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SUMMARY

Diffusion magnetic resonance imaging (MRI) is a neuroimaging technique for probing the
anatomical structure of tissues through quantification of the water diffusion process. Using
diffusion MRI to reconstruct white matter fiber tracts and assess tissue connectivity, also
known as fiber tracking, is arguably the most important applications of diffusion MRI. Al-
though a number of innovative and compelling techniques are available for fiber tracking,
only a few provide an elegant evaluation of the statistical (spatial) uncertainties. In this pa-
per, we propose spatial modeling of positive definite diffusion tensor matrices via a directed
acyclic graph auto-regressive model and develop an efficient probabilistic fiber tracking al-
gorithm. We illustrate our proposed method via numerical studies and application to a real
dataset.
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1 Introduction

In neuroscience, the central objective is to understand and quantify the interactions and information
transfer between different cortical regions of the human brain (Behrens et al., 2007). Using the
water diffusion process as a proxy, the Diffusion magnetic resonance imaging (dMRI), an in vivo
noninvasive neuroimaging technique, allows for identifying the anatomical connections between
brain tissues. Fiber tracts within the human brain are large axonal bundles with similar directions.
Fiber tractography, a 3D technique to visually represent the underlying white matter fiber tracts, is
one of the most important uses of dMRI, and the only way to study brain structural connectivity.
Mapping white matter fiber tracts is crucial in studies of neuronal networks, brain functionality, and
connectome (Sporns et al., 2005). From the clinical perspective, it may help detect white matter
abnormality related to many neuro-degenerative disease (such as Alzheimer’s disease) and resolve
complex neuronal connections in presurgical planning (Chung et al., 2011).

The dMRI constitutes voxel-wise diffusion weighted signal measurements on a 3D spatial grid
(Bammer et al., 2009). The diffusion directions can be estimated by the models (e.g., single tensor
model) treating diffusion weighted signal measurements as responses collected voxel-wise. Majority
of the current tractography methods (e.g., Wong et al., 2016) mapping white matter fiber tracts
follows a 3 step process. In Step 1, voxel-wise diffusion directions are estimated using diffusion-
weighted signals. In Step 2, the estimated diffusion directions obtained in Step 1 are smoothed over
space. Finally, in Step 3, the smoothed diffusion directions are taken as the inputs of a fiber tracking
algorithm that determines if some voxels construct a fiber.

Although the battery of available methods enjoy useful applications to mapping white matter
fiber tracts, a vast majority considers a deterministic approach, where a single diffusion orientation
(Cheng et al., 2006) of each voxel determines the inference of fiber paths across voxels. However, a
single diffusion orientation per voxel may not adequately characterize voxels with fibers of various
orientations, such as crossing, branching, fanning, or with bottlenecks. Furthermore, deterministic
algorithms can follow false tracts, or stop in regions with isotropic tensors (Descoteaux et al., 2008).
On the contrary, the probabilistic approach presents a more flexible route by modeling multiple
diffusion orientations per voxel, with the tractography based on a probability distribution of the
possible diffusion orientations (Morris et al., 2008; Schlaier et al., 2017).

In light of these, we propose a Bayesian hierarchical approach that allows valid statistical in-
ference for fiber tracking with probabilistic justifications. Our central objective is to improve upon
available spatial smoothing techniques (Wong et al., 2016) for precise estimation of diffusion di-
rections via borrowing of information from neighboring voxels. We assume the logarithm of the
signals follow a normal distribution, where the latent random field of spatially dependent positive
definite (p.d.) matrices induces the spatial smoothness via a directed acyclic graph auto-regressive
(DAGAR) proposal (Datta et al., 2019). We call this method as Spatial Diffusion Direction Smooth-
ing and Tracking, or SpDiST (see Section 2). Under a Bayesian paradigm, we implement Markov
chain Monte Carlo (MCMC) sampling for model fitting. Since the fiber tracking algorithm can be
applied to each MCMC sample, we can infer results in a probabilistic way. For illustration of our
methodology, we use both synthetic and real data. The real data application (Section 3) elucidates
our proposal as a reasonable and valid means for probabilistic fiber tract inspection, where various
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connection patterns could be identified. The numerical study using synthetic data (in Section 4)
shows that our proposal is robust to the signal noises, compared to other alternative methods, such
as the least squares method, and the Diffusion Direction Smoothing and Tracking, or DiST (Wong
et al., 2016). Finally, we conclude with a discussion in Section 5.

2 Method: SpDiST

2.1 Spatial tensor model

In this section, we introduce the spatial tensor model based on the DAGAR proposal for p.d. ma-
trices. The dMRI has m ∈ {1, 2, . . . ,M} measurements at voxel v ∈ {1, 2, . . . , n}, denoted as
Smv ∈ R+. The measurements Smv are used to estimate the diffusion tensor Av for voxel v. Av is
a 3×3 p.d. matrix, interpreted as covariance matrix of a local Brownian motion, indicating the local
tensor direction. The diffusion tensor of the water molecules at voxel v is denoted Av and must be
a positive definite matrix by definition. The goal is to use the measurements Smv to estimate tensor
direction information from Av .

The noiseless signal intensity S̄mv can be expressed in terms of Av (Mori, 2007) as

S̄mv = S0v exp(−bgT
mAvgm).

In this expression, S0v , b, and gm are non-diffusion weighted intensity, scale parameter, and 3 × 1

unit-norm gradient vector, respectively. A detailed explanation of these three quantities can be
found in Soares et al. (2013). Given Av , S̄mv can be interpreted as the probability intensity of
the Gaussian motion when measuring at direction gv . For statistical modeling, S0v , b, and gm can
simply be understood as fixed and known values.

The observations Smv are noisy realizations of S̄mv . Here, we assume that the noise is a multi-
plier to S̄mv , following a lognormal distribution. The corresponding model is

logSmv = logS0v − bgT
mAvgm + ϵmv, ϵmv

iid∼ N (0, σ2), (2.1)

where ϵmv is the noise following a mean-zero normal distribution with the variance σ2.
To induce spatial smoothness, an image is treated as a directed graph whose nodes are voxels

and whose directed edges are from node v to nodes in N(v). Following Datta et al. (2019), we
use the directed acyclic graph (directed, without loops) to construct N(v), leading to a valid joint
density function of [A1,A2, . . . ,An]. In particular, we assume that the conditional mean of Av is
the average of its neighboring tensors, denoted as E[Av|Au, u ∈ N(v)] = |N(v)|−1 ∑

u∈N(v) Au,
where N(v) is a set containing neighboring voxel indices of voxel v, and |N(v)| is the set size.

In a directed acyclic graph, we have at least one voxel v whose N(v) is an empty set. When
N(v) is an empty set, we assume that Av follows a Wishart distribution with mean matrix I and
degrees of freedom k. Otherwise, conditional on Au, u ∈ N(v), we assume Av follows a Wishart
distribution with mean matrix Āv = |N(v)|−1 ∑

u∈N(v) Au and degrees of freedom k. The model
is

Av|Au, u ∈ N(v) ∼ W
(
Āv, k

)
if N(v) is not empty,

Av ∼ W(I, k) if N(v) is empty.
(2.2)
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Figure 1: The construction of a directed acyclic graph based on an undirected graph. The left panel
is the undirected graph of a 5 × 5 image. The right pannel is the corresponding directed acyclic
graph after modifying the edges.

To preserve the designed mean realizations in 2.2, we parameterize the Wishart distribution for
X ∼ W(V , k) to have EX = V . The probability density function is

f(X) =
|X|(k−p−1)/2 e− tr([V/k]−1X)/2

2kp/2 |V/k|k/2 Γp(
k
2 )

,

where, p is the matrix dimension and Γp(
k
2 ) is the multivariate gamma function.

Here, we present an approach to construct a directed acyclic graph. For an image, we construct
an undirected graph whose voxels are nodes, and the neighboring nodes are connected. We order the
voxels by their coordinates. Thus, for a 2D image on a x-y axis, we first order the voxels according to
their coordinates of the y-axis, following which, we order the voxels according to their coordinates
of the x-axis. We modify the undirected edge to a directed edge for each edge of the undirected
graph, which is from the node with a smaller rank to a node with a larger rank. The modified graph
is a directed acyclic graph whose edges connect neighboring voxels. Figure 1 presents an example
describing how a directed acyclic graph for a 5× 5 image is constructed.

For conducting Bayesian inference, we assign priors to the unknown parameters in our model.
Because k is a parameter (degrees of freedom) larger than 3, The value of the degrees of freedom
k follows a uniform distribution, ranging from 3 to 50, denoted as k ∼ U(3, 50). To provide a
conjugate prior, the variance σ2 follow a inverse Gamma distribution with the shape parameter 0.01
and the rate parameter 0.01, denoted as σ−2 ∼ GA(0.01, 0.01).
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2.2 Markov chain Monte Carlo (MCMC) algorithm

We use MCMC techniques for model fitting. The primary challenge in the MCMC algorithm is
to sample from the posterior of Av . Since the prior of Av is not conjugate, we sample it using
single-site Metropolis-Hastings sampling with Wishart distribution W(A′

v|Av, q) as the proposal
distribution. The algorithm is described below:

Candidate Generation: Generate a candidate sample A′
v using A′

v ∼ W(A′
v|Av, q);

Acceptance Rate: Calculate the acceptance rate r(A′
v,Av) =

L(A′
v|·)W(Av|A′

v,q)
L(Av|·)W(A′

v|Av,q)
, where

L(A∗
v|.) ∝

M∏
m=1

N
(
logSmv| logS0v − bgT

mA∗
vgm, σ2

)
×

W(A∗
v|Ā∗

v, q)
∏

u:v∈N(u)

W(Au|Ā∗
u, q),

(2.3)

where Ā∗
u = |N(v)|−1

(∑
u∈N(u)/v Au +A∗

v

)
. W(·|A, ν) and N (·|µ, σ2) are the density

functions of Wishart distribution and normal distribution, respectively.

Decision: Generate u ∼ U(0, 1). If u < r(A′
v,Av), accept A′

v .

The acceptance rate can be tuned via the degrees of freedom q, where smaller q leads to a lower
acceptance rate. We adjust q to make the acceptance rate around 0.4. We use Metropolis-Hastings
algorithm with log-normal random walk proposals to update the degrees of freedom q, and use Gibbs
sampling to update σ2 based on its posterior

[σ−2|·] ∼ GA
(
Mn/2 + 0.01,

∑
m,v

(logSmv − logS0v + bgT
mAvgm)2/2 + 0.01

)
.

2.3 Probabilistic fiber tracking algorithm

We collect the T MCMC samples from the posterior distribution of Av , denoted as {A(t)
v : t =

1, 2, . . . , T}. For each sample, we compute the principal eigenvector of A(t)
v , denoted as m(t)

v . For
each posterior draw, we use m

(t)
v as inputs of a fiber tracking algorithm. In this paper, we use the

Fiber Assignment by Continuous Tracking (FACT) (Mori et al., 1999), following Wong et al. (2016).
The algorithm can be stated as

• Initialization: Set seed voxels;

• Recursive: Starting with voxel u, we search neighboring voxels, and compute the two angles:
δuv = arccos

(
mT

v mu

|mv| |mu|

)
, the angle between the two tensor directions (mu and mu), and

θuv = arccos
(

mT
u lu,v

|mu| |lu,v|

)
, the angle between the current tensor (mu) and between-voxel

direction (lu,v). See Figure 2 for details. We move to the voxels with θ < C and δ < C. If
there are multiple voxels statisfying this condition, we move to all the voxels and treat each
voxel as a current voxel for next iteration.;



152 Lan et al.

Figure 2: Assessing directional consistency of the two relationships: (a) between the principal eigen-
vectors (thick black arrows, angle δ) of the 2 voxels, and (b) between the fiber direction and the vec-
tor connecting the 2 voxels (thick gray arrow, angle θ). The two voxels are not considered connected
(left panel), and exhibit connections (right panel). This figure has been adapted and modified from
Chung et al. (2011, Figure 3).

• Result: Sequences of voxels constructing fibers.

Since we apply the algorithm for each posterior draw, the algorithm returns T possible fiber con-
nections. We summarize K distinct patterns from the outputs. We further calculate the associated
probability for pattern k ∈ {1, 2, . . . ,K}, defined as Tk/T , where Tk is the frequency of the pattern
k. This procedure is known as probabilistic fiber tracking and quantifies the uncertainties of fiber
tracking results.

3 Real Data Application
In this section, we use a real data example (Dryden et al., 2009, Section 6) to demonstrate our
proposed method. In particular, we focus on uncertainty quantification. The real data has 50 × 20

voxels, with M = 15 measurements. We sample 2000 MCMC samples after discarding 3000

samples as burn-in, and thin the MCMC chain by retaining every 100 iterations of the chain.
Since it is more efficient to visualize tensor directions in a 2D environment and the image is 2D,

we focus on the first two dimensions of Av and compute the corresponding principal eigenvector
mv . To quantify the uncertainties of tensor direction estimation in each voxel, we overlay the
MCMC samples on a 50×20 map (Figure 3). We observe that voxels with heterogeneous directions
have large uncertainties. Otherwise, the uncertainties are smaller.

Figure 3 only provides voxel-wise uncertainties. However, the MCMC-based SpDiST also
provides a probabilistic approach to quantifying fiber tracking uncertainties. To have a concise and
representative illustration, we focus on the region in the orange box of Figure 3, and apply the
FACT algorithm as described in Section 2.3. In light of the suggested values of the threshold C



Probabilistic Diffusion Magnetic Resonance Imaging Fiber Tracking . . . 153

Figure 3: Real Data Application, where, for each voxel, the MCMC samples of mv are overlaid on
its location on a 50× 20 map.

Figure 4: Real Data Application, where the consecutive orange arrows construct a fiber in the region
outlined in orange in Figure 3.

(Chung et al., 2011; Wong et al., 2016), we consider C ranging from 18o to 28o. We identify two
distinct patterns (Pattern A and Pattern B; see left and right panels of Figure 4) for C ∈ [18o, 28o]

as dominating the posterior probability of the tract. These two tracts differ only by how far the tract
continues vertically in column 18.

Kang and Li (2016, Section 3) show that the FACT algorithm hinges on the tuning parameter C.
It requires a sensitivity analysis to explore the impact of C. Here, we present a sensitivity analysis.
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Figure 5: The probability of Pattern B (Figure 4) varies with different threshold C. When C is
ranging from 24o to 28o the probability is insensitive to C.

We apply the FACT algorithm with C = 18+ 0.01× s and s = {0, 1, 2, . . . , 1000}. Since there are
only two distinct patterns, we report Pattern B’s probabilities with different thresholds C (Figure 5).
We find that the result is sensitive to the choice of C, unless it is ranging from 24o to 28o.

4 Simulation Study

In this section, we use synthetic diffusion-weighted signals as in Wong et al. (2016, S6) and further
modify them for our simulation study. In total, we have 8 × 7 × 2 voxels where the three dig-
its represent the dimension of x-axis, y-axis, and z-axis, respectively. The underlying tensors and
fibers from the synthetic signals are displayed in Figure 6. A comprehensive description of the data
generation can be found in Wong et al. (2016, S6) (i.e., generating model, parameters, true tensor
directions, etc.). Here, we give a brief description. The fibers are essentially arcs with the center
point at right/left bottom points. Its principal eigenvector mv is tangent to the arc for voxels com-
posing fibers. The noiseless signal in the example data is given as S̄mv = S0v exp[−b(gT

mmv)
2], a

reparameterized model of Model 2.1 (Wong et al., 2016).
To mimic low-quality images with signal noise, we further add noise on the log scale simulated

from a mean-zero normal distribution with standard deviation τ = 0.1, 0.5. Thus, the simulated data
for each replication (r = 1, . . . , 50) is

logS(r)
mv = log S̄mv + E(r)

mv, E(r)
mv ∼ N (0, τ2), (4.1)
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Figure 6: The tensor directions (left panel) and underlying fibers (right panel) from the example data
.

where logS(r)
mv is the simulated signals for each replication (r), logSmv is the logarithm signal from

the example data, and Emv is simulated noise.
We construct N(v) as described before. We use the posterior mean estimate of SpDiST to com-

pare with the estimates of alternatives. We compute posterior mean of Av based on 2000 MCMC
samples, after discarding 3000 samples as burn-in. For comparison, the competing methods are the
DiST (Wong et al., 2016), and a non-spatial method, i.e., the least squares (LS) method (Nietham-
mer et al., 2006). The LS method (Niethammer et al., 2006) is to estimate Av via

argmin
Av

∑
m

∣∣∣∣ logSmv − logS0v − bgT
mAvgm

∣∣∣∣2.
For DiST, the estimates are the principal eigenvectors. For comparison, we compute the principal
eigenvectors of the posterior means of the diffusion tensor (for DiST), and the classical diffusion
tensor estimate (for LS).

To quantify the performance of the three methods, we introduce two metrics. For voxels with
fiber directions, we use Metric 1, defined as

d1(mv, m̂v) = arccos
(
|mT

v m̂v|
)
,

, measuring the acute angle between true tensor direction mv and estimated m̂v . A small d1(mv, m̂v)

indicates that the fiber direction is estimated accurately. We also introduce Metric 2, measuring the
difference between true between-neighbor angle and estimated between-neighbor angle, defined as:

d2(m̂v, m̂u) =
∣∣∣arccos

(
|m̂T

v m̂u|
)
− arccos

(
|mT

v mu|
)∣∣∣,

where u, v are neighbors. A small d2(mv, m̂u) corresponds to an accurate decision, if the two
voxels belong to the same fiber.
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We summarize the results in Table 1, including the mean estimates by averaging over 200 repli-
cations. We observe that SpDiST and DiST have an overall better performance in comparison to
the non-spatial method. From Table 1, SpDiST is more robust to noise, which may motivate a study
on the robustness of tensor direction estimates based on different parameterization. However, the
noise may have little effect on Metric 2, leading to the same fiber tracking results. Although SpDiST
and DiST have similar performances, the MCMC-based SpDiST provides a way to quantify the
uncertainties of fiber tracking, unlike DiST.

Table 1: Summary of simulation results based on Metric 1 and Metric 2. Table entries are the
averaged values of a certain metric, obtained by averaging over replications and voxels, from the fits
of the LS, SpDiST and DiST methods.

Metric Noise (τ ) Least squares SpDiST DiST

d1
0.1 0.09 0.08 0.08

0.5 0.19 0.12 0.17

d2
0.1 0.06 0.06 0.06

0.5 0.23 0.08 0.09

5 Discussion

In this paper, we present a probabilistic dMRI fiber tracking approach using the spatial DAGAR pro-
posal for modeling p.d. tensors. Although our analysis reveals similar performances for the DiST
and SpDiST methods, the SpDiST method powered by MCMC approaches provides an elegant
probabilistic quantification of the fiber tracking results, which may provide potentially important
information to neuroscientists for understanding the anatomical connections in the brain. Further-
more, we also present sensitivity analysis to the tuning parameter C, addressing the issue raised by
Kang and Li (2016).

Like various other modeling approaches in neurostatistics, our proposal also has various lim-
itations. A majority of the current methods focus on developing an image processing tool, but
not on scientifically and statistically valid explanations of the outcomes (Lazar et al., 2016). In
that vein, proposing an appealing (regression) framework that characterizes various factors affect-
ing the outcomes might be critical to advancing the field, and providing more insightful informa-
tion. However, this continues to be challenging, as incorporating covariate information into a fiber
tracking algorithm is not straightforward. Another important issue that persists is crossing fibers,
where, the popular single tensor model (Mori et al., 1999) fails to account for voxels where there
are multiple fibers. Although it is assumed that increasing the resolution of the image may handle
this issue, Schilling et al. (2017) present an unexpected result that increasing the resolution may
not a solution. All these remain as important avenues for future research, which may only fos-
ter with close interdisciplinary collaborations. The codes are available at the GitHub repository is
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https://github.com/ZhouLanNCSU/Probalistic_Fiber_Tracking,
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