter MI method CC method

Estimate S.E. Estimate S.E.

P1 11.699 0.193 11.740 0.200

P2 7.346 0.265 7.724 0.295

λ1 0.318 0.051 0.311 0.053

λ2 0.016 0.005 0.023 0.006

β 0.007 0.019 0.023 0.021

Note: MI is multiple imputation; CC is complete case; S.E. is
standard error.

during antiviral treatments (Ho et al., 1995; Perelson et al., 1996, 1997; Wu and Ding, 1999). These
models provide good understanding of the parthenogenesis of HIV infection and evaluation of an-
tiretroviral therapies. NLME models have been used in these studies to account for inter-patient and
intra-patient variations in viral load measurements (Wu and Ding, 1999). We consider the following
HIV viral dynamic model (Wu and Ding, 1999). Let yij be the log10-transformed viral load mea-
surement for patient i at time tij . The following NLME model has been shown to model HIV viral
dynamics well:

yij = log10
(
eP1i−λ1ijtij + eP2i−λ2itij

)
+ eij , (4.1)

P1i = P1 + b1i, λ1ij = λ1 + βCD4ij + b2i, (4.2)

P2i = P2 + b3i, λ2i = λ2 + b4i, i = 1, 2, ..., r, j = 1, 2, ..., ni, (4.3)

where bi = (b1i, b2i, b3i, b4i)
T are random effects, and eij is a random error. We assume that eij

i.i.d. ∼ N(0, σ2), bi ∼ N(0, D), and eij and bi are independent. When viral loads yij are used as
time-dependent covariates in a survival model, such as time to viral rebound, the missing viral loads
at event times must be addressed. We consider two methods for comparison: the proposed multiple
imputation method and the naive complete-case method.

Parameter estimates and standard errors obtained using the proposed multiple imputation method
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(a) (b)

(c) (d)

(e)

Figure 1: Parameter estimates in each iteration of the multiple imputation method. Dashed lines
indicate complete-case estimates (starting values).

for missing responses in NLME models and the complete case method are presented in Table 4. In
Figure 1, the parameter estimates of the proposed multiple imputation method are plotted at each
iteration, with the dashed lines indicating the complete-case estimates. It takes 8 iterations for
the parameters to converge: the average absolute change of the five estimated parameters is less
than 0.05 in two consecutive iterations. These results show that the multiple imputation method
estimates all parameters with a smaller standard error compared with the complete case method,
which indicates that the proposed method is more efficient than the complete case method and may
lead to shorter confidence intervals for the parameters. Moreover, the complete case method seems
over-estimating most parameters. Based on the simulation results presented in the last section, the
results in Table 4 based on the multiple imputation method should be more reliable.
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5 Conclusions and Discussion

Although there has been extensive research on missing data problems in the past few decades, re-
search in this area is expected to remain active in the future. This is because missing data problems
are very common in practice, so any new statistical models and methods may need to address miss-
ing data problems in practice. From a practical point of view, multiple imputation methods are
perhaps most useful, while other missing data methods such as the EM algorithms and methods of
weighting have the disadvantage of limited available software and their implementations are often
restricted to specific models. Developments of new multiple imputation methods for models and
methods useful in practice are important for these models and methods to be more widely used by
applied statisticians.

We have proposed a multiple imputation method for missing responses of NLME models where
the imputations are generated at individual levels. In principle, the method may be extended to
missing responses of NLME models where the missing data mechanism may be non-ignorable. In
this case, we may introduce a non-ignorable missing data model in the imputation model to generate
imputations. The method may also be extended to missing data in other mixed effects models such
as missing responses in generalized linear mixed models or mixed effects models with missing time-
dependent covariates.

An advantage of the proposed method is that the imputations are generated at individual levels,
which is desirable if the data exhibit large between-individual variations. Since nonlinear models
are often mechanistic models in the sense that they are derived based on the underlying data gener-
ation mechanism, the proposed method should provide better “predictions” of the missing data than
those based on empirical models such as linear mixed effects or nonparametric mixed effects mod-
els. A limitation of the proposed method is that theoretical properties of the method remain to be
developed. While simulation results show its good performance under certain simulation settings, its
performance in other settings needs to be investigated. Another limitation of the proposed method
is that convergence is not guaranteed.
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