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SUMMARY

Active learning has become a popular learning process for classification. By selecting the
most beneficial training data, an active classifier achieves better classification accuracy than
a passive classifier. In this paper, we first investigate the methods of robustifying optimal
active learning processes, via either a sequential approach or taking consideration of the
classifiers possibly developed from a misspecified model. A comparison study has been
presented for the classifiers obtained by a two-stage learning and a sequential learning as
proposed and it indicates that the sequential method generally outperforms its competitor.
Then, we further analyze the sensitivities of three different classifiers (linear discriminant
classifier, quadratic discriminant classifier, and logistic regression classifier) in active learn-
ing for classification purpose. Our analysis reveals that the logistic regression classifier is
sensitive to the misspecification involved in the assumed logistic model whereas the linear
discriminant classifier is relatively robust to moderate violations of assumed homscedastic-
ity.
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Fisher’s linear discriminant; heteroscedasticity.
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1 Introduction

In this paper, we discuss the methods of robustifying optimal active learning processes, via either a
sequential approach or taking consideration of the classifiers possibly developed from a misspecified
model. Recently, two-stage active learning methods have been developed in Xu and Shay (2020),
where various classifers for classification and discrimination were discussed, including active linear
discriminant classifier (ALD), active quadratic discriminant classifier (AQD), and active logistic
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regression classifier (ALR). In the current paper, we first present a sequential active learning method.
Then, we further analyze the sensitivities of these three different classifiers for active learning.

Although ALD and ALR have been commonly used techniques for classification, their applica-
tions, improved adaptations, and new developments specifically for active learning continue being
investigated broadly in the literature. We name just a few recent ones: Yu et al. (2016), Yin et al.
(2018), Hsu et al. (2019), as well as the references therein. One of the chief concerns in classifica-
tion is the cost of obtaining true labels for observations. In many situations, the cost of labelling data
can be quite high. Medical diagnoses, text classification, and speech recognition are such examples
where financial cost or time cost becomes quite high (Settles, 2009). While passive learning can be
used, they often require large random samples to provide good classification accuracies. Thus, one
of the goals of active learning is to minimize the cost of training a classifier by selecting the most
informative observations. The classifier first takes an initial set of labelled data, usually a small set.
Then, it parses through the unlabeled set U to select an instance that can be labelled by a human an-
notator (often called an oracle in the literature). Once the point is labelled, it is added to the labelled
set and the algorithm continues.

There exist several querying strategies to find the best training data. In this paper, we will focus
on pool-based sampling. Pool-based sampling assumes that there is a large pool of unlabeled data
from which the algorithm can make queries. In pool-based sampling, we can sample sequentially,
evaluating instances one at a time and pulling an observation into the training set. Alternatively,
we can evaluate all instances in U simultaneously, selecting the observations that the algorithm has
evaluated as good training points. To make the decision about which instances should be queried,
we will be using uncertainty sampling. Uncertainty sampling is a strategy for identifying unlabeled
items that are near a decision boundary in the current machine learning. When an active learning
queries the oracle, it must employ some criteria to decide which data in the unlabeled pool will bene-
fit the training set the most. Uncertainty sampling is based on the idea of an algorithm selecting data
that we are unsure how to classify. For probabilistic models, this becomes a very simple process.
When classifying two groups, the algorithm queries the instances that have a posterior probability
close to 0.5 (Lewis and Catlett, 1994; Lewis and Gale, 1994). With probabilistic models, the fol-
lowing approaches can be taken. The first is the least confidence strategy. The algorithm selects
the instance, to query its actual label, in which has the least confidence in the most likely label. We
denote such instance by x∗. In this method, we have

x∗
LC = argmax

x∈U

(
1− P (ŷ | x)

)
, (1.1)

where
ŷ = argmax

y
P (y | x)

is the most probable label for instance x. The second is margin sampling which takes into account
the posterior of the second-most likely class. This algorithm selects the instance in which has the
least difference between the two posterior probabilities of the most and the second-most likely labels.
In this method, we have

x∗
M = argmin

x∈U

(
P (ŷ1 | x)− P (ŷ2 | x)

)
,
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where ŷ1, and ŷ2 are the first and second most probable labels for instance x. The third one is using
entropy (Shannon, 1948), which is the most generalizable method for multi-class active learning.
With entropy, we have

x∗
H = argmax

x∈U

(
−
∑
i

[
P (yi | x) logP (yi | x)

])
with yi ranging over all possible class labels. In the binary case, all three of these methods simplify
to sampling the instance with the posterior probability closest to 0.5 (Settles, 2009). However, in the
multi-class approach, entropy is often the most useful method for more complex tasks (Settles and
Craven, 2008).

For non-probabilistic models, there has been some work on using uncertainty sampling with sup-
port vector machines (SVMs, Tong and Koller, 2001), which is similar in principle to probabilistic
uncertainty sampling in the binary case. These methods sample the instances that are closest to the
boundary line, however that boundary line is to be decided.

Previously, Xu and Shay (2020) looked at empirical results of probabilistic and non-probabilistic
classifiers doing two-stage active learning (explained in detail in Section 2) in the binary case. Two-
stage active learning requires that the classifier only seeks out the most beneficial training points
once, after the first-stage random component. In this paper, we mainly consider the binary case of
classification; however, we will examine a different approach: sequential active learning. We also
briefly address the extension to the multi-class case of classification. In dealing with sequential ac-
tive learning, we further adopt sub-sampling as a method of reducing computation time. In addition,
we will discuss possible robustification of these forth-mentioned classifiers.

The remainder of this paper is organized as follows: Section 2 presents the sequential active
learning process, including stopping criteria, computational time trade-off, and subsampling tech-
niques that can be applied to improve the time efficiency. It also includes the model modifications
as needed to extend our methods to multi-class active learning. Section 3 carries out an analysis for
the sensitivities of ALD, AQD, and ALR classifiers as well as discusses the robustification meth-
ods against possible violations of model assumptions. Finally, we conclude this paper with a few
remarks in Section 4.

2 Active Learning
When a two-stage active learning is adopted, the following two distinct stages are involved: (a)
randomly sample some initial set of observations, and (b) use the information from the initial train-
ing to rank the remaining data points, picking the most beneficial ones simultaneously. This is a
convenient and computationally efficient method of active learning, but it is heavily subject to the
initial random sample. It has been shown that very small first-stage training sets can lead to poor
classification accuracy and reduced performance. Therefore, we presently consider the process of
sequential active learning.

Sequential active learning is simple in concept: rather than learning only once (which the two-
stage method does), we can allow our algorithm to learn as each point is individually pulled into
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the training set. The beginning part of the process is very similar to the two-stage method. We
randomly sample the initial training set for the first stage, then we rank each point in the unlabeled
set based on the criteria of the classifier, such as posterior probability or distance to the boundary.
After the first stage, however, we diverge; rather than optimally selecting the top m points, where m
is a prespecified number related to total training sample size as user-needed, we select only the best
choice. That point is pulled into the training set, labelled, and the process repeats again by choosing
the next best point.

The advantage to this method is that the classifier is constantly learning, and as it pulls more data
into the training set, the classifier becomes better and better at distinguishing between classes. Two-
stage active learning evaluates all actively selected points using only a first-stage passive training
set; sequential active learning evaluates only its first point passively, and all subsequent points are
evaluated using both the initial passive data and subsequent active data. Theoretically, as a result
sequential active learning should perform more accurately than two-stage active learning. This will
be demonstrated by our exemplary simulation in the next subsection.

2.1 Simulation

Ideally, an actively selected training set will achieve one of two goals, depending on the problem at
hand: (a) require fewer labelled observations to achieve the same accuracy as a passively selected
training set, or (b) achieve a higher accuracy than random sampling with the same number of labelled
observations. Similar to Xu and Shay (2020), we seek to minimize a corresponding loss function set
by picking the most beneficial observations. As previously mentioned, any probabilistic classifier is
relatively simple to query. However, we can also use a non-probabilistic classifier, such as Fisher’s
linear discriminant. In this section, we will first adopt an ALD classifier, and an ALR classifier.
With both approaches, we will select the training data by uncertainty sampling.

In general, for an ALD classifier, we assume the observed samples x(1)
i , x

(2)
j from two normal

distributions with a common covariance. Namely,

x
(1)
i ∼ Nq(µ1, Σ), i = 1, 2, . . . , n1, and

x
(2)
j ∼ Nq(µ2, Σ), j = 1, 2, . . . , n2.

Then, the loss function for ALD training data selection can be defined as

l1 =

[
(µ1 − µ2)

T
Σ−1

(
x− µ1 + µ2

2

)]2
, (2.1)

or

l11 =

m∑
i=1

[
(µ1 − µ2)

T
Σ−1

(
xi −

µ1 + µ2

2

)]2
, (2.2)

where x or xi is any possible candidate data point to be selected into a training sample. In the case
of sequential selection method, the optimal training data can be sequentially selected by minimizing
(2.1). In the case of two-stage selection method, the optimal training set of m data points can be
selected at once by minimizing (2.2).
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We may (adaptively) compute

x1 =
1

n1

n1∑
i=1

x
(1)
i , x2 =

1

n2

n2∑
j=1

x
(2)
j , (2.3)

and

Spooled =
1

n1 + n2 − 2

 n1∑
i=1

(
x
(1)
i − x1

)(
x
(1)
i − x1

)T
+

n2∑
j=1

(
x
(2)
j − x2

)(
x
(2)
j − x2

)T .

(2.4)
Then, the loss functions in (2.1) and (2.2) can be estimated as

l̂1 =

[
(x1 − x2)

T
S−1
pooled

(
x− x1 + x2

2

)]2
, (2.5)

and

l̂11 =

m∑
i=1

[
(x1 − x2)

T
S−1
pooled

(
xi −

x1 + x2

2

)]2
,

respectively.
For an ALR classifier, we estimate the probability of an observed subject coming from the first

population, p = P (Y = 1), via a logistic regression. We assume

ln
p

1− p
= β0 + βT

1 x, (2.6)

where x contains q explanatory variables. The loss function for ALR is

l2 =

(
eβ0+βT

1 x

1 + eβ0+βT
1 x

− 0.5

)2

, (2.7)

or

l22 =

m∑
i=1

(
eβ0+βT

1 xi

1 + eβ0+βT
1 xi

− 0.5

)2

. (2.8)

In the case of sequential selection method, the optimal training data points x can be sequentially
selected by minimizing (2.7). In the case of two-stage selection method, the optimal training set of
m data points xi can be selected at once by minimizing (2.8). With labeled data provided, β0 and β1

can be (adaptively) estimated via the assumed logistic regression model using maximum likelihood
method, for instance.

For our simulations, we take q = 2 for simplicity. Supposingly, it is assumed to classify with
two bivariate normal populations having a common correlation matrix. We set the parameters (two
population means and correlation matrix) as

µT
1 = (0.5, 0), µT

2 = (−0.5, 0), and R1 = R2 =
(

1 −0.5
−0.5 1

)
.
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Figure 1: Accuracy as the actively selected set increases: sequential ALD (black), two-stage ALD
(magenta), sequential ALR (orange), and two-stage ALR (blue).

In this simulation, we fix the first-stage sampling at nrand = 15, varying only the active component
of the algorithm. Additionally, we set the “unlabeled” pool size to 800.

We measure the performance of a classifier by the proportion of correctly classified data points
among the 800 points in the “unlabeled” pool. We name it as “Accuracy” in our figures. For instance,
Figure 1 presents the accuracy as the size of actively selected set increases for sequential and two-
stage ALD or ALR classifiers. We can see that in general, sequential active learning outperforms
two-stage active learning for the ALD; there is also a small but noticeable increase in computation
time that occurs, which we will discuss in Section 2.3. The performance difference becomes more
noticeable in extreme cases, such as in the case of first-stage sample size being very small. Our
simulation results show impressive performance provided by the sequential ALD classifier.

Next, we fix the actively selected sample size to be nactive = 35 and vary nrand from 4 to
20. With a small nrand, the sequential ALD still performs very well, especially in comparison
with its two-stage counterpart. There is thus an obvious benefit to a sequential ALD in both highly
constrained training set sizes. It has also noticed that the sequential ALR is consistently outperform
its two-stage competitor. The comparison of their performances for this typical example has been
demonstrated by Figure 2.



Sequantial and Robust Data Selection . . . 255

Figure 2: Accuracy of the four classifiers under small n: sequential ALD (black), two-stage ALD
(magenta), sequential ALR (orange), and two-stage ALR (blue).

2.2 Stopping criteria

Another advantage of sequential active learning, as opposed to two-stage, is its ability to utilize a
stopping criterion to stop the classifier from learning as soon as sufficient performance has been
reached. There are a number of stopping criteria in the active learning literature which we briefly
review here. Intuitively, an active learning classifier should stop learning when adding additional
observations ceases to yield any meaningful change in performance: in other words, when the cost
of annotating actively selected observations outweighs the benefits of adding those observations to
the training set. There are issues with this interpretation; however, in order to assess the accuracy of
a classifier, we would need some test set, properly annotated, so that we can make some judgement
on the performance of the classifier. These tests are not always available and often expensive to get.
Since one of the objectives of active learning is to achieve high performance with low cost, this is
not an ideal scenario.

We are thus searching for some way of generating a stopping criterion based on some aspect of
model performance outside of raw accuracy. There are several options. The first option focuses on
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assessing the model’s confidence in its ability to classify the unlabeled set. We can also implement
a criterion which is confidence-based, where the learner will stop learning when the model’s con-
fidence drops (Vlachos, 2008). One issue with this stopping criterion is that it assumes the learner
is incapable of fully explaining all examples; if this is not the case (i.e., it is capable of properly
classifying its training set), the performance of the stopping criterion drops. Confidence can be es-
timated in a variety of ways. Vlachos (2008) defines confidence in the case of logistic regression as
the average of the entropies in the test set, for example.

Another confidence method measures the gradient of confidence estimates (Laws and Schutze,
2008). In this method, a threshold of model confidence is pre-set by the user, and the rate of change
of the model’s confidence is assessed by examining recent points pulled into the training set. If the
gradient dips below the threshold, the classifier stops learning. Essentially, this method seeks a point
when the classifier’s performance levels out. Since we have no true test set to compare to, we assess
performance by confidence in labelling the unlabeled set, rather than by classification accuracy. In
the gradient method, instead of stopping when the classifier reaches a sufficient confidence threshold,
we stop instead when the confidence no longer increases. This method bears some similarity to
Vlachos’ method rather than focusing on hitting a confidence threshold. In this method, one seeks
to stop when the rate of change of confidence hits an elbow point, namely when new observations
yield adding less confidence to the model.

In place of stopping when confidence grows too low, we can also utilize a maximum confidence
criterion. In this criterion, a threshold is pre-set by the user, and the learner stops learning when its
confidence in each unlabeled example exceeds the pre-established threshold. Thus, the learner has
requisite confidence in its ability to classify, such that additional training points are unnecessary. We
note that the maximum confidence is not the same as Vlachos’. Whereas Vlachos’, as well as that of
Laws and Schutze (2008), establish confidence as an estimate covering the entirety of the unlabeled
pool, maximum confidence is a threshold that must be met by each observation in the unlabeled set.

There are also stopping criteria that are not confidence based. One method is exclusive to margin-
based classifiers such as SVMs, and is thus named margin-exhaustion. In this criterion, the learner
stops learning when all unlabeled examples fall outside the classifier’s margin. There are two prob-
lems unique to this stopping criterion: (i) this method cannot extend to probabilistic classifiers, and
(ii) some empirical work has demonstrated that margin exhaustion tends to stop late, and it often
continues to learn beyond the point of benefit (Schohn and Cohn, 2000).

We can also attempt a minimum-error stopping criterion, which avoids the problems covered in
the beginning of this subsection. Rather than assessing accuracy on an external test set, the learner
can stop learning once its accuracy on the queried training set reaches some threshold of accuracy
(Zhu and Hovy, 2007). We thus avoid the issue of annotating a test set, which can be expensive,
while still maintaining a performance-based classifier that is a very intuitive approach to stopping
criteria.

Deciding which stopping criterion to use is subject to the goals of the classifier as well as the
goals of the investigator. Settles (2009) notes that choice of stopping criteria, if one is even em-
ployed, is usually problem-contextual and constrained by non-theoretical factors. For instance, if
the goal is to achieve the best accuracy with a constrained sample size, there are likely financial
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Table 1: Runtime increased compared to two-stage ALD

Sequential ALD Sequential ALR Two-stage ALR

1057% 13829% 357%

costs that are more pertinent than achieving some threshold. The other main issue with imple-
menting these criteria is their reliance on pre-established thresholds. A prior knowledge of the best
threshold is likely rare, and while general thresholds can be implemented, there is no guarantee that
those thresholds are optimal to achieve the best performance-to-cost ratio.

As mentioned above, adding in the computation of stopping criteria will elongate the computa-
tion time of the classifier, as the stopping criteria will need to be evaluated at each point’s annotation,
determining whether more points are needed.

2.3 Subsampling

While we have seen the distinct advantages to using sequential active learning over two-stage active
learning, there is a demerit as well. The disadvantage of using sequential learning is that of com-
putation cost. The cost of evaluating all instances in an unlabeled set simultaneously is relatively
small; in our simulations, a two-stage ALD even for an unlabeled pool around 8 million took only
a few seconds. Thus, implementing two-stage active learning is time-efficient to perform. However,
sequential active learning will evaluate the entire unlabeled set for each actively selected point added
to the set. If we consider also evaluating a stopping criterion at each point of the algorithm, we can
see that the computation time of the algorithm increases heavily as the unlabeled set grows. Given
that many datasets are incredibly large, with ostensibly millions of observations, the issue of com-
putation time is an extremely relevant one. The simulation runtime was recorded with nrand = 15

and nactive = 35, and by setting the unlabeled set as large as n1 = n2 = 4, 000, 000. For this exam-
ple, the runtime for two-stage ALD, under our simulation condition, was only 0.07 second. Table
1 provides the example runtime increased by percentage relative to their competitor two-stage ALD
under the same conditions. It is still preferable to use the sequential active learners, as it is clear
they have advantages of accuracy gains, but there is an accuracy/runtime trade-off. As the number
of predictors increases, the issue of high dimensionality also arises and affects computation time.
With so many factors contributing to the computation time for sequential active learning, it is clearly
of interest to reduce the computational time.

There are ways of overcoming or mitigating this issue. One approach is a compromise between
purely two-stage or purely sequential active learning, which we could call a micro-two-stage ap-
proach. Rather than evaluating the unlabeled set for each actively selected instance, one can instead
evaluate the unlabeled set for each actively selected group of instances. The choice of two-stage
size can be sought after using a variety of methods (Settles, 2009). This certainly mitigates the
computation cost problem, but it does not solve it entirely.

Another method to aid in reducing the cost is sub-sampling, selecting some subset of the entire
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unlabeled set with whom we can build our model, and that is what we will discuss next.
Our simulation results have shown that computation time for a sequential learner increases both

as the training set increases and as the unlabeled set increases, especially for the ALR case. It
is of interest, then, to minimize computation time while keeping accuracy high. We thus propose
subsampling as a viable method of reducing computation time.

Optimal subsampling (sampling the most beneficial observations to build a model upon) is a
very similar process to active learning. The idea behind optimal subsampling is to pick the ‘best’
possible observations in the sample to build the model. Here, ‘best’ can be defined in various
ways. Generally, optimal sampling designs seek to minimize the variances, of the estimation or
prediction for a specified quantity of interest, by maximizing the amount of information in the chosen
observations. Such maximization is often performed based on the information matrix, which often
subsequently minimizes a scalar function of the covariance matrix (Smith, 1918).

Subsampling is also particularly relevant for so-called big data problems: data sets which are
incredibly large and are thus computationally inefficient with which to build a model. Wang et al.
(2018) have recently proposed an optimal subsampling design for large-sample logistic regression,
which assigns optimal subsampling probabilities (SSP) to minimize the variance of the maximum
likelihood estimator obtained from sample data of size n. The optimal SSP πi takes the form

πi =

∣∣∣yi − pi
(
β̂MLE

)∣∣∣ ∥xi∥

Σn
j=1

∣∣∣yj − pj
(
β̂MLE

)∣∣∣ ∥xj∥
, i = 1, 2, . . . , n,

where β̂MLE is the maximum likelihood estimator of β =
(
β0, β

T
1

)T
, and pi

(
β̂MLE

)
is the pos-

terior probability function,(eβ0+βT
1 x)/(1 + eβ0+βT

1 x) evaluated at β̂MLE and xi. Since the optimal
SSP depends on β, it must be initially estimated. Therefore, as the first step, a non-optimal SSP,
such as uniform, is often used to obtain an initial estimate. Then, the second step of the algorithm is
performed using the optimal SSP to subsample the best possible observations.

This optimal subsampling algorithm is efficient and computationally reasonable; however, be-
cause the algorithm relies on the true response value yi, this optimal algorithm is not available
for this particular problem. Some future work will be done in this direction. Fortunately, we can
instead assign uniform subsampling probabilities, which is equivalent to randomly sampling from
the dataset. Because we are still choosing the most beneficial observations, the potential lack of
optimality of the subsample is less of an issue. Figure 3 shows the results of a simulation study
investigating the accuracy under random subsampling. We can see that a fixed random subsample
allows consistent accuracy gains across unlabeled pool size.

2.4 Sequential active learning for multiple classes

The methods discussed above can be extended to an active learning process for classification that
involves more than two classes. In the case of k-classes, binary logistic regression can be replaced
by its counterpart, multinomial logistic regression. The model can be expressed, by the probability



Sequantial and Robust Data Selection . . . 259

Figure 3: Accuracies of sub-sampled sequential active learning compared to full-sample two-stage
learning: sequential ALD (black), two-stage ALD (blue), sequential ALR (green), and two-stage
ALR (magenta).

of an instance x being a jth class item, as follows

Pr(Y = j) =


e
β0j+βT

j x

1+
∑k−1

c=1 eβ0c+βT
c x

, j = 1, . . . , k − 1;

1

1+
∑k−1

c=1 eβ0c+βT
c x

, j = k.

Then, an observation can be labeled as j if such j provides the maximum probability. In this case,
we redefine the loss function (2.7) to be

l2 =

k−1∑
j=1

(
eβ0j+βT

j x

1 +
∑k−1

c=1 e
β0c+βT

c x
− 1

k

)2

+

(
1

1 +
∑k−1

c=1 e
β0c+βT

c x
− 1

k

)2

.

In order to adapt multinomial logistic regression for active learning, one simple option can be
the least confidence method as defined in (1.1); that is, we select the observations with low posterior
probabilities for their most likely class. These observations are, as the name implies, the ones about
which the learner is least confident. We can thus construct an active multinomial regression classifier
that sequentially selects the instance with the least confidence in the most likely class.

For a multi-class linear discriminant analysis, our proposed sequential ALD can be modified by
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selecting observations optimally so as to minimize a multi-class version of (2.5) as follows

l̂1 =
∑

1≤i<j≤k

[
(xi − xj)

T
S−1
pooled

(
x− xi + xj

2

)]2
,

where xj = n−1
j

nj∑
i=1

x
(j)
i , j = 1, . . . , k, and

Spooled =
1∑k

j=1 nj − k

[
k∑

j=1

nj∑
i=1

(
x
(j)
i − xj

)(
x
(j)
i − xj

)T ]
.

To create an optimal active training set, the multi-class active discriminant classifier selects the
observation that has the least distance to their class boundaries.

3 Sensitivity and Robustification
It is worth examining the assumptions of our classifiers, and their sensitivity to those assumptions
being violated. We will start with the assumptions of the linear discriminant analysis classifier, and
then move on to model misspecification in the case of the logistic regression classifier.

3.1 Quadratic discriminant analysis

For an ALD classifier, we previously held an assumption of equality of covariances. If this assump-
tion is not held, then we have the following:

x
(1)
i ∼ Nq(µ1, Σ1), i = 1, 2, . . . , n1, and

x
(2)
j ∼ Nq(µ2, Σ2), j = 1, 2, . . . , n2.

However, Σ1 ̸= Σ2. With this modification, we accordingly define a new loss function to be
minimized by the choice of x :

lq =

[
1

2
xT (Σ−1

1 −Σ−1
2 )x−

(
µT
1 Σ

−1
1 − µT

2 Σ
−1
2

)
x +

1

2

(
µT
1 Σ

−1
1 µ1 − µT

2 Σ
−1
2 µ2 + ln

|Σ1|
|Σ2|

)]2
.

(3.1)

We may (adaptively) compute x1, x2 by (2.3) and

S1 =
1

n1 − 1

n1∑
i=1

(
x
(1)
i − x1

)(
x
(1)
i − x1

)T
, S2 =

1

n2 − 1

n2∑
j=1

(
x
(2)
j − x2

)(
x
(2)
j − x2

)T
.

Then, the loss functions in (3.1) can be estimated as

l̂q =

[
1

2
xT (S−1

1 − S−1
2 )x−

(
xT
1 S

−1
1 − xT

2 S
−1
2

)
x+

1

2

(
xT
1 S

−1
1 x1 − xT

2 S
−1
2 x2 + ln

|S1|
|S2|

)]2
.
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Because the heteroscedasticity introduces a quadratic term, this classifier is preferably used for
quadratic discriminant analysis, and we name our active version as the active quadratic discriminant
classifier (AQD) as previously mentioned.

On the other hand, the sensitivity of the ALD to violation of the assumption of homoscedasticity
is of interest. For this test, data is generated according to the following parameters: µT

1 = (t, 0) and
µT
2 = (−t, 0) with initial t = 0.5, Σ1 =

(
1 −.707

−0.707 2

)
, and Σ2 =

( 1 σ12

σ21 σ2
22

)
with the variance

σ2
22 ranging from .1 to 7.1 and σ12 = σ21 = ±0.5

√
σ2
22, thus holding a correlation matrix of

R2 =
(

1 ±0.5
±0.5 1

)
. Figure 4 shows the accuracy comparison results between AQD and ALD by

varying σ2
22.

Figure 4: (a) Accuracy of the AQD vs ALD classifiers under growing positive covarinace and the
second variance, and (b) accuracy under growing negative covariance and increasing second vari-
ance, with the point of perfect homoscedasticity at the vertical line. Here, we compare the accuracies
among two-stage ALD (solid black), two-stage AQD (dash blue), and sequential AQD (dotted ma-
genta).

We see that when the assumption of homoscedasticity is violated, the AQD tends to perform
better than the ALD. As the covariance matrix Σ2 “shrinks”, the AQD performs substantially better
than the ALD. Also visible is the insensitivity of the linear discriminant method to violations of
homoscedasticity; our results have shown that the performance of ALD remains relatively constant
even as the inequality of covariance grows larger.

The parameters we have set result in a fairly difficult classification problem. We repeat the above
simulation, but this time consider t = 1, holding the same parameters otherwise. This time we try
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to test the performance of the AQD when the two populations are further apart and classification
problem is easier to solve. Figure 5 presents the results of this new simulation. It has been shown that
even under comparatively heteroscedastic conditions, when the problem becomes easier to solve, the
performance of the AQD relative to the ALD diminishes.

Figure 5: (a) Accuracy of the AQD vs ALD under growing positive covariance and variance, and
(b) accuracy under growing negative covariance and increasing variance. Two-stage ALD (solid),
two-stage AQD (dash) and sequential AQD (dotted).

3.2 Model misspecification for logistic regression

This subsection addresses how the ALR performs when the assumed model is misspecified. For
the sake of computation time, we examine two-stage ALR, since the interest is not necessarily in
comparing method accuracy, but sensitivity to misspecification. For the sensitivity analysis, we
define the following performance measure

Se(x) =

(
Am−At

At

)
× 100%, (3.2)

where Am is the accuracy when the assumed model being misspecified, and At is the accuracy when
the assumed model is correct. For this simulation, data are generated from two 3-variate populations
with µT

1 = (.5, .2, .4) and µT
2 = (−.5, .2,−.4), with a common covariance. For demonstration
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purpose, we take two different correlation structures: (i) the simplest correlation structure assuming

R1 = R2 =

 1 0 0

0 1 0

0 0 1

 , and (ii) R1 = R2 =

 1 −0.5 −0.5

−0.5 1 0.5

−0.5 0.5 1

 .

We suppose that the actually true model is as specified as in (2.6) with βT
1 x = β1x1+β2x2+β3x3

for (i), and βT
1 x = β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 + β6x2x3 for (ii). However, an

assumed model tends to be used for developing an ALR classifier. For both (i) and (ii), we consider
two different misspecification that possibly occurred in an assumed model: (a) only two explanatory
variables are involved, and the linear predictor is taking the form of β0 + β1x1 + β2x2 in the fitted
model, and (b) also only two explanatory variables are assumed and the linear predictor is taking
into accounts of interaction this time, i.e., β0 + β1x1 + β2x2 + β3x1x2. Figures 6 and 7 provide the
results of the sensitivity analysis for Cases (i) and (ii) respectively, using the performance measure in
percentage as defined in (3.2). This analysis reveals that the performance of the misspecified models
grows weaker as more points are actively selected, also indicating that the ALR is very sensitive to
model misspecification. In addition, when the true model’s regressors are moderately correlated, the
sensitivity to misspecification grows. Clearly then, robustifying ALR against model misspecification
is a worthwhile endeavor.

Figure 6: Reduced performance of an ALR classifier for misspecified models in percentage for Case
(i). The black line is for misspecification of Type (a), and the magenta line is for that of Type (b).
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Figure 7: Reduced performance of an ALR classifier for misspecified models in percentage for Case
(i). The black line is for misspecification of Type (a), and the magenta line is for that of Type (b).

Through our study, the model-based probabilistic classifiers are generally sensitive to the model
assumptions. For desirable performance, they also require more first-stage samples compared to
non-probabilistic classifiers. Therefore, we suggest the probability classifiers being adopted when
there is sufficient training data in hand and the practitioner has confidence on the model being used.
Otherwise, a non-probability classifier, especially at the first stage, is recommended.

4 Concluding Remarks

One of the interesting findings led by the results of this paper is the trade-off between using a
linear discriminant and a quadratic discriminant. From our results, we can see that a violation of
homoscedasticity does not necessarily guarantee that the AQD approach would perform better. In
the situation of a classification problem involving more overlap among groups, the AQD seems to
outperform the ALD, but in a less overlap involved situation, despite inequality of covariance, the
ALD performs generally well. Adding to a practical issue, the AQD would be a better approach when



Sequantial and Robust Data Selection . . . 265

the classification “fairness” rather than overall accuracy is emphasized in a classification problem,
and the AQD method should be a better choice when non-equality of covariances can be tested or
suspected. If conducting a hypothesis test to assess equality of covariance is problematic, a natural
question is to ask: when should one use ALD versus AQD for an active learning problem? This issue
is especially pertinent because an actively selected training set comes from a biased distribution and
is inherently tied to the classifier that selected it (Settles, 2009). Thus, constructing a training set
using one classifier and then training on a separate classifier is not guaranteed to yield good results.
Moreover, generally active learning can be conducted more efficiently when some knowledge of
the underlying model or distribution is available, based on prior experimentation or model building.
Diving into active learning algorithms with no understanding of the data is likely to lead to poor
classifier performance. Lastly, our results have indicated that the ALD is more robust to violations
of assumed covariance structures than others, and thus we would recommend it as the first step.
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