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SUMMARY

A clustering methodology for time series data is proposed. The idea has been cropped up
when a subset of gene expression dataset is used to build up the system model by com-
pressing the information through clustering and then by tracing out inherent patterns in
the data. A linear mixed model is considered that accommodates time dependent compo-
nents. The temporal effects are modelled through an autoregressive process that arises in
the dispersion of the random component. The joint distribution of coefficients in the time
dependent quadratic function and the random effects are embedded within a non-parametric
prior (Dirichlet process prior). Such a non-parametric prior induces clustering in the data.
Monte Carlo EM (MCEM) based technique has been considered for estimating the pa-
rameters. The best cluster is selected through some heterogeneity measures. A rigorous
simulation study has been carried out prior to analysis of a gene expression time series
data.
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1 Introduction

Time-series clustering has been of growing interest because of its abound applications in many
areas such as energy, weather, retail, stock, financial, personalized drug design (Pirim et al., 2012)
and cancer sub-type identification (de Souto et al., 2008) using gene expression data. The goal in
such circumstances is to identify the structure in an unlabelled data set by objectively dividing data
points into groups (called ‘clusters’) such that observations within the same cluster tend to be more
similar (according to pre-specified criteria) than those in different clusters (Wu et al., 2008). With the
increasing prevalence of time series data, time series clustering has been gaining much attention over
the past decade to identify previously unknown trends (Aghabozorgi et al., 2015; Begum et al., 2015;
Du et al., 2019; Paparrizos and Gravano, 2015). However, the evaluation of clustering algorithms is
inherently challenging because these statistical algorithms are, by design, exploratory in nature.

Clustering gene expression time series is an application that has attracted a lot of interest. Anal-
ysis of time series clusters is an essential tool in exploring and understanding gene networks, whilst
incorporating knowledge of the time series into the model can improve the method’s ability to dis-
cern clusters. In time series analysis of gene expression data, the aim is to stratify the genes ac-
cording to their differential temporal behaviors. Genes with similar expression patterns may reflect
functional responses of biological relevance. However, these measurements come with intrinsic
noise, which makes their time series clustering a problematic task.

To develop a gene expression model-based time series that accounts for clustering, we propose
a random-effects mixture model coupled with a Dirichlet-process (DP) prior. The random-effects
would capture the high level of noise in the data that arises from several sources. Under the random-
effects model, we use the full data, rather than reducing the data to the means across replicates, which
may not be accurate with this level of noise. Moreover, we do not make many assumptions about the
underlying biological process, which is still mostly unknown. Novel patterns detected this way are
unlikely to be the result of potentially inappropriate assumptions. The advantage of considering a
Dirichlet-process prior enables us to estimate the number of clusters directly from the data. Several
authors (Green and Richardson, 2001; Medvedovic and Sivaganesan, 2002; Medvedovic et al., 2004;
Celeux et al., 2005; Beal and Krishnamurthy, 2006; Fraley and Raftery, 2007; Booth et al., 2008;
Rasmussen et al., 2009; McNicholas and Murphy, 2010; Cooke et al., 2011; Kyung, 2015) have
considered different approaches for model-based clustering on time series data using mixture of
Gaussian distributions.

In this study, we consider a linear mixed model that accommodates subject specific variations
and time dependent components. The temporal effects are modeled with a first-order autoregres-
sive process through the random effects dispersion. The joint distribution of some coefficients and
the random effects of an entire-time series are embedded within a non-parametric prior (Dirichlet
process prior). Such a non-parametric prior induces clustering in the data. Our approach is pseudo-
Bayesian, in the sense that the MCEM based technique has been adopted in model estimation under
the assumption of the DP process (an infinite mixture of Gaussian components) on the random com-
ponent and a quadratic trend component in the mixed model. The best cluster is selected following
a heterogeneity measure as proposed by Dahl (2009).

We use the gene expression study from Mehra et al. (2006) for illustration purpose. Streptomyces
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coelicolor (a bacteria) is the organism of interest in their study. The significance of this bacteria is
that it is used for antibiotic production. In this organism, various genes are involved in antibiotic
production.

Microarray-based transcription profiling performed over time gives the information required to
capture transcription dynamics. It is interesting to find out which of the genes are involved in
antibiotic production. Mehra et al. (2006) performed a k-means clustering technique using Spotfire
to identify the cluster sequence. However, the k-means algorithm ignores the behaviour of genes
over time. Our proposed algorithm using Dirichlet process random-effects estimates the parameters
and detects the cluster sequence, average number of clusters taking into account the dependence
over time.

Another drawback of the k-means clustering is that the number of cluster, ‘c’, is fixed and dif-
ficult to predict. Also, each observation belongs to the cluster with the nearest mean along with
ignoring the time dependency. To overcome these limitations, our proposed model does cluster-
ing with the assumption of the distribution of ‘c’ and utilizes the AR(1) model and quadratic trend
simultaneously for modeling the dependence over time.

The structure of the article is as follows: we motivate our model, starting with a dynamic linear
model and depict a Bayesian non-parametric mixture framework for clustering. Section 2 deals with
the methodology where MCEM based technique has been adopted. Section 3 performs the detailed
simulation study on the proposed algorithm. Section 4 covers the analysis of gene expression data
and its importance. Section 5 discusses the interpretation of the results and conclusions; the paper
ends with Section 5.

2 Model and Methodology

Let yit denote the tth observation from the ith subject where i = 1, 2, . . . , n and t = 1, 2, . . . , T.

The model is expressed as

yit = β0 +

p∑
l=1

βlxlit + fi(t) + γit + εit. (2.1)

The terms in the model are β0: an intercept; βl: a fixed effect associated with the predictor variable
xl, l = 1, 2, . . . , p; fi(t): a quadratic function of time, fi(t) = α1it+ α2it

2; γit: an autoregressive
term, γit = ργit−1 + eit; εit: a random error following N

(
0, σ2

e

)
.

Equation (2.1) can be rewritten in matrix form as,

yi = Xiβ +Zibi + εi; i = 1, 2, . . . , n, (2.2)

where yi = (yi1, yi2, . . . , yiT )
′

T×1; Xi =
[
1T | x1 | · · · | xp

]
T×p+1

, for l = 1, 2, . . . , p,

xl = (xl1, xl2, . . . , xlT )
′
; Zi =

[
Z1i | Z2i

]
T×T+2

, where Z1i =
[
a | a ⊙ a

]
, and Z2i = IT , for

a = (1, 2, . . . , T )
′
; β = (β0, β1, . . . , βp)

′

p+1×1
; bi = (αi,γi)

′

T+2×1
, where αi = (α1i, α2i)

′

2×1

and γi = (γi1, γi2, . . . , γiT )
′

T×1. Here bi ∼ G, where we assume G
d
= DP (ν,G0), and G0 ∼
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NT+2(0,Σb), where DP indicates the Dirichlet process, ν is a positive scaling or precision param-
eter, G0 is a base distribution, and

Σb = diag(Σα,Σγ), where Σα = diag(σ2
1 , σ

2
2), Σγ = σ2

gR

R =
1

(1− ρ2)

[
(ρ|j−i|)ij

]
T×T

, εi =
(
εi1, εi2, . . . , εiT

)′

, εi ∼ N
(
0, σ2

eIT
)

and, σ2
1 , σ

2
2 , σ

2
g are the variance components involved in the covariance matrix of base measure.

According to Maceachern and Müller (1998), we can represent the bi in terms of s, ϕ. Here si is
a latent variable which represents the cluster number of the ith observation. Suppose ki denotes the
number of clusters among b1, b2, . . . , bi−1 and ηih is the number of sh, h < i, such that sh = h, us-
ing the above information, the conditional probabilities si|s1, s2, . . . , si−1, ν can then be explained
as the ith observation, either allocated at the existing hth cluster or the new (ki + 1)th cluster given
s1, s2, . . . , si−1 with probabilities ηih/(ν + i− 1);h = 1, 2, . . . , ki and ν/(ν + i− 1) respectively.

Further, we assume that ϕh represents the distribution of the hth cluster. So, when si = h, bi =

ϕh ∀i = 1, 2, . . . , n;h = 1, 2, . . . , k (k is the number of distinct si). Therefore, the joint distribution
of s, ϕ induces the distribution of b1, b2, . . . , bn through bi = ϕsi .

The precision parameter ν has an important role in clustering the observations. A larger value
of ν specified that more clusters will be formed. The average number of distinct clusters are found
from the relation E(k) =

∑n
i=1 ν/(ν + i− 1) (Charles E. Antoniak, 1986). Also, determines

which yi should be combined together when considered in terms of the distribution of bi. Under
these assumptions, the conditional model takes the form,

yi|ϕ, s ∼ NT

(
Xiβ +Ziϕsi , σ

2
eIT

)
, ϕsi|s ∼ G0. (2.3)

Remark. If replicates were included at each time point then the model would be rewritten as:
Let yitk denote the kth replicate at tth time point of ith subject where i = 1, 2, . . . , n; t =

1, 2, . . . , T and k = 1, 2, . . . , r. The model is expressed in eq. (2.4) as

yitk = β0 +

p∑
l=1

βlxlitk + fi(t) + γitk + εitk. (2.4)

However, xlitk = xlit,∀k and γitk = ργit−1k+eitk, and εitk: a random error following N
(
0, σ2

e

)
.

Equation (2.4) can be rewritten as before in matrix form as

yi = Xiβ +Zibi + εi; i = 1, 2, . . . , n,

where yi = (yi11, . . . , yi1r, . . . , yiT1, . . . , yiTr)
′

rT×1 and for l = 1, 2, . . . , p, xl = (xl1, xl2, . . . ,

xlT )
′
, therefore we have

Xi =
[
1T ⊗ 1r | x1 ⊗ 1r | · · · | xp ⊗ 1r

]
rT×p+1

.

Let a = (1, 2, . . . , T )
′
. Then

Zi =
[
Z1i | Z2i

]
rT×T+2

, Z1i =
[
a⊗ 1r | (a⊙ a)⊗ 1r

]
, Z2i = IT ⊗ 1r.

The rest of the things will remain unaltered.
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2.1 Maximum likelihood estimation

To obtain the estimate of the parameters (β, σ2
e , σ

2
1 , σ

2
2 , σ

2
g , ρ, ν), we maximize the marginal log

likelihood with respect to the parameters. The expression of marginal log likelihood is given below.

l = log

(∑
s

∫
ϕ

f
(
y,ϕ, s; ξ

)
dϕ

)
, (2.5)

where f(y,ϕ, s; ξ) is the the joint distribution of (y,ϕ, s) and can be written as

f(y,ϕ, s; ξ) ∝
( n∏

i=1

f(yi|ϕ, s)f(ϕsi|s)
)
p(s|ν),

where ξ = (β, σ2
e , τ , ν), τ = (σ2

1 , σ
2
2 , σ

2
g , ρ) and p(s|ν) is obtained by multiplying the conditional

probabilities, discussed in Section 2. However, the exact computation of the integral and sum in
eq. (2.5) is intractable. The MCEM algorithm (Dempster et al., 1977) is a popular iterative algorithm
to solve such a problem. However, there remains a difficulty that the joint posterior distribution of
(ϕ, s) involves high dimensional integrals. Next, we illustrate how an MCEM type algorithm can
be used for ML estimation in the Dirichlet process linear mixed model.

2.2 An MCEM-type algorithm

To perform the two steps of the EM algorithm for maximizing the marginal log-likelihood given in
eq. (2.5), we need the following result. The proof of the result is given in Appendix A.1.

Proposition 1. Let y denote the observed data, u denote the unobserved data, θ ∈ Θ denote the
parameter vector, (y,u) is the complete data, l is the marginal log likelihood and lc is the complete
data log likelihood. Then the score function based on marginal log likelihood (S(θ)) is same as
conditional expected value of score function based on complete data log likelihood (Sc(θ)) given
the observed data, i.e.,

S(θ) = Eu|y
(
Sc(θ)

)
.

In our problem, the score function of marginal log likelihood is

∂Q

∂ξ
= Eϕ,s|y,ξ(m)

(
∂lc(ξ;y,ϕ, s)

∂ξ

)
, (2.6)

where lc(ξ;y,ϕ, s) is the complete data log likelihood that can be written as

lc(ξ;y,ϕ, s) = log

( n∏
i=1

f(yi|ϕ, s)f(ϕsi|s)
)
+ log p(s|ν)

=

n∑
i=1

log f(yi|ϕ, s) +
n∑

i=1

log f(ϕsi|s) + log p(s|ν).
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Using eq. (2.3) lc(ξ;y,ϕ, s) can be expressed as,

lc(ξ;y,ϕ, s) =

n∑
i=1

(
− T

2
log σ2

e −
1

2σ2
e

(yi −Xiβ −Ziϕsi)
′
(yi −Xiβ −Ziϕsi)

− 1

2
log |Σb| −

1

2
ϕ

′

siΣ
−1
b ϕsi

)
+ log

(
νk(ν − 1)!

(ν + n− 1)!k!

k∏
h=1

(ηh − 1)!

)
, (2.7)

where ηh is the total number of observations in rth cluster. Now, we calculate the score equations
based on the complete data log likelihood by differentiating eq. (2.7) with respect to parameters.
Specifically,

Sc(ξ) =
(
Sc(β), Sc(σ

2
e), Sc(σ

2
1), Sc(σ

2
2), Sc(σ

2
g), Sc(ρ), Sc(ν)

)
.

(i) The expression for
(
Sc(β), Sc(σ

2
e)
)

is obtained by differentiating
∑n

i=1

(
log f(yi|ϕ, s)

)
with respect to β, σ2

e respectively.

Sc(β) =

n∑
i=1

1

σ2
e

X
′

i

(
yi −Xiβ −Ziϕsi

)
,

Sc(σ
2
e) =

n∑
i=1

(
− T

2σ2
e

+
1

2σ4
e

(
yi −Xiβ −Ziϕsi

)′(
yi −Xiβ −Ziϕsi

))
.

(ii) Expression of Sc(ν) is obtained by differentiating log p(s|ν) with respect to ν.

Sc(ν) =
k

ν
−

n∑
i=1

1

ν + i− 1
.

(iii) The expression for
(
Sc(σ

2
1), Sc(σ

2
2), Sc(σ

2
g), Sc(ρ)

)
is obtained by differentiating∑n

i=1

(
log f(ϕsi|s)

)
with respect to σ2

1 , σ2
2 , σ2

g , ρ respectively.

Sc(σ
2
j ) =

n∑
i=1

(
− 1

2σ2
j

+
1

2σ4
j

ϕ2
si[j]

)
, j = 1, 2,

Sc(σ
2
g) =

n∑
i=1

(
− T

2σ2
g

+
1

2σ4
g

ϕ
′

si[−q]R
−1ϕsi[−q]

)
, q = (1, 2),

Sc(ρ) =

n∑
i=1

(
− 1

2
tr(R−1R∗) +

1

2σ2
g

ϕ
′

si[−q]R
−1R∗R−1ϕsi[−q]

)
, q = (1, 2),

where ϕsi =
(
ϕsi[1], ϕsi[2], . . . , ϕsi[T+2]

)
, ϕsi[−j] contains all elements of ϕsi except the jth

element and R∗ = ∂R
∂ρ .
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2.2.1 Maximization step

In eq. (2.6) analytical evaluation of conditional expectation is difficult, so we consider Monte Carlo
Markov Chain (MCMC) methods to draw random samples from conditional distributions. The ex-
pectations are then approximated by Monte Carlo sums (Section 2.2.2). Furthermore, score equa-
tions are solved iteratively by one step Newton Raphson method to get the updated estimates of the
parameter. For the parameter vector ξ, the updated estimates at (m+ 1)th iteration is given by

ξ(m+1) = ξ(m) + I−1(m) ∂Q

∂ξ

∣∣∣
ξ=ξ(m)

, (2.8)

where information matrix,

I = − ∂2Q

∂ξ∂ξ′ = Eϕ,s|y,ξ(m)

(
− ∂2lc(ξ;y,ϕ, s)

∂ξ∂ξ′

)
.

Computation of elements of I matrix is given in Appendix A.2.

2.2.2 Expectation step

Exact computation of the conditional expectation in eq. (2.6) is difficult, so we use Monte Carlo
method to approximate the expectation. We adopt the ‘no gaps’ algorithm given by Maceachern
and Müller (1998) to generate the observations from the posterior ϕ, s|y. In this algorithm, si is
restricted to cover the set of integers from 1 to k. This algorithm works with both conjugate and
non-conjugate prior.

Following Maceachern and Müller (1998), the conditional posterior distribution of si can be
defined as

Pr
(
si = h|s−i,ϕ,y

)
∝ Pr

(
si = h|s−i,ϕ

)
f
(
yi|ϕsi

)
, (2.9)

where

Pr (si = h|s−i,ϕ) ∝ η−ih, h = 1, . . . , k̄,

Pr
(
si = k̄ + 1|s−i,ϕ

)
∝ ν

(k̄ + 1)
,

where k̄ is the total number of distinct components in s−i and s−i contain all the elements except
sth
i element, moreover s−i = (s1, . . . , si−1, si+1, . . . , sn). η−ih is the total number of observation

in the hth cluster after removing the ith observation or in other words, η−ih is the number of si′ such
that si′ = h for i ̸= i

′
= 1, 2, . . . , n.

The conditional posterior distribution of ϕ can be defined as

f (ϕh|s,y) ∝ g0 (ϕh) ; h = k + 1, . . . , n, (2.10)

f (ϕh|s,y) ∝
( n∏

i=1
{si=h}

f (yi|ϕsi)

)
g0 (ϕsi) ; h = 1, 2, . . . , k, (2.11)
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where g0(.|τ ) is the density function of base distribution G0. As the computation of conditional dis-
tributions (αh|γh, s,y), (γh|αh, s,y) given in eq. (2.12) is straightforward. Therefore, to generate
sample from eq. (2.10), we utilise the Gibbs sampling approach.

αh|s,γh,y ∼ N2

(
µαh

,Ωαh

)
, γh|αh, s,y ∼ NT

(
µγh

,Ωγh

)
, (2.12)

where

µαh
= Ωαh

n∑
i=1

{si=h}

(
σ2
eI

)−1
Z

′

1i

(
yi−Xiβ−Z2iγh

)
, Ωαh

=

[ n∑
i=1

{si=h}

(
σ2
eI

)−1
Z

′

1iZ1i+Σ−1
α

]−1

,

µγh
= Ωγh

n∑
i=1

{si=h}

(
σ2
eI

)−1
Z

′

2i

(
yi−Xiβ−Z1iαh

)
, Ωγh

=

[ n∑
i=1

{si=h}

(
σ2
eI

)−1
Z

′

2iZ2i+Σ−1
γ

]−1

.

Ultimately the process to generate samples from joint posterior distribution ϕ, s|y is given below:

(i) Let the current state of Markov chain consists of s = (s1, s2, . . . , sn) and ϕ = (ϕ1,ϕ2, . . . ,

ϕn).

(ii) For i = 1, 2, . . . , n, ηsi is the number of si′ such that si′ = si, i
′
= 1, 2, . . . , n or ηsi denote

the size of sith cluster.

(a) if ηsi is not a singleton set then re-sample si with probabilities given in eq. (2.9).

(b) if ηsi is a singleton set then leave si unchanged with probability (k − 1)/k. Else we
relabel the cluster sequence s such that si = k and then re-sample si with probabilities
given in eq. (2.9).

(iii) From steps (a) and (b) we get the new sequence say s
′
=

(
s
′

1, s
′

2, . . . , s
′

n

)
. Next we draw a

new value of ϕ say ϕ
′
= (ϕ

′

1,ϕ
′

2, . . . ,ϕ
′

n) from the posterior distribution given in eq. (2.10)
eq. (2.11).

We repeat steps (ii), (iii) until we get a sample of size m0. Finally, let (ϕ(1), s(1)), (ϕ(2), s(2)), . . . ,

(ϕ(m0), s(m0)) be a sample of size m0 from joint posterior distribution of (ϕ, s). Then,

S(ξ) = Eϕ,s|y,ξ(m) (Sc(ξ)) ≈
1

m0

m0∑
m=1

Sc(ξ;ϕ
(m), s(m)),

I = −∂S

∂ξ
≈ 1

m0

m0∑
m=1

(
−∂2lc(ξ;y,ϕ

(m), s(m))

∂ξ∂ξ′

)
.

For example Sβ can be computed as,

Sβ ≈ 1

m0

m0∑
m=1

n∑
i=1

1

σ2
e

X
′

i

(
yi −Xiβ −Ziϕ

(m)
si

)
.

The above E and M− steps are repeated until convergence is achieved.
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2.3 Obtaining the cluster sequence

At each iteration, the Gibbs sampler gives an implicit clustering as ϕ
′
= (ϕ

′

1,ϕ
′

2, . . . ,ϕ
′

n), where
each ϕsi indicates a corresponding yi (step (iii), Section 2.2.2). Following Medvedovic and Siva-
ganesan (2002) and Dahl (2009), for a given cluster sequence we compute the Heterogeneity mea-
sure (HM), i.e.

HM(s1, s2, . . . , sh, . . . , sk) =

k∑
h=1

2

ηh − 1

∑
i<i′∈sh

∣∣∣∣∣∣(yi − yi′ )
∣∣∣∣∣∣2.

We select the optimum cluster sequence to be the one with the minimum value of HM.

3 Simulation Study

In this section we portray a simulation study to asses the performance of the proposed model. For
the simulation we generated a sample of size one hundred from the model

yit = β0 + β1x1it + fi(t) + γit + εit, (3.1)

where for i = 1, 2, . . . , 20, t = 1, 2, 3, yit denotes the tth observation from the ith subject. β0 and
β1 are fixed effects, fi(t) = α1it+ α2it

2; γit = 0.427γit−1 + eit.
In matrix notations,

yi = Xiβ +Zibi + εi; i = 1, 2, . . . , 20, (3.2)

where, for i = 1, 2, . . . , 20, εi ∼ N2(0, 0.48
2I), bi

d
= DP (0.567, G0), G0 ∼ N5(0,Σb), Σb =

diag(0.572, 0.652,Σγ), and

Σγ =

0.5 0.2 0.1

0.2 0.5 0.2

0.1 0.2 0.5

 .

For the ith subject, the predictor variable x1 is generated from a gamma distribution (Gamma(2, 1))

and we assume x1i1 = x1i2 = x1i3. Further, we take the parameter ρ to be 0.427 and consider it
as a known constant throughout. Moreover, Xi and Zi matrices are constructed similarly as for
Section 2 and true parameter values are in the first column of Table 1.

MCEM algorithm (Section 2.2) is used for parameter estimation, and standard errors are ob-
tained from the information matrix. In order to check the convergence of the algorithm, estimated
values of parameters at each M-step iteration are assessed. We have applied our algorithm using
E-step samples of size 1000, 2000, respectively. Figure 1(a,b) depicts the plot of parameter values
against M-step iteration number, Figure 1(c,d) exhibits fluctuation in the parameter values using box
plots for the E-step samples of size 1000, 2000, respectively. Figure 1(a, b) shows that the M-step
typically converges after 20 iterations. Height of the box plots that renders the fluctuating range for
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Table 1: Simulation results based on one hundred samples

Parameter True value Estimate SE Bias Length of CI

β0 0.80 0.86 0.13 0.08 0.49

β1 1.30 1.38 0.04 0.06 0.17

σ2
e 0.23 0.24 0.01 0.02 0.04

σ2
1 0.32 0.32 0.23 0.01 0.91

σ2
2 0.42 0.37 0.28 0.14 1.09

σ2
g 0.43 0.47 0.14 0.08 0.54

parameter values also decreases with an increase in the E-step sample size. Hence, it establishes the
empirical evidence of the stability of our estimates.

The simulations were repeated 100 times. We consider the E-step sample size to be 1000 and to
generate sample from conditional posterior distribution (eq. (2.10), eq. (2.11)) 500 Gibbs samples
were used with a burn-in of 20%. Table 1 shows the average simulation results in terms of parameter
estimates, SEs, relative biases, and lengths of confidence intervals. Absolute average relative bias
was computed as |100−1

∑100
w=1 (β̂uw − βu)/βu|, where β̂uw is the uth component of β̂ for the wth

simulation and βu is the true value.
The results of Table 1 show that all the estimated values and population parameters are close.

The standard errors lie in the interval (0.01, 0.28); the absolute value of relative bias varies from
2% to 14%. Also, the average length of confidence interval < 1.1 for all the parameters. The
estimated value of the precision parameter ν is 0.62 with sample standard deviation of 0.06. Also,
the average number of distinct clusters using estimated ν is 2.8, which is close to the true value 2.6.
Moreover, we also calculated optimal number of clusters using Silhouette method, the average of
optimal clusters is 2.1. This indicates that our procedure for choosing optimal number of clusters is
more accurate.

Further, at the convergence of the EM algorithm, we assess the cluster sequences generated
and obtain the optimum cluster sequence using the method discussed in Section 2.3. We have run
100 simulations with true cluster sequence having two groups and noted down the optimal cluster
sequence in each simulation. The true cluster sequence has 65% of observations in cluster 1, and
the remaining 35% observations are in cluster 2. The estimated cluster sequence has 50%- 65%
observations in group 1, and the remaining are in group 2. Out of one hundred optimum cluster
sequences, we get 60 percent of sequences with two or three as number of clusters. Moreover,
table 2 exhibits the proportion of cluster sequence with 2 or 3 clusters.

In order to compare the proposed method with the model based clustering using ‘mclust’ func-
tion of R. We compute Fowlkes-Mallows (FM) index (Fowlkes and Mallows, 1983), variation of the
information (VI) index (Arabie and Boorman, 1973) and the optimal number of clusters, given in
Table 3. The FM index is used to determine the similarity between two clusterings. The higher value
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Table 2: Proportion of cluster sequence with less than 3 clusters

Remove clusters which has Proportion

only 1 observation 72

less than 2 observations 91

of this index indicates greater similarity between the cluster sequence obtained from mclust and the
true cluster sequence. The VI index is a measure of the distance between two clusterings (partitions
of elements). The results presented in Table 3 shows that our proposed algorithm is more reliable as
compared to Gaussian finite mixture model.

Table 3: Results of FM, VI index and optimal number of clusters

mclust proposed

FM 0.48 0.53

VI 2.01 1.80

no. of clusters 5.19 2.80

Further, to see the performance of the proposed method over kmeans we carried a short simula-
tion study where there is almost zero temporal covariance (i.e., ρ = 0) and also choose small values
for the covariate coefficient. The two methods are compared using optimal number of clusters. We
take true optimal number of clusters as 2.4 and note that the optimal number of clusters using Sil-
houette method and proposed algorithm are 2.2 and 2.7 respectively. Similarly, we can consider
other cases and compare the results.

These behaviours are highly desirable. It encourages using the Dirichlet Process with multivari-
ate normal base distribution for random parameters of a quadratic function and autoregressive model
at the estimation stage. These simulation results establish that an MCEM-type algorithm works well
for finite samples, even for the complex model structure.

We have used R programming to perform all the simulations. The simulation code with spec-
ifications given above takes approximately 7 hours to run one iteration. We have done parallel
computing with 6 cores CPU, however with high performance computing system, running time can
be further reduced.

4 Gene Data Analysis

In Mehra et al. (2006), a whole genome cDNA microarray Streptomyces coelicolor was studied.
The database had 7, 825 genes. From these genes, using a dynamic time warping algorithm 491
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Figure 1: M-step convergence and fluctuations of parameters. The points plotted indicate the fluctuation range
using box plot and convergence of parameters using line graph from 100 M-steps. Plots on the left (a, c)
correspond to the case when E-step sample size is 1000. Plots on the right (b, d) correspond to the case when
E-step sample size is 2000.

kinetically differentially expressed genes were chosen (see Mehra et al., 2006, for details). These
kinetically differentially expressed genes were further classified into two classes the wild type and
∆absA1. We chose our 18 genes from one of these classes of genes by fitting a quadratic trend over
time and an AR(1) model, because our proposed model has quadratic function of time, AR(1) term
in it. Subsequently, 18 genes were chosen which has R2 > 0.65, AIC < 8.

The selected genes were measured over 10, 16, 22, 27 and 37 hours. The level 0 category
of a gene belongs to one of the four categories: secondary metabolism, defined family regulators,
two-component systems, other regulation.

Our goal is to analyse the data using the proposed algorithm (Section 2). We also find the cluster
sequence using the heterogeneity measure based on the distance of observations within a cluster.
Optimum cluster sequence will be useful to know which category genes behave similarly.
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Table 4: Results based on gene data

β0 β1 β2 β3 σ2
e σ2

1 σ2
2 σ2

g ρ ν

Estimate 0.58 -0.73 -0.46 -1.68 0.26 0.42 0.17 0.29 0.005 0.53

S.E. 0.10 0.14 0.19 0.14 0.01 0.24 0.23 0.11 0.23 0.47

We fit the following Dirichlet process linear mixed model:

yit = β0 + β1level02 + β2level03 + β3level04 + β4level05 (4.1)

+ α1it+ α2it
2 + γit + εit,

where for the real data, i = 1(1)18; t = 1(1)5. The level 0 category is assumed to be a fixed effect
and is represented by an indicator variable, γit = ργit−1 + eit; eit and εit are the independent
normal variates with variances σ2

g and σ2
e respectively.

Table 5: Number of observations in each cluster

Cluster no. Cluster size Observation no.

1 6 1, 4, 7, 9, 10, 16

2 3 2, 12, 15

3 1 3

4 8 5, 6, 8, 11, 13, 14, 17, 18

To run the proposed algorithm in the above data set, we assumed the E-step sample size 1000
with a burn-in of 40%. The initial values of fixed effects (β0, β1, β2, β3) are (0.71,−0.73,−0.46,

−1.68), obtained by fitting the simple linear model with fixed effect as level 0 category. The starting
values of variance components and precision parameter (σ2

e , σ2
1 , σ2

2 , σ2
g , ρ, ν) are (0.32, 0.20, 0.03,

0.32, 0.62, 0.50), chosen in such a way that it allows the proposed algorithm to start with small
values. With the above initial values, algorithm converges in 42 iterations. The real data took
about 2 days to give the final output. Table 4 reports the estimated values and standard errors of all
population parameters. The standard errors of all the parameters except the precision parameter ν lie
in the small interval (0.01, 0.23). Table 5 reports the size of cluster and number of observations in
each cluster. Further, we observe that cluster 2 has putative marR-family regulatory protein, putative
AbaA-like regulatory protein and putative tetR-family transcriptional regulator. All the genes are
coding for proteins involved with antibiotic regulations and have been mentioned as putative. Similar
interpretation can be made for other clusters as well. We also ran a k-means clustering algorithm
with 4 centres. The results showed the same cluster sizes for all the four clusters, however the exact
cluster sequences differed.



220 Khetan et al.

Moreover, to check the convergence of the algorithm we asses each M-step iteration likewise to
section 3. Figure 2 shows that the algorithm converges approximately after 42 iterations.

Figure 2: M-step convergence of parameters based on the gene data. It indicates convergence of parameters
using line graph from one hundred M-steps.

5 Concluding Remarks

This paper has proposed the Dirichlet process linear mixed model using a non-parametric Bayesian
approach with MCMC. The Dirichlet process introduces the flexibility and effectiveness in the linear
mixed model set up. An EM type algorithm has been used to reduce the algebraic expressions’
complexity in the estimation procedure. Samples have been generated using a Gibbs sampler, which
is one of the convenient methods of MCMC to compute the expectation step. In the maximization
step, Newton Raphson’s method has been used to update the parameters.

From the above analyses, it may be concluded that the proposed estimation algorithm under the
linear mixed model with a DP prior is highly effective including the time series data and at the same
time it provides good estimates with small standard errors. These results (bias and S.E.) justify the
use of the Dirichlet process in the linear mixed model setup. If we increase the number of samples
in the expectation step, one may find a noticeable increase in the parameter estimates’ efficiencies.
However, the computation time increases due to a large number of samples. Hence, considering the
properties, i.e., bias, standard errors, and confidence interval of the estimates, we can recommend
them for their practical applications in real-life problems.
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A Appendix

A.1 Proof of proposition 1

S(θ) =
∂l

∂θ
=

∂

∂θ
logL =

∂

∂θ
log

∫
u

Lcdu ; L,Lc marginal, complete data likelihood

=
1∫

u
Lcdu

∫
u

∂

∂θ
Lcdu

=
1∫

u
Lcdu

∫
u

Lc
∂

∂θ
logLcdu

=

∫
u

∂

∂θ
logLc

f(y|θ,u)g(u)∫
u
f(y|θ,u)g(u)du

=

∫
u

(
∂lc
∂θ

)
f(u|θ,y)du

= Eu|y

(
∂lc
∂θ

)
= Eu|y (Sc(θ))

A.2 Elements of the information matrix

To find the elements of I matrix we use the following general result from the matrix theory (Searle
et al., 2006).

If M is a square matrix whose elements are functions of a scalar variable x, then

∂ ln |M |
∂x

= tr

(
M−1 ∂M

∂x

)
;

∂M−1

∂x
= −M−1 ∂M

∂x
M−1,

where tr, the trace, denotes the sum of the diagonal elements of a square matrix.
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The Information matrix, Iξ =



Iββ Iβσ2
e

0 0 0 0 0

Iσ2
eβ

Iσ2
eσ

2
e

0 0 0 0 0

0 0 Iσ2
1σ

2
1

0 0 0 0

0 0 0 Iσ2
2σ

2
2

0 0 0

0 0 0 0 Iσ2
gσ

2
g

Iσ2
gρ

0

0 0 0 0 Iρσ2
g

Iρρ 0

0 0 0 0 0 0 Iνν


, where

Iββ = −Eϕ,s|y,ξ(m)

(
∂2lc(ξ;y,ϕ, s)

∂β∂β′

)
= Eϕ,s|y,ξ

( n∑
i=1

1

σ2
e

X
′

iXi

)
,

Iβσ2
e
= −Eϕ,s|y,ξ(m)

(
∂2lc(ξ;y,ϕ, s)

∂β∂σ2
e

)
= Eϕ,s|y,ξ

( n∑
i=1

1

σ4
e

X
′

i (yi −Xiβ −Ziϕsi)

)
,

Iσ2
eσ

2
e
= Eϕ,s|y,ξ(m)

( n∑
i=1

(
− T

2σ4
e

+
1

σ6
e

(yi −Xiβ −Ziϕsi)
′
(yi −Xiβ −Ziϕsi)

))
,

Iνν = Eϕ,s|y,ξ(m)

(
k

ν2
−

n∑
i=1

1

(ν + i− 1)2

)
,

Iσ2
jσ

2
j
= Eϕ,s|y,ξ(m)

( n∑
i=1

(
− 1

2σ4
j

+
1

σ6
j

ϕ2
si[j]

))
, j = 1, 2,

Iσ2
gσ

2
g
= Eϕ,s|y,ξ(m)

( n∑
i=1

(
− T

2σ4
g

+
1

σ6
g

ϕ
′

si[−q]R
−1ϕsi[−q]

))
, q = (1, 2),

Iσ2
gρ

= Eϕ,s|y,ξ(m)

( n∑
i=1

1

σ4
g

ϕ
′

si[−q]R
−1R∗R−1ϕsi[−q]

)
, q = (1, 2),

Iρρ = Eϕ,s|y,ξ(m)

( n∑
i=1

(1
2
tr(R−1R∗∗ −R0R∗)− 1

2σ2
g

ϕ
′

si[−q]R
−1R∗∗R−1ϕsi[−q]

+
1

σ2
g

ϕ
′

si[−q]R
0R∗R−1ϕsi[−q]

))
, q = (1, 2),

where ϕsi = (ϕsi[1], ϕsi[2], . . . , ϕsi[T+2]), ϕsi[−j] contains all elements of ϕsi except the jth ele-
ment, and

R∗ =
∂R

∂ρ
, R∗∗ =

∂2R

∂ρ2
, R0 = R−1R∗R−1.
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expression data,” Computers and Operations Research, 39, 3046–3061.

Rasmussen, C. E., De La Cruz, B. J., Ghahramani, Z., and Wild, D. L. (2009), “Modeling and
visualizing uncertainty in gene expression clusters using dirichlet process mixtures,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 6, 615–628.

Searle, S. R., Casella, G., and McCulloch, C. E. (2006), Variance compoents, vol. 3, Wiley Inter-
science.

Wu, X., Kumar, V., Ross, Q. J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B.,
Yu, P. S., Zhou, Z. H., Steinbach, M., Hand, D. J., and Steinberg, D. (2008), “Top 10 algorithms
in data mining,” Knowledge and Information Systems, 14, 1–37.

Received: February 28, 2021

Accepted: April 22, 2021


	Introduction
	Model and Methodology
	Maximum likelihood estimation
	An MCEM-type algorithm
	Maximization step
	Expectation step

	Obtaining the cluster sequence

	Simulation Study
	Gene Data Analysis
	Concluding Remarks
	Appendix
	Proof of prop1
	Elements of the information matrix


