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SUMMARY

In many medical and scientific settings, the choice of treatment or intervention may be de-
termined by a covariate threshold. For example, elderly men may receive more thorough
diagnosis if their prostate-specific antigen (PSA) level is high. In these cases, the causal
treatment effect is often of great interest, especially when there is a lack of evidence from
randomized clinical trials. From the social science literature, a class of methods known as
regression discontinuity (RD) designs can be used to estimate the treatment effect in this
situation. Under certain assumptions, such an estimand enjoys a causal interpretation. We
show how to estimate causal effects under the regression discontinuity design for censored
data. The proposed estimation procedure employs a class of censoring unbiased transfor-
mations that includes inverse probability censored weighting and doubly robust transfor-
mation schemes. Simulation studies are used to evaluate the finite-sample properties of the
proposed estimator. We also illustrate the proposed method by evaluating the causal effect
of PSA-dependent screening strategies.
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1 Introduction

In observational studies, scientific interest can typically be formulated in terms of causal estimands.
The presence of confounding variables makes their estimation difficult. To perform causal infer-
ence, the analyst typically relies on several assumptions. One important assumption is the “no
unmeasured confounders” assumption, which implies that treatment assignment is independent of
potential outcome given confounders (Rosenbaum and Rubin, 1983). This has also been referred to
as the unconfoundedness assumption. However, this assumption is typically not empirically testable.

Regression discontinuity (RD) designs have been widely used in the social sciences. One ap-
pealing feature of the RD design is that the treatment assignment is either deterministically or prob-
abilistically determined by a continuous variable of interest, termed the forcing variable. For such
a design, the no unmeasured confounders assumption is not required for inferring causality. In the
neighborhood of threshold, we have a so-called “randomization” environment so that it is possible
to deduce causality. The idea is that with lack of manipulation of the threshold, the observed and
unobserved confounders have same distribution in the neighborhood of threshold (Lee, 2008; Lee
and Lemieux, 2010). The study of RD designs was initiated by Thistlethwaite and Campbell (1960)
and has been developed further in many subsequent studies. For example, Hahn et al. (1999, 2001)
proved theoretical results on the identification of RD estimates and asymptotic properties. Ludwig
and Miller (2007) proposed bandwidth selection procedures for local linear regression and applied
it to evaluate the effects of funding on educational programs. To obtain optimal bandwidth, Im-
bens and Kalyanaraman (2012) proposed a selection procedure to provide theoretical basis to select
bandwidth. To address the bias caused by the local linear regression estimates in Hahn et al. (1999,
2001); Calonico et al. (2014) developed bias-corrected nonparametric estimation approaches whose
confidence intervals demonstrate improved coverage relative to those from other RD estimators.

Much of the aforementioned studies dealt with the case of uncensored data. The outcome of
interest often represents the disease risks and is measured as a failure time, which is naturally subject
to right censoring. For example, it remains controversial whether prostate-specific antigen (PSA)-
based screening strategies can meaningfully reduce prostate-cancer specific incidence, which are
both measured as time-to-event data and subject to censoring. In practice, a PSA level ≥ 4.0 mg/nl
is often used as a “magic number” to identify those with a “high risk” of prostate cancer, and often
is often accompanied by a series of additional diagnosis tests to detect if prostate cancer is present.
As introduced earlier, in the absence of randomized clinical trials, RD design provides an ideal
opportunity to answer this question, for example, whether the additional tests prompted by a PSA
level ≥ 4.0 mg/nl can meaningfully improve clinical outcomes. Shoag et al. (2015) attempted to
answer this interesting question using the standard RD design method for binary outcomes, without
fully utilizing the time-to-event information and accounting for right censoring.

There has been limited research in the area of RD designs for censored data. Lesik (2007) used
a proportional hazard model for discrete-time data to investigate the causal effect of developmental
mathematics programs on student retention by examining student retention as time-to-event data.
Recently, Bor et al. (2014); Moscoe et al. (2015) discussed the use of RD designs in medical and
epidemiological studies, and applied their proposed method to estimate the effect of early versus late
treatment initiation for HIV patients on survival. They proposed using hazard-based models to study
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risk of HIV patients on the early versus late treatment initiation from CD4 counts. In this case, the
CD4 count creates discontinuity, and they find that there discontinuity exists on CD4 counts greater
or equal to 200 cells/µL. They estimate the mortality rate from the hazard-based model. However,
the aforementioned methods have not been rigorously studied, either in theory or through numerical
simulations.

A key question in prostate cancer data is “Is there meaningful difference of time to any first
cancer incidence or prostate cancer between PSA level ≥ 4.0 mg/nl and < 4.0 mg/nl?” If there is a
difference, then 4.0 mg/nl can be used for decision-making purposes. However, previous approaches
in the RD design are not appropriate to answer this question because they are either only applicable
to uncensored data or are difficult to examine in terms of differences of time-to-event, which is
directly connected to survival.

Directly applying standard nonparametric RD estimation procedures without accounting for cen-
soring is not appropriate. One way to solve this issue is to use existing RD estimation procedures
with a transformation of the response that behaves in a manner analogous to the uncensored data
case. Fan and Gijbels (1994) propose using local linear regression based on a transformed response
for censored data. Their proposed transformation includes the inverse probability weighted cen-
soring (IPCW) method, which is a commonly used method in the missing data literature to handle
censoring. However, this method is inefficient in that it does not include information of censored ob-
servations in the estimation. Rubin and Van der Laan (2007) overcame this difficulty by proposing
a doubly robust transformation of the response, which requires modeling of failure time distribu-
tion as well as censoring distribution. This approach shows promise compared to IPCW methods
in prognostic modeling (Steingrimsson et al., 2016, 2019), but no studies have shown its efficiency
gains for estimation of parameters in regression modeling with the purpose of inference.

We propose a class of estimation procedures in the RD design for censored data. We prove
mathematical properties of our estimators and examine its performance using numerical studies.
Moreover, we directly model the survival time, so our interpretation regarding survival is direct. We
first find a relevant quantity based on observed data for the outcome and then apply a local linear
regression approach. In Section 2, we review the relevant data structures and discuss approaches of
RD design for uncensored data. Section 3 and 4 describe the extension of RD designs to censored
data as well as laying out the methodology with attendant asymptotic results. In Section 5, simula-
tion studies are presented to evaluate the finite-sample properties of our proposal. In Section 6, we
apply our method to the Prostate, Lung, Colorectal, and Ovarian (PLCO) dataset to test the effect of
treatment assignment by PSA. Some discussion concludes Section 7.

2 Review of RD Design for Uncensored Data

Before discussing the proposed methodology, we first introduce the RD design for uncensored data
using a potential outcome framework. Let (Y (1)

∗ , Y
(0)
∗ ) be the potential outcomes under treatment

and control; we use Z to define treatment. We define W to be a vector of forcing variables; for
simplicity, we consider only one forcing variable W . As the name suggests, the forcing variable
determines the treatment (Imbens and Lemieux, 2008). Since only one of the potential outcomes is
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observable, the observed response is Y∗ = ZY
(1)
∗ +(1−Z)Y

(0)
∗ . The main characteristic of the RD

design is that the treatment assignment Z depends on a function of W , which can be deterministic
or probabilistic. This corresponds to the sharp and fuzzy RD designs, respectively.

One key assumption in RD designs is that there is no gaming of the forcing variable W (Mc-
Crary, 2008). This is checked in practice by empirically plotting the distribution of W and checking
to see that there is no clumping around the cutoff value of interest. When the assumption of no
gaming on the forcing variable holds, we have a “locally randomized” study (Lee and Lemieux,
2010). The logic of this result is as follows. The distribution of the forcing variable given observed
and unobserved confounders is continuous. Then by Bayes’ rule, the joint distribution of observed
and unobserved confounders given the forcing variable is continuous at the cutoff point, which im-
plies that the entire confounder distribution is identical at the neighborhood of the cut off (Lee and
Lemieux, 2010). This “local randomization” is a compelling feature compared to standard ob-
servational studies and allows for establishing causality as in randomized experiments (Bor et al.,
2014).

In the sharp RD design, treatment assignment is decided by a deterministic function of forcing
variable. Let H∗ be a known discontinuous function; for the sharp RD, Z = H∗(W ). The main
causal effect of interest is the average treatment effect at the discontinuity point w0. By design, if
the value of the forcing variable is greater than or equal to the cutoff, E{Y (1)

∗ |W} = E(Y∗|W ).
Similarly, E{Y (0)

∗ |W} = E(Y∗|W ) if the value of the forcing variable is less than the cut-point.
Since our interest focuses on the causal effect at w0, with a continuity assumption for E{Y (1)

∗ |W}
and E{Y (0)

∗ |W}, we can identify limits around the threshold (Bor et al., 2014).

E[Y
(1)
∗ − Y

(0)
∗ |W = w0] = lim

w↓w0

E(Y∗|W = w)− lim
w↑w0

E(Y∗|W = w). (2.1)

In the fuzzy RD design, treatment assignment is a probabilistic function of the forcing variable.
A jump in the probability of treatment assignment exists at the threshold (Imbens and Lemieux,
2008) but it is less than one and depends on the forcing variable. Let q1 and q2 be monotone
functions of the forcing variable. For fuzzy RD designs, the probability of receiving treatment is

P (Z = 1|W ) =

q1(W ) if W < w0,

q2(W ) if W ≥ w0.

By contrast, for sharp RD designs, the probability of receiving treatment given that the forcing
variable is greater than a certain cutoff is one. Hence, the treatment status and treatment assignment
are the same. In fuzzy RD designs,

lim
w↓w0

P (Z = 1|W = w) ̸= lim
w↑w0

P (Z = 1|W = w)

with the difference of limw↓w0
P (Z = 1|W = w) and limw↑w0

P (Z = 1|W = w) not being
equal to one. Hence, for fuzzy RD, the treatment assignment is not equivalent to the treatment
status. One can consider the sharp RD as a special case of the fuzzy RD when limw↓w0

P (Z =

1|W = w) − limw↑w0 P (Z = 1|W = w) = 1. Now expression (2.1) is not the average treatment
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effect in a fuzzy RD design. However, since the forcing variable determines treatment assignment,
it effectively functions as an instrumental variable. By using the arguments in Angrist et al. (1996),
we can obtain the so-called complier average treatment effect. This effect is the main identifiable
causal estimand in the fuzzy RD design and is important in practice because participants in the study
may not comply with the initial treatment assignment. Formally, we have

limw↓w0
E(Y∗|W = w)− limw↑w0

E(Y∗|W = w)

limw↓w0 P (Z|W = w)− limw↑w0 P (Z|W = w)

= E
[
Y

(1)
∗ − Y

(0)
∗ |W = w0, subject is a complier

]
.

In this case, the unconfoundedness assumption is not realistic because people with similar values
of the forcing variable away from the cut-point may receive different treatment. These two subjects
will thus not be comparable (Imbens and Lemieux, 2008).

3 Extension of RD Designs to Censored Data: Data Structure
and Assumptions

As in the uncensored data case, we define (T (1), T (0)) as potential outcomes under treatment and
control assignments, respectively. In survival data, (T (1), T (0)) are potential times to event for the
treatment and control. Without censoring, time to failure T is only observable for either of treatment
and control group, that is, T = ZT (1) + (1 − Z)T (0). Let X = (T,W,Z) be full data. Let C be
time to censoring. We can only observe T̃ = T ∧ C, ∆ = I(T ≤ C). Define O = (T̃ ,∆, Z,W ).
The observable data are Oi = (T̃i,Wi, Zi,∆i), i = 1, . . . , n. We assume that the observed data are
independent and identically distributed. We apply a logarithm transform to the response. Define

Y (1) = log T (1), Y (0) = log T (0), Y = log T, Ỹ = Y ∧ logC,

and Yi and Ỹi are individual realizations of Y and Ỹ , respectively. Usually, the censoring time
is not affected by treatment assignment so that it is reasonable to assume that C(1) = C(0) = C

(Bai et al., 2013), where (C(1), C(0)) are the potential outcomes for censoring under treatment and
control. Let w0 be a cut-point for the forcing variable. We now discuss the necessary assumptions
for identification of causal effects in RD designs with censored data.

1. Participants in the study do not have any ability to manipulate the cutoff.

2. E(Y (1)|W = w) and E(Y (0)|W = w) are continuous in w.

3. (Y (0), Y (1)) and C are independent.

4. Censoring is random, i.e., C ⊥ (W,Z).

5. Defining S(1)(t|w) = P (T (1) > t|W = w) and S(0)(t|w) = P (T (0) > t|W = w),
S(1)(t|w) and S(0)(t|w) are continuous at w for all t. Denote S(t|w) = P (T > t|W = w).

6. Let G(t) = P (C > t). G(t) is continuous for all t.
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7. For the fuzzy RD, P (Z = 1|W = w) is continuous at w except for w = w0 and

lim
w↓w0

P (Z = 1|W = w) ̸= lim
w↑w0

P (Z = 1|W = w).

8. For the fuzzy RD, Z(w∗) is nondecreasing in w∗ at w∗ = w0, where Z(w) is potential
treatment status given point w.

Condition 1 ensures an effectively “randomized environment” in the cutoff. Condition 2 is a smooth-
ness assumption for the mean potential outcome functions around the cutoff point w0. Condition
3 is the typical noninformative censoring assumption in survival analysis. Condition 4 states that
C is independent of W and Z. Conditions 5 and 6 guarantee smoothness for the failure time and
censoring distributions. Condition 7 is a standard assumption for fuzzy RD. Condition 8 states that
potential treatment status is monotonic in the cutoff point (Imbens and Lemieux, 2008). For survival
data, in the sharp RD design, the average causal effect of treatment given the forcing variable is
E(Y (1) − Y (0)|W = w). Under these assumptions,

E{Y (0)|W = w0} = lim
w↑w0

E{Y (0)|Z = 0,W = w0} = lim
w↑w0

E(Y |W = w),

E{Y (1)|W = w0} = lim
w↓w0

E{Y (1)|Z = 1,W = w0} = lim
w↓w0

E(Y |W = w).

Under a sharp RD, the average treatment effect is then

τSRD(w0) = lim
w↓w0

E[Y |W = w]− lim
w↑w0

E[Y |W = w].

For a fuzzy RD, the average treatment effect is

τFRD(w0) =
limw↓w0 E(Y |W = w)− limw↑w0 E(Y |W = w)

limw↓w0
P (Z = 1|W = w)− limw↑w0

P (Z = 1|W = w)
.

We denote τSRD(w0) ≡ τSRD and τFRD(w0) ≡ τFRD.

4 Proposed Methodology

4.1 Censoring unbiased transformations

In sharp RD with uncensored data, we can use nonparametric estimation directly with the response
variable. However, for censored data, it is very difficult to use response directly due to censoring.
In our case, the issue is to find a transformation q∗ based on observed data such that E{q∗(O)} =

E(Y |W ). The transformation is referred to as a censoring unbiased transformation (Fan and Gijbels,
1994; Rubin and van der Laan, 2007; Steingrimsson et al., 2019). One approach is to use an inverse
probability censoring weighted (IPCW) method to obtain E(Y |W ), which is

YIPCW =
∆Y

G(T )
.
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It is easy to show that YIPCW is censoring unbiased transformation. However, this approach requires
the censoring distribution to be correctly specified and yields an inefficient estimator. Rubin and
van der Laan (2007) propose a doubly robust (DR) censoring unbiased transformation for the failure
time. Let

MG(u) = I(T̃ ≤ u,∆ = 0)−
∫ u

0

I(T̃ ≥ s)λG(s)ds,

where λG(s) is true hazard function of G. The form is

YDR =
∆Y

G(T )
+

∫ T̃

0

QY (u|W )

G(u)
dMG(u),

where QY (u,W ) is E{Y |T > u,W}. This DR transformation requires estimation of both censor-
ing and failure time distributions. It is a combination of an IPCW term and a mean zero martingale
transform term. An IPCW term is a special case of DR transformation. This martingale transfor-
mation term utilizes information from censored observations, which yields greater efficiency than
using the IPCW approach. Since it is also a censoring unbiased transformation, it guarantees that
E(YDR(T )|W = w) = E(Y |W = w) for any w (Steingrimsson et al., 2019). Moreover, if either
the censoring distribution or failure time distribution is correctly specified, then the estimator from
DR transformation based on the estimated Q and G is consistent for E(Y |W ). Moreover, if models
for Q and G are both correctly specified, then the resulting estimator from the DR transformation is
the most efficient given class of the estimator of E(Y |W ) (Steingrimsson et al., 2019).

4.2 Asymptotic theory

Using the transformation from Section 4.1 enables us to use uncensored data techniques in the
censored situation by applying the data-dependent transformation to the observed outcome. As can
be seen in the previous section, these transformations depend on either the censoring distribution or
both the censoring and failure time distributions. In this section, we discuss RD-based estimation
procedures of the treatment effect and their asymptotic properties with censored data. The IPCW
and DR transformations using observed data are given by

YIPCW,i(Oi;G) =
∆iYi

G(Ti)
, YDR,i(Oi;G,S) =

∆iYi

G(Ti)
+

∫ T̃i

0

QY (u|Wi;S)

G(u)
dMG,i(u),

where S represents a model for failure time and QY (·|·;S) = E(Y |T ≥ ·|·;S) and

MG,i(u) = I(T̃i ≤ u,∆i = 0)−
∫ u

0

I(T̃i ≥ s)λG(s)ds.

We only focus on the DR transformation. To obtain limits in the sharp and fuzzy RD designs,
parametric methods are not very attractive because modeling and the discontinuity point depend
on the particular parametric distribution. Hahn et al. (2001) demonstrate that a causal effect in
RD designs is nonparametrically estimable. To handle the discontinuity at the cutoff, local linear
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regression method is widely used in RD literature (Hahn et al., 1999; Imbens and Lemieux, 2008).
We now apply Fan and Gijbels (1996) local linear regression method to the transformed response
and Z. Applying kernel smoothing for binary variable is also advocated by many authors (Hahn
et al., 1999; Imbens and Lemieux, 2008; Li and Racine, 2003; Okumura, 2011) . Let K(·) be a
kernel function and h be bandwidth. For fuzzy RD, we consider the following loss functions

UFRD,Y
R,DR (αY

R , β
Y
R ;G,S)

=

n∑
i=1

I(Wi ≥ w0){YDR,i(Oi;G,S)− α
(Y )
R − β

(Y )
R (Wi − w0)}2K

(
Wi − w0

h

)
,

UFRD,Y
L,DR (αY

L , β
Y
L ;G,S)

=

n∑
i=1

I(Wi < w0){YDR,i(Oi;G,S)− α
(Y )
L − β

(Y )
L (Wi − w0)}2K

(
Wi − w0

h

)
,

UFRD,Z
R (αZ

R, β
Z
R)

=

n∑
i=1

I(Wi ≥ w0){Zi − αZ
R − βZ

R(Wi − w0)}2K
(
Wi − w0

h

)
, and

UFRD,Z
L (αZ

L , β
Z
L )

=

n∑
i=1

I(Wi < w0){Zi − αZ
L − βZ

L (Wi − w0)}2K
(
Wi − w0

h

)
. (4.1)

We can similarly define loss functions for the IPCW transformation; denote them by

UFRD,Y
R,IPCW (αY

R , β
Y
R ;G), and UFRD,Y

L,IPCW (αY
L , β

Y
L ;G).

In sharp RD designs, since the treatment assignment is deterministic, the loss functions with trans-
formation responses are only necessary and they are identical to those in fuzzy RD design. To
estimate parameters, we first estimate G and S. Next, we estimate loss functions in (4.1) and we
apply standard least squares with respect to estimated loss functions. After we estimate G and S,
our method is simple.

Let {α̂FRD,Y
R,DR (G,S), β̂FRD,Y

R,DR (G,S), α̂FRD,Y
L,DR (G,S), β̂FRD,Y

L,DR (G,S)} be the estimators us-
ing tthe DR transformation in fuzzy RD design, respectively. Furthermore, we define {α̂FRD,Z

R ,
β̂FRD,Z
R , α̂FRD,Z

L , β̂FRD,Z
L } for the estimators of modeling treatment assignment. We can simi-

larly define estimators for the sharp RD designs; denote them by {α̂SRD,Y
R,DR (G,S), β̂SRD,Y

R,DR (G,S),
α̂SRD,Y
L,DR (G,S), β̂SRD,Y

L,DR (G,S)}. Then we can derive estimators for the fuzzy and sharp RD de-
signs:

τ̂DR
FRD(G,S) =

(
α̂FRD,Y
R,DR (G)− α̂FRD,Y

L,DR (G)
)
/
(
α̂FRD,Z
R − α̂FRD,Z

L

)
, and

τ̂DR
SRD(G,S) =

(
α̂SRD,Y
R,DR (G,S)− α̂SRD,Y

L,DR (G,S)
)
.

Note that we have suppressed dependence on the bandwidth in the definition of these estimators.
We discuss how to estimate bandwidth formally in Section 4.3. In the next set of results, we show
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that under certain conditions, we can prove asymptotic convergence results for the sharp and fuzzy
RD estimators. As can be seen, our estimators depend on G and S. Let G0 and S0 be the true
distributions of failure and censoring times, respectively. Let Ĝ and Ŝ be estimated distributions of
failure and censoring times, respectively. In the estimation, we correctly estimate censoring distri-
bution while we may incorrectly estimate survival distribution. As discussed in the Supplementary
Materials, we assume uniform consistency of Ĝ to G0 and Ŝ to S∗, where S∗ is possibly an incor-
rect model of S. We discuss the estimation of these two distributions in the next subsection. For
these two theoretical results, the IPCW and DR estimators are asymptotically normal with some
bias. Regularity conditions needed for Theorem 1 are the following:

(C1) I1 =

∫ ∞

0

log(u)
G0(u)

G(u−)
dF0(u|w) < ∞.

(C2) For a > 0,

D1(a) =

∫ a

0

S0(u|w)
S(u|w)

dḠ0(u)

G(u−)
< ∞, D2(a) =

∫ a

0

G0(u)S0(u|w)
G(u)S(u|w)

dḠ(u)

G(u−)
< ∞.

(C3) I2 =

∫ ∞

0

log(u)[D1(a−)−D2(a−)]dF (u|w) < ∞.

(C4)
∫ ∞

0

[log(u)]2

G0(u)
dF0(u|w) < ∞.

(C5) D3(a) =

∫ a

0

QY (u,w, S)

{G0(u)}2
dḠ0(u) < ∞ for each a > 0.

(C6) Ĝ is uniformly consistent to G0.

(C7) Ŝ is uniformly consistent to S∗ where S∗ is possibly incorrect model of S.

As Steingrimsson, Diao, and Strawderman (2019) have shown, from conditions (C1)-(C5), we
can prove that

E(YDR(O;G0, S)|W ) = E(YDR(O;G,S0)|W ) = E(YDR(O;G0, S0)|W ) = E(Y |W ) = µ(W ).

This is necessary for proving asymptotic normality of τ̂ IPCW
FRD (Ĝ), τ̂DR

FRD(Ĝ, Ŝ), τ̂ IPCW
SRD (Ĝ), and

τ̂DR
SRD(Ĝ, Ŝ). Let p(w) = E(Z|W = w) and define

µ+(w) = lim
w↓w0

E(Y |W = w), µ−(w) = lim
w↑w0

E(Y |W = w),

p+(w) = lim
w↓w0

P (Z = 1|W = w), p−(w) = lim
w↑w0

P (Z = 1|W = w).
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Now we need conditions similar to those in Hahn et al. (1999). Define

YIPCW (O;G) =
∆Y

G(T )
, Y DR(O;G,S) =

∆Y

G(T )
+

∫ T̃

0

QY (u,W, S)

G(u)
dMG(u),

YIPCW∗(O;G) = YIPCW (O;G)− µ+(w0)− µ′+(w0)(W − w0),

YDR∗(O;G,S) = Y DR(O;G,S)− µ+(w0)− µ′+(w0)(W − w0),

Z∗ = Z − p+(w0)− p′+(w0)(W − w0),

L+
ih = I(Wi ≥ w0)K

(
Wi − w0

h

)
, L−

ih = I(Wi < w0)K

(
Wi − w0

h

)
.

We further define

σ2
DR(w;G,S) = V ar(YDR(O;G,S)|W = w),

σ2+
DR(w0;G,S) = lim

ϵ↓w0

V ar(YDR(O;G,S)|W = w),

σ2−
DR(w0;G,S) = lim

ϵ↑w0

V ar(YDR(O;G,S)|W = w),

ηDR(w;G,S) = Cov(YDR(O;G,S), Z|W = w),

η+DR(w0;G,S) = lim
w↓w0

Cov(YDR(O;G,S), Z|W = w),

η−DR(w0;G,S) = lim
w↑w0

Cov(YDR(O;G,S), Z|W = w).

We can make similar definitions for σ2
IPCW (G,S), σ2+

IPCW (w0;G,S), σ2−
IPCW (w0;G,S),

ηIPCW (w0;G,S), η+IPCW (w0;G,S) and η−IPCW (w0;G,S). Define the matrices

Xh =



1
W1 − w0

h

1
W2 − w0

h
...

...

1
Wn − w0

h


,

and

W
+
h =



I(W1 ≥ w0)K

(
W1 − w0

h

)
0 0 . . . 0

0 I(W2 ≥ w0)K

(
Wi − w0

h

)
0 . . . 0

...
...

...
. . . 0

0 0 . . . 0 I(Wn ≥ w0)K

(
Wi − w0

h

)


.

For our first theorem, we need the following standard assumptions from the RD estimation liter-
ature.

(R1) For W ̸= w0, let µ(w) and p(w) be twice continuously differentiable functions. Let µ′(w)

and µ′′(w) be the first and second derivatives of µ(w) and similarly for p′(w) and p′′(w). Let



Analysis of Regression Discontinuity Designs. . . 235

µ′+(w) and µ′′+(w) be the first and second derivatives of µ+(w), and p′+(w) and p′′+(w) are
the first and second derivatives of p(w). Define µ′−(w) and µ′′−(w) to be the first and second
derivative of µ−(w) and p′−(w) and p′′−(w) are first and second derivative of p−(w). Assume
there exists B > 0 such that |µ+(w)|, |µ′+(w)|, |µ′′+(w)| and |p+(w)|, |p′+(w)|, |p′′+(w)|
are uniformly bounded on (w0, w0 + B]. Similarly, |µ−(w)|, |µ′−(w)|, |µ′′−(w)| and
|p+(w)|, |p′+(w)|, |p′′+(w)| are uniformly bounded on [w0 −B,w0).

(R2) Assume that µ+(w0), µ′+(w0), µ′′+(w0), µ−(w0), µ′−(w0), µ′′−(w0), p+(w0), p′+(w0),
p′′+(w0), p−(w0), p′−(w0) and p′′−(w0) are finite.

(R3) Let g(w) be the common density of Wi. Assume that g(w) is continuous and bounded away
from zero in a neighborhood of w0.

(R4) σ2
IPCW (w;G0), σ2

DR(w;G0, S
∗) and ηIPCW (w;G0), ηDR(w;G0, S

∗) are uniformly
bounded in a neighborhood of w0.

(R5) Assume that σ2+
IPCW (w0;G0), σ2+

DR(w0;G0, S
∗), σ2−

IPCW (w0;G0), σ2−
DR(w0;G0, S

∗) and
η+IPCW (w0;G0), η+DR(w0;G0, S

∗), η−IPCW (w0;G0), η−DR(w0;G0, S
∗) are finite.

(R6) lim
Wi↑w0

E

[
|YIPCW,i(Oi;G0) − µ(Wi)|r

∣∣∣∣Wi

]
and lim

Wi↑w0

E

[
|YDR,i(Oi;G0, S

∗) −

µ(Wi)|r
∣∣∣∣Wi

]
, r = 1, 2, 3 are finite. We assume similarly when Wi ↓ w0.

(R7) K is continuous and symmetric. Moreover, support of K is compact and for any u, K(u) ≥ 0.

(R8) The bandwidth satisfies h ∼ n−1/5 where ∼ indicates “asymptotically equivalent”.

(R9) Let Vn = op(1). Then

E

[(
Wi − w0

h

)j1

(L+
ih)

j2Vn

]
= O(1); j1 = 0, . . . , 6, j2 = 1, 2, 3.

Now we show our main result.

Theorem 1. Assume that conditions (C1)-(C5), (R1)-(R9) hold. By Lemma 1-6 in the Supplementary
Materials,

n2/5(τ̂ IPCW
FRD (Ĝ)− τFRD − φFRD)

d−→ N(0,ΣIPCW
FRD (G0)),

n2/5(τ̂DR
FRD(Ĝ, Ŝ)− τFRD − φFRD)

d−→ N(0,ΣDR
FRD(G0, S

∗)),

where φFRD, ΣIPCW
FRD (G) and ΣDR

FRD(G,S) are defined in the Supplementary Materials.

For the sharp RD case, the result follows easily from Theorem 1 because there is no need to
model Z|W for fuzzy RD.
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Corollary 4.1. Suppose that conditions (C1)-(C5) and (R1)-(R9) hold. By Lemma 1-6 and Theorem
1 therein,

n2/5(τ̂ IPCW
SRD (Ĝ)− τSRD − φSRD)

d−→ N(0,ΣIPCW
SRD (G0)),

n2/5(τ̂DR
SRD(Ĝ, Ŝ)− τSRD − φSRD)

d−→ N(0,ΣDR
SRD(G0, S

∗)),

where φSRD, ΣIPCW
SRD (G) and ΣDR

SRD(G,S) are defined in the Supplementary Materials.

Now we demonstrate an efficiency result similar to that given in Steingrimsson et al. (2019) for
a separate problem. For the sharp RD estimator, due to the “local randomization” result, the DR
estimator with true censoring and failure time distributions is a more efficient estimator than the
estimators with IPCW and DR transformations, which only involve true censoring distribution. We
formally state these in the theorem below:

Theorem 2. Suppose that conditions (C1)-(C5) and (R1)-(R9) in the Supplementary Materials hold.
Let AV ar denote asymptotic variance. Then for the sharp RD estimator,

AV ar
(
τ̂DR
SRD(G0, S0)

)
≤ min

{
AV ar

(
τ̂ IPCW
SRD (G0)

)
, AV ar

(
τ̂DR
SRD(G0, S)

)}
.

4.3 Bandwidth selection

Once we estimate the censoring unbiased transformation with respect to failure time, we can then
apply the existing methodology for RD designs with censored data. The estimated transformation is

ŶIPCW,i(Oi; Ĝ) =
∆iỸi

Ĝ(T̃i)
,

ŶDR,i(Oi; Ĝ, Ŝ) =
∆iỸi

Ĝ(T̃i)
+

∫ T̃i

0

Q̂Y (u|Wi; Ŝ)

Ĝ(u)
dM̂G,i(u),

where Q̂Y (·|·; Ŝ) is an estimator of QY (·|·;S) and

M̂G,i(u|Wi) = I(T̃i ≤ u,∆i = 0)−
∫ u

0

I(T̃i ≥ s)dΛ̂G(s),

and Λ̂G(·) is a Nelson-Aalen estimator for G. Details of computation of Ĝ and Q̂Y (·|·; Ŝ) are
provided in the Supplementary Materials.

In standard nonparametric regression, one important issue is bandwidth selection. Ludwig and
Miller (2007) propose a mean squared error (MSE) type cross-validation criterion. Let âL(W, ξ, L)

be the ξ quantile of the empirical distribution of W using observations Wi < w0 and let âR(W, 1−ξ)

be the 1− ξ quantile of the empirical distribution of W using observations Wi ≥ w0. Moreover, let
α̂
(Y )
L and α̂

(Y )
R be estimated parameters for αL and αR. Criterion from Ludwig and Miller (2007)

for uncensored data is

1

n

∑
âL(W,ξ)≤Wi≤âR(W,1−ξ)

(
Yi − γ̂(Wi)

)2

,
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where

γ̂(w) =

α̂L(w) if w < w0,

α̂R(w) if w ≥ w0.

This criterion still works for the unbiased censoring transformation because it uses an MSE-type
criterion and does not depend on the variance of Y . We now modify the proposal of Ludwig and
Miller (2007) (LM) for censored data. For the sharp RD estimator, we consider

(α̂Y
R(w; Ĝ, Ŝ), β̂Y

R (w; Ĝ, Ŝ))

= argmin

n∑
i=1

I(Wi ≥ w)
{
YDR,i(Oi; Ĝ, Ŝ)− αY

R − βY
R (Wi − w)

}2

K

(
Wi − w0

h

)
,

(α̂Y
L (w; Ĝ, Ŝ), β̂Y

L (w; Ĝ, Ŝ))

= argmin

n∑
i=1

I(Wi < w)
{
YDR,i(Oi; Ĝ, Ŝ)− αY

L − βY
L (Wi − w)

}2

K

(
Wi − w0

h

)
.

The LM criterion for sharp RD estimator in censored data is then given by

CVYDR
(h; Ĝ, Ŝ) =

1

n

∑
âL(W,ξ)≤Wi≤âR(W,1−ξ)

(
ŶDR,i(Oi; Ĝ, Ŝ)− γ̂Y

DR(Wi)
)2

,

where

γ̂Y
DR(w) =

α̂Y
L,DR(w; Ĝ, Ŝ) if w < w0,

α̂Y
R,DR(w; Ĝ, Ŝ) if w ≥ w0.

We then choose ĥDR(Ĝ, Ŝ) = argmin
h

CVYDR
(h; Ĝ, Ŝ). We can derive a similar quantity for

ŶIPCW,i(Oi; Ĝ), i = 1, . . . , n. For the fuzzy RD estimator, we define

(α̂Z
R(w), β̂

Z
R(w)) = argmin

αZ
R,βZ

R

n∑
i=1

I(Wi ≥ w)
{
Zi − αZ

R − βZ
R(Wi − w)

}2

K

(
Wi − w

h

)
,

(α̂Z
L(w), β̂

Z
L (w)) = argmin

αZ
L ,βZ

L

n∑
i=1

I(Wi < w)
{
Zi − αZ

L − βZ
L (Wi − w)

}2

K

(
Wi − w

h

)
.

We then obtain

CVZ(h) =
1

n

∑
âL(W,ξ)≤Wi≤âR(W,1−ξ)

(
Zi − γ̂Z(Wi)

)2

,

where

γ̂Z(w) =

α̂Z
L(w) if w < w0,

α̂Z
R(w) if w ≥ w0.
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We then obtain ĥZ = argmin
h

CVZ(h). A smaller bandwidth is preferable to reduce the bias of

the estimator. Hence for the fuzzy RD estimator, we consider min{ĥIPCW (Ĝ), ĥZ} (IPCW) and
min{ĥDR(Ĝ, Ŝ), ĥZ} (DR).

4.4 Variance estimation

With the estimation of the censoring and failure time distributions and bandwidth selection, we
obtain (

α̂FRD,Y

R,DR,ĥ
(Ĝ, Ŝ), β̂Y

R,DR,ĥ
(Ĝ, Ŝ)

)
= argmin

αY
R ,βY

R

UFRD,Y

R,DR,ĥ

(
αY
R , β

Y
R ; Ĝ, Ŝ

)
,(

α̂FRD,Y

L,DR,ĥ
(Ĝ, Ŝ), β̂Y

L,DR,ĥ
(Ĝ, Ŝ)

)
= argmin

αY
L ,βY

L

UFRD,Y

L,DR,ĥ

(
αY
L , β

Y
L ; Ĝ, Ŝ

)
,(

α̂FRD,Z

R,ĥ
, β̂FRD,Z

R,ĥ

)
= argmin

αZ
R,βZ

R

UFRD,Z

R,ĥ

(
αZ
R, β

Z
R

)
,

(
α̂Z
L , β̂

Z
L

)
= argmin

αZ
L ,βZ

L

UFRD,Z

L,ĥ

(
αZ
L , β

Z
L

)
,

where UFRD,Y

R,DR,ĥ
and UFRD,Z

R,ĥ
correspond to UFRD,Y

R,DR and UFRD,Z
R with an estimated bandwidth,

respectively. Estimation functions with IPCW transformation can be similarly defined. In addtion
to fuzzy RD estimators, estimators for sharp RD designs can also be similarly defined. Hence the
proposed fuzzy RD and sharp RD estimators based on Ĝ and Ŝ are

τ̂DR
FRD,ĥ

(Ĝ, Ŝ) =
(
α̂FRD,Y

R,DR,ĥ
(Ĝ, Ŝ)− α̂FRD,Y

L,DR,ĥ
(Ĝ, Ŝ)

)
/
(
α̂Z
R,ĥ

− α̂Z
L,ĥ

)
, and

τ̂DR
SRD,ĥ

(Ĝ, Ŝ) =
(
α̂SRD,Y

R,DR,ĥ
(Ĝ, Ŝ)− α̂SRD,Y

L,DR,ĥ
(Ĝ, Ŝ)

)
,

where {α̂SRD,Y

R,DR,ĥ
(Ĝ, Ŝ), α̂SRD,Y

L,DR,ĥ
(Ĝ, Ŝ)} are sharp RD estimators with estimated bandwidth from

DR transformation. For variance estimation, one may use the methods based on the asymptotic
results in Section 4.2. Let e1 = (1, 0)T and a(u) = (1, u)T . Define g(·) to common density of Wi.
Using the expressions in the Supplementary Materials, the asymptotic variance of τ̂DR

SRD(Ĝ, Ŝ) can
be expressed as

1

n
eT1

(
Γ−1
h+ϕY Y+,DRΓ

−1
h+ + Γ−1

h−ϕY Y−,DRΓ
−1
h−

)
e1,

where Γh+, Γh−, ϕY Y+,DR, ϕY Y−,DR are defined in the Supplementary Materials. The first
approach is to use plug-in residuals for the sandwich variance estimator. The idea of the plugged-in
residuals is to compute residuals from transformed DR response and the causal estimate, and next
estimate ϕY Y+,DR and ϕY Y−,DR with residuals, and finally estimate Γ−1

h+ and Γ−1
h−.

The second approach is to use a nonparametric nearest neighbor (NN) variance estimator as in
Calonico et al. (2014). In this method, we choose observations and compute “local residuals” close
to forcing variable in each i and estimate ϕY Y+,DR and ϕY Y−,DR with these “local residuals”,
and finally estimate Γ−1

h+ and Γ−1
h−. This procedure gives more weight on the observation close to

forcing variable in each i. This approach is advantageous in that it does not require nonparametric
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smoothing and is robust (Abadie and Imbens, 2006). The nonparametric bootstrap is another method
we consider for standard error estimation.

For implementation of our method, we can use existing software for uncensored data. The R
package rdboust (Calonico et al., 2015b) is a powerful tool to perform statistical inference for RD
designs. To implement the proposed methods, one can simply transform the response by methods
in Section 4.3. Then with the transformed quantities as a new response, we can estimate regression
coefficients along with standard errors.

5 Simulation Results

We performed simulation studies to evaluate the finite-sample properties of our proposed estima-
tors. The forcing variable W is generated as a Unif(0, 1) random variable. The error variable is
generated as ϵ ∼ N(0, 0.5). Regression coefficients are set to be β10 = 2, β20 = 1, and β30 = 1.
The response is generated from the following model:

T = exp(β10 + β20W + β30I(W ≥ 0.5) + ϵ).

Censoring is generated as a Unif(0, 50) random variable that is independent of T and W . Three
models for the conditional expectation were considered in the simulation study: Cox, Log-normal,
and Log-Logistic models. We use the Kaplan-Meier estimator to estimate G. To ensure positivity
of Ĝ, we truncate T̃ by ω where ω is the 95th percentile of observed time for estimation of G (Ste-
ingrimsson et al., 2016). The censoring distribution is estimated using the Kaplan-Meier estimator.
Sample sizes are n = 200 and n = 400. The number of bootstraps within each simulation is 50. To
select the bandwidth by cross-validation, it is important to select ξ based on the range of dataset. The
value of ξ is 0.5. The amount of observed censoring is approximately 51% across the simulations.
The kernel function is a triangular function, which is

K(u) = 1− |u|.

Table 1 shows finite-sample properties of the estimator τ̂SRD. In the columns denoting standard
error calculation and coverage, NN, Plug-in, and Boot denote the nearest neighborhood, plug-in
residual, and bootstrap approaches, respectively. For coverage, all the calculations are based on the
normal approximation. The IPCW approach is more biased than the DR approach. Except for the
bootstrap, in general, the coverage of the estimators satisfies the 95% nominal level. The efficiency
gain of the DR approach compared to the IPCW approach is noticeable. The performances of the DR
approaches across the conditional expectations are very stable. The results from the DR approach
confirm the augmentation theory results from Tsiatis (2007).

In the next set of simulation studies, we consider the fuzzy RD based on a modification of the
simulation setting in Yang (2013). We generate W ∼ Unif(−1, 1), and let V = I(W ≥ 0). Next,
we generate κ ∼ N(0, 0.25) and independent of all these aforementioned variables. The treatment
variable is then defined as Z = I(−0.5 + V + W + κ > 0). We then generate ϵ ∼ N(0, 0.25),
which is independent of aforementioned variables. Failure time is defined as T = exp(β10+β20W+
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β30Z+ϵ), where regression coefficients are set to be β10 = 2, β20 = 1, and β30 = 1. The censoring
variable is generated as Unif(0, 50). The average censoring rate is approximately 39%. In this
case, the denominator for the true value is calculated as

lim
w↓0

P (Z = 1|W = w) = P (κ > −0.5) = 1− P (κ ≤ −0.5) = 1− Φ(−2),

lim
w↑0

P (Z = 1|W = w) = P (κ > 0.5) = 1− P (κ ≤ 0.5) = 1− Φ(2),

where Φ is an inverse function of the standard normal cumulative distribution function. Hence, the
denominator should be Φ(2)− Φ(−2). For the numerator,

lim
w↓0

E{log(T )|W = w} = β10 + β20 × 0 + lim
w↓0

P (Z = 1|W = w),

lim
w↑0

E{log(T )|W = w} = β10 + β20 × 0 + lim
w↑0

P (Z = 1|W = w).

Hence, the numerator and denominator are equal so that the average treatment effect for those who
comply with the treatment assignment is 1. We use the same conditional expectation methods as in
the sharp RD case. Table 2 presents the numerical results for sample sizes n = 250 and n = 500.
For all approaches, the bias is greater than those reported in Table 1. This makes sense because
the estimator in fuzzy RD has a denominator that requires estimation via a nonparametric method,
which introduces bias. As with the sharp RD situation, the DR method shows good performance
regardless of the choice of conditional expectation. The IPCW method has a larger bias than the DR
methods. The coverage probability tends to perform better in larger sample sizes.

Table 1: Numerical results when sample size n = 200 and n = 400 in sharp RD. EPD : empirical
standard deviation, SE: mean of standard error, Cover : 95% coverage rate, NN : nearest neighbor-
hood approach, Plug-in : plug-in residuals approach, Boot : bootstrap

SE Cover

n Bias EPD NN Plug-in Boot NN Plug-in Boot

200 IPCW 0.074 1.671 1.422 1.390 1.542 0.900 0.894 0.930

Cox -0.004 0.122 0.123 0.119 0.121 0.942 0.944 0.946

Log-norm -0.008 0.136 0.136 0.132 0.136 0.946 0.944 0.948

Log-log -0.008 0.137 0.136 0.132 0.139 0.942 0.942 0.950

400 IPCW 0.091 1.066 1.008 0.995 1.084 0.930 0.930 0.956

Cox -0.003 0.093 0.086 0.085 0.085 0.940 0.932 0.934

Log-norm -0.004 0.101 0.095 0.093 0.095 0.922 0.920 0.930

Log-log -0.004 0.104 0.096 0.094 0.097 0.920 0.924 0.932
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Table 2: Numerical results for mean response when sample size n = 250 and n = 500 in fuzzy
RD. EPD: empirical standard deviation, SE: mean of standard error, Cover: 95% coverage rate, NN:
nearest neighborhood approach, Plug-in: plug-in residuals approach, Boot: bootstrap

SE Cover

n Bias EPD NN Plug-in Boot NN Plug-in Boot

250 IPCW 0.054 1.570 1.270 1.146 1.269 0.905 0.875 0.895

Cox 0.011 0.237 0.204 0.179 0.210 0.909 0.879 0.895

Log-norm 0.014 0.249 0.214 0.188 0.219 0.918 0.879 0.901

Log-log 0.013 0.249 0.214 0.188 0.219 0.920 0.879 0.903

500 IPCW 0.139 1.045 0.919 0.834 1.155 0.928 0.913 0.950

Cox 0.021 0.186 0.144 0.130 0.182 0.915 0.909 0.962

Log-norm 0.025 0.191 0.151 0.137 0.189 0.934 0.924 0.956

Log-log 0.025 0.191 0.151 0.136 0.189 0.932 0.920 0.954

Based on simulation studies, the DR method is recommended as compared to the IPCW method.
In practice, since calculations using the AFT model are easier than Cox model and due to theoretical
advantages of using a parametric model (as shown in the Supplementary Materials), the AFT model
is recommended for the conditional expectation calculation. The choice of error distribution in the
AFT model does not appear to make a noticeable difference to the estimation.

6 Real Data Analysis
We now apply the proposed methodology to evaluate whether PSA-based screening strategies have
a meaningfully impact on prostate-cancer incidence, as well as first cancer incidence of any type
as time-to-event data. The PLCO cancer screening trial (Andriole et al., 2009; Shoag et al., 2015)
randomized 76,678 men to receive either annual PSA screening for 6 years or no annual screening.
Among those who received annual PSA screening from 1993 to 2001, those with a PSA of 4.0 ng/ml
at any time were recommended for further workup and biopsy, for example, PSA-based screening
strategy, for prostate cancer diagnosis. In the context of the RD design, this practice naturally
creates a sharp RD design when treating PSA as the forcing variable. We therefore evaluated the
role of additional workup and biopsy, as prompted by a PSA cutoff of 4.0 ng/ml, in cancer incidence
occurred at the first (the first cancer incidence) and for prostate cancer (prostate cancer incidence).
To simplify our discussions, we focus on the role of PSA-based screening at the time of study entry
among those who were not previously tested for PSA. While the role of PSA-based screening among
those who had been exposed to PSA may be also of interest, its analysis involves methodology that
is still being developed and is not discussed here.
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Table 4: Exact matching with Digital Rectal Examination (DRE) result, ethnicity, Hispanic, marital
status, existence of enlarged prostate or benign prostatic hypertrophy (BPH).

PSA First cancer incidence Prostate cancer incidence

Est Std.err p-value Est Std.err p-value

0-15 (n = 32814) -0.077 0.207 0.708 -0.082 0.286 0.775

0-25 (n = 32950) -0.056 0.201 0.779 -0.07 0.292 0.810

0-50 (n = 32987) -0.017 0.174 0.922 -0.08 0.322 0.803

0-100 (n = 33000) -0.019 0.185 0.919 -0.093 0.358 0.796

All (n = 33014) -0.025 0.228 0.912 -0.028 0.434 0.949

Although the local randomization property holds for RD design, this property assumes that treat-
ment assignment is independent of other covariates. To alleviate the potential concerns due to the
associations between PSA-based screening strategy and covariates at study entry, we take a view
that is conceptually similar to a double propensity score matching approach (Austin, 2017). In ad-
dition to RD design, we also conduct a propensity score matching with Digital Rectal Examination
(DRE) result, ethnicity, Hispanic, marital status, existence of enlarged prostate, or benign prostatic
hypertrophy (BPH) at the baseline.

After matching, there were 33,014 men, including 2628 with PSA level greater than 4.0 ng/ml
and 30,386 with PSA level less than or equal to 4.0 ng/ml at study entry. The range of PSA by 2.5%
and 97.5% quantiles is 0.24 and 6.88, respectively. Table 3 presents descriptive statistics for the final
dataset. In this sample, censoring rates for the first cancer incidence and prostate cancer incidence
are 75.9% and 87.6%, respectively.

We select the DR approach with conditional expectation method on the parametric AFT log-
normal model. Since the distribution of PSA is highly right-skewed, we investigate treatment effect
in various ranges of PSA. Table 4 reports results from sharp RD. We use the nearest neighbor (NN)
approach for calculation of standard error. Based on Table 4, there is no significant screening effect
from baseline PSA threshold level 4.0 mg/nL for either the first cancer incidence or prostate cancer-
specific incidences. The screening effects with a cutoff of 4.0 mg/nL for the first and prostate
cancer incidence are slightly negative, which implies that screening slightly decreases time to cancer
diagnosis (either prostate cancer only or any cancer) although the effect is not statistically significant.

We also create data-driven RD plots (Calonico et al., 2015a); the results are shown in Figure
1 and 2. These data-driven plots approximate regression functions by local sample means with
evenly- or quantile-spaced bins. These plots also reflect the variability in the data (Calonico et al.,
2015b). We use 40 bins on each side of the cutoff. These plots are useful to capture the variability
of the transformed response with cutoffs and to check causal effect graphically. These four plots
also indicate no treatment effect using a baseline PSA threshold level of 4.0 mg/nL and they show
decreasing trend of transformed time of logarithm of failure time across PSA level. Our qualitative
findings of no effect of the PSA threshold on survival are concordant with those in Shoag et al.
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(2015), although there are major differences between the two analyses. Their approach compares
survival functions, while our methodology directly models the time to death. The techniques in this
paper allow for identification of an individual-specific causal effect, which is not available in Shoag
et al. (2015).
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Figure 1: Data-driven RD plot by Calonico, Cattaneo, and Titiunik (2015a) for the first cancer
incidence (left) and prostate cancer incidence (right) with PSA range 0-25
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Figure 2: Data-driven RD plot by Calonico, Cattaneo, and Titiunik (2015a) for the first cancer
incidence (left) and prostate cancer incidence (right) with PSA range 0-50
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7 Conclusion
We have proposed new estimators of causal effects with censored data in RD designs. Simulation
studies reveal that the DR approach yields a more efficient estimator than IPCW that appears to have
better finite-sample properties in the simulation studies we considered. Moreover, the bias of the
DR method is smaller than that of the IPCW method.

The main contribution of our paper is that we provide, for the first time to our knowledge, a for-
mal framework to estimate the causal effect in regression discontinuity designs using right censored
time-to-event data. However, there are limitations of our approach. Given the close connections of
our approach to those of RD methods for uncensored data, we are unable to estimate the adjusted
survival distributions of each treatment group. In addition, our approach requires specification of
the censoring and outcome regression models. If one can correctly specify the outcome regres-
sion model correctly, then its efficiency will be higher than our proposed approach. In addition,
if both the censoring and outcome regression models are misspecified, then this will lead to very
biased answers. To enable implementation by users, we have made our code available as R scripts
at https://github.com/Ghoshlab/SurvRD.

We consider only one forcing variable for analysis. However, in practice, data may contain sev-
eral forcing variables, and they may provide additional information for treatment effect. There are
two possible scenarios: (i) the forcing variable is a function of multiple covariates and (ii) there is
one forcing variable correlated with other covariates, as shown in our data analysis. Imbens and Za-
jonc (2009); Zajonc (2012) examine the situation of multiple forcing variables. Recently, Calonico
et al. (2019) proposed a covariate adjustment approach in RD. It is of significant interest to include
covariates or consider the composite forcing variable in RD analysis. Our future work is to propose
an estimation procedure of the treatment effect in RD adjusting for effects of other covariates. In
this case, we may need to model censoring distribution given other covariates. Although we only
have one forcing variable without covariates, the forcing variable is expected to have multiple cut-
offs. Cattaneo et al. (2016) discuss the multi-cutoff problem. This is also an interesting future work.
In the data analysis, we use matching process and apply our RD procedure. However, we do not
consider randomness of matching in the variance estimation. It is also an compelling future work to
consider matching in the RD.

We have adapted the LM approach for bandwidth selection. Imbens and Kalyanaraman (2012)
propose optimal bandwidth selection based on mean square error approximation and Calonico et al.
(2014) propose bandwidth selection that helps bias correction. These have elegant asymptotic theory
regarding their bandwidth selection proposals. This is currently under investigation.

https://github.com/Ghoshlab/SurvRD
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