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SUMMARY

Understanding the impact of non-pharmaceutical interventions as well as accounting for the
unascertained cases remain critical challenges for epidemiological models for COVID-19
spread. In this paper, we propose a new epidemiological model (eSEIRD) that extends the
widely used extended Susceptible-Infected-Removed model (eSIR) and SAPHIRE models.
We fit these models to the daily ascertained infected and removed cases from March 15,
2020 to December 31, 2020 in South Africa, the ‘worst-hit’ country in the WHO African re-
gion. Using the eSEIRD model, the COVID-19 transmission dynamics in South Africa was
characterized by the estimated basic reproduction number (R0) starting at 3.22 (95%CrI:
[3.19, 3.23]) then dropping below 2 (95%CrI: [1.36, 1.39]) following a mandatory lock-
down implementation and subsequently increasing to 3.27 (95%CrI: [3.27, 3.27]) by the
end of 2020. The estimated trajectory of R0 suggests the effect of early interventions
and the subsequent relaxation and emergence of a new coronavirus variant. The estimated
ascertainment rate was found to vary from 1.65% to 9.17% across models and time peri-
ods. The overall infection fatality ratio (IFR) was estimated as 0.06% (95%CrI: [0.04%,
0.22%]) accounting for unascertained cases and deaths while the reported case fatality ra-
tio was 2.88% (95% CrI: [2.45%, 6.01%]). The models predict that from December 31,
2020, to April 1, 2021, the predicted cumulative number of infected would reach roughly
70% of total population in South Africa. Besides providing insights on the COVID-19 dy-
namics in South Africa, we develop powerful forecasting tools that enable estimation of
ascertainment rates and IFR while quantifying the effect of intervention measures.
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1 Introduction

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), was first reported in early December 2019 in Wuhan, China and then
quickly spread to majority countries worldwide. At the end of January 2021, over a hundred million
people worldwide have been diagnosed with COVID-19 (World Health Organization, 2021b), yet
the true number of infections in the population remains underestimated, owing to a combination of
selection bias from unascertained cases, and lack of access to tests early on during the pandemic.

South Africa: We focus on the COVID-19 transmission dynamics in South Africa, the ‘epicenter
of the outbreak in the African continent’ (World Health Organization, 2020c). The first case was
confirmed in South Africa on March 5, 2020. As of February 23, 2021, there are 1,504,588 con-
firmed cases of COVID-19 (cumulative total) with 49,150 deaths confirmed in Africa (World Health
Organization, 2021a). South Africa remains the worst-hit African country with the largest number
of confirmed cases and deaths, by the end of 2020, contributing to 54% of the total confirmed cases
and 44% of deaths in the WHO African region, while accounting for only 5% of population (World
Health Organization, 2021a). A seroprevalence survey on 4,858 blood donors in South Africa esti-
mated the prevalence as of mid-January 2021, by province, as 63% in the Eastern Cape, 52% in the
Kwa-Zulu Natal, 46% in the Free State and 32% in the Northern Cape (Sykes et al., 2021) while the
number of reported cases is 1.83% of the total population during the same time, implying the pos-
sibility of a large degree of under-reporting/undetected cases in South Africa. Thus, understanding
the key epidemiological constructs for COVID-19 outbreak is paramount for containing the spread
of COVID-19 in South Africa, as well as explaining the disparity between seroprevalence estimates
and reported number of cases. Two critical factors emerge from analyzing the majority of avail-
able evidence of the public health crisis: (1) the unascertained cases and deaths and (2) the role of
non-pharmaceutical interventions.

Unascertained cases and deaths: Based on the clinical characteristics of COVID-19, a majority
of patients are symptomatic (roughly 84% according to a recent study He et al., 2020a), most of
whom have mild symptoms (World Health Organization, 2020c) and tend to not seek testing and
medical care. While private hospitals have reached maximum capacity, public and field hospitals
beds have still some margin left with additional challenges due to scarcity of staff (Daniel, 2020).
Several recent studies (Hao et al., 2020; Rahmandad et al., 2020; Bhattacharyya et al., 2021) re-
ported that a non-negligible proportion of unascertained cases contributed to the quick spreading of
COVID-19. It is suggested that only 1 in 4 mildly ill cases would be detected in South Africa (South
African COVID-19 Modelling Consortium, 2020). The relatively lower testing rate in South Africa
(Table 1, Figure 1) coupled with a very high test positivity rate especially in July and August 2020
(Ritchie et al., 2020), suggests inadequacy of testing, as well as the possibility of a large unobserved
number of unascertained cases (World Health Organization, 2020a). Thus, modeling both ascer-
tained and unascertained cases and deaths can measure infection fatality ratios (IFRs, the proportion
of deaths among all infected individuals (World Health Organization, 2020b)) of COVID-19, leading
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to a better understanding of the clinical severity of the disease.

(a) (b)

Figure 1: (a) Total cases by country in the African continent; (b) The 7-day average testing positive
rate of COVID-19 in South Africa during the study period.

Interventions: With a universal goal to ‘flatten the curve’, a series of non-pharmaceutical inter-
ventions were implemented by the government in South Africa, that have been gradually lifted since
early May 2020 (South Africa Department of Health, 2021). On March 27, 2020, South Africa
adopted a three-week nationwide hard-lockdown (level 5) along with closure of its international
borders, which was extended to April 30, 2020. Thereafter, to balance the positive health effects of
strict interventions against their economic costs (Arndt et al., 2020), South Africa began a gradual
and phased recovery of economic activities with the lockdown restriction eased to level 4 (South
Africa Department of Health, 2021), allowing inter-provincial travel only for essential services.
From June 1, 2020, national restrictions were lowered to level 3 allowing for inter-provincial travel
and school opening, and eased to level 2 and level 1 from August 18 and September 21, 2020 (Table
1). Face-mask wearing remained mandatory in public places at all times, with limitations on gather-
ings, and sale of alcohol and cigarettes were restricted under harder lockdown (Garba et al., 2020).
Although these interventions implemented at an early stage had a higher potential for pandemic con-
tainment, previous studies (Garba et al., 2020; Mukandavire et al., 2020; Zhao et al., 2020) reported
a consistently large value for the estimated basic reproduction number (R0) ranging from 2.2 to 3.2

in South Africa by models trained with data in relatively early time windows. Using data observed
under various intervention scenarios over a longer period of time, we carry out a thorough investiga-
tion to assess the current COVID-19 spread and the effect of these interventions, which will provide
valuable insights into the transition dynamics of COVID-19 and intervention deployment in South
Africa, and beyond.

Epidemiological models: Since the early days of the pandemic, researchers have responded to
the unprecedented public health crisis by providing forecasts and alternative scenarios to inform
decision-making, both locally and globally. This has resulted in hundreds of mathematical models
of varying complexity. The Susceptible-Infectious-Removed or SIR model (Kermack et al., 1927)
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Table 1: Timeline of COVID-19 preventions and interventions in South Africa.

Date (2020) Confirmed Death Testing rate Interventions and update

5-Mar 1 0 - -

10-Mar 7 0 - Screening at ports of entry has intensified
and escalated.

15-Mar 51 0 - Self-quarantine for COVID-19 is recom-
mended. Visas to visitors from high-risk
countries (Italy, Iran, South Korea, Spain.
Germany, US, UK) are cancelled and pre-
viously granted visas are hereby revoked.
Gatherings of more than 100 are prohibited.
Mass celebrations are canceled.

16-Mar 62 0 - Of the 53 land ports, 35 are shut down.

18-Mar 116 0 - A travel ban on foreign nationals from high-
risk countries such as Germany, US, UK and
China.

27-Mar 1170 1 - A national lockdown is implemented. Alert
level 5 is in effect from midnight 26 March
to 30 April.

1-May 5951 116 0.004 A less strict lockdown is in place. Alert level
4 is in effect from 1 to 31 May. Borders
will remain closed to international travel, no
travel is allowed between provinces, except
for the transport of goods and exceptional
circumstances.

1-Jun 34,357 705 0.013 From 1 June 2020 alert level 3 is in effect.
Restrictions on many activities, including at
workplaces and socially, to address a high
risk of transmission.

18-Aug 592,106 12,264 0.059 Alert level 2 is in effect.

21-Sep 661,898 15,992 0.07 Alert level 1 is in effect.

is arguably the most commonly used epidemiological models for modeling the trajectory of an in-
fectious disease, and has been used to model the pandemic trajectory in South Africa (Ding et al.,
2021). However, the ordinary SIR model does not take time-varying non-pharmaceutical interven-
tions and quarantine protocols into consideration. To address this drawback, a recent extension
called extended-SIR or eSIR (Song et al., 2020), was developed with a Bayesian hierarchical Beta-
Dirichlet state-space framework, which was successfully applied to model COVID-19 dynamics in
India (Ray et al., 2020). One major advantage of this Bayesian hierarchical structure is that uncer-
tainty associated with all parameters and functions of parameters can be calculated from posterior
draws without relying on large-sample approximations (Ray et al., 2020). Extending the simple
compartment structure in eSIR model, the SAPHIRE model (Wang et al., 2020a) delineated the full
transmission COVID-19 dynamics in Wuhan, China with additional compartments, by introducing
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unobserved categories (Hao et al., 2020).
In this article, we extended the eSIR approach to the eSEIRD model to combine the advantages

of the two existing models: using a Bayesian hierarchical structure to introduce additional unob-
served compartments and characterize uncertainty in critical epidemiological parameters including
basic reproduction number, ascertainment rate and IFR, with input data as observed counts for cases,
recoveries and deaths. Furthermore, we applied these three models and compared the results of the
eSEIRD model with two of the existing alternatives, namely the eSIR and the SAPHIRE model,
with the following primary objectives: (i) characterizing the COVID-19 dynamics from March 15 to
December 31, 2020 – under different time-varying intervention scenarios; (ii) evaluating the effec-
tiveness of the main non-pharmaceutical interventions such as lockdown, and mandatory wearing of
face-mask in public places; (iii) capturing the uncertainty in estimating the ascertainment rate and
IFR; and (iv) forecasting the future of COVID-19 spread in South Africa.

The organization of this paper is as follows: we describe the two competing epidemiological
models and our proposed extension in Section 2. The study design and parameter settings for mod-
eling COVID-19 transmission in South Africa are described in Section 3, and the results and their
possible implications are described in Section 4. We conclude with a discussion of nuances and
limitation of the methods and sources of data used here and suggest future directions in Section 5.

2 Statistical Methodology

We propose an extension of the eSIR model, called eSEIRD, and compare it against two existing
epidemiological methods, the eSIR and SAPHIRE model. In this section, we describe the dynamic
systems and the hierarchical models underlying these three epidemiological models. The schematic
diagrams for the three compartmental models are shown in Fig. 2 (eSIR and SAPHIRE) and Fig. 3
(eSEIRD).

2.1 eSIR model

The eSIR model assumes the true underlying probabilities of the three compartments susceptible
(S), infectious (I) and removed (R) follow a latent Markov transition process and require observed
daily proportions of cumulative infected and removed cases as input (Osthus et al., 2017; Song
et al., 2020). The observed proportions of infected and removed cases on day t are denoted by
Y I
t /N and Y R

t /N (the infected and removed counts Y I
t and Y R

t divided by total population size N )
respectively. Further, we denote the true underlying probabilities of the three compartments on day
t by θSt , θIt and θRt , respectively, and assume that for any t, θSt + θIt + θRt = 1, and π(t) ∈ [0, 1] is
the transmission rate modifier that reflects the stringency of non-pharmaceutical intervention at time
t. The following set of differential equations describe the dynamic system for the usual SIR model
on the true proportions.

dθSt
dt

= −βπ(t)θSt θ
I
t ,

dθIt
dt

= βπ(t)θSt θ
I
t − νθIt ,

dθRt
dt

= νθIt ,
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where β > 0 denotes the disease transmission rate, and ν > 0 denotes the removal rate (see Fig. 2(a)
for a schematic representation). The basic reproduction number R0 = β/ν indicates the expected
number of cases generated by one infected case in the absence of any intervention and assuming that
the whole population is susceptible.

(a) eSIR

(b) SAPHIRE

Figure 2: Schematic diagram of the two models (a) eSIR; (b) SAPHIRE.

Hierarchical model The eSIR model works by assuming that two observed time series of daily
proportions of infected and removed cases are emitted from two Beta-Dirichlet state-space models,
independent conditionally on the underlying process governed by the Markov SIR process:(

Y I
t /N

)
| θt, τ1 ∼ Beta

(
λIθIt , λ

I
(
1− θIt

) )
,(

Y R
t /N

)
| θt, τ1 ∼ Beta

(
λRθRt , λ

R
(
1− θRt

) )
,

and the Markov process associated with the latent proportions is built as:

θt | θt−1, τ1 ∼ Dirichlet
(
ωf1(θt−1, β, ν)

)
,

where θt denotes the vector the true underlying probabilities of the compartments on day t whose
mean is modeled as an unknown function of the probability vector from the previous time point,
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along with the transition parameters: τ1 = (θT
0 , β, ν,λ, ω). The scale parameters λI , λR and ω

control the variability of the observed and latent processes Y I
t , Y R

t and θt, respectively.
The function f1(·) is then solved as the mean transition probability determined by the SIR dy-

namic system, using a fourth order Runge-Kutta (RK4) approximation (see supplementary Section
S.3 for the solution):

f1 (θt−1, β, v) =

 θSt−1 + 1/6
[
kS1
t−1 + 2kS2

t−1 + 2kS3
t−1 + kS4

t−1

]
θIt−1 + 1/6

[
kI1t−1 + 2kI2t−1 + 2kI3t−1 + kI4t−1

]
θRt−1 + 1/6

[
kR1
t−1 + 2kR2

t−1 + 2kR3
t−1 + kR4

t−1

]
 :=

 α1(t−1)

α2(t−1)

α3(t−1)

 .

Computational details for the eSIR model such as posterior sampling strategy using MCMC
algorithm is complemented by the R package publicly available at https://github.com/
lilywang1988/eSIR.

2.2 SAPHIRE model

The SAPHIRE model (Hao et al., 2020) is an extension of the basic SIR model, with additional
compartments to allow for unobserved categories such as, unascertained and hospitalized popula-
tion. Specifically, in a SAPHIRE model the population is compartmentalized into susceptible (S),
exposed (E), presymptomatic infectious (P), ascertained infectious (I), unascertained infectious (A),
isolation in hospital (H) and removed (R). Denoting the true underlying accounts of the S, E, P, A,
I, H and R compartments on day t by St, Et, Pt, At, It, Ht and Rt, respectively, the dynamics of
these compartments across time t were described by the following set of differential equations (see
Fig. 2(b) for a schematic representation):

dSt

dt
= n−

βSt

(
It + α (At + Pt)

)
N

− nSt

N
,

dEt

dt
=

βSt

(
It + α (At + Pt)

)
N

− Et

De
− nEt

N
,

dPt

dt
=

Et

De
− Pt

Dp
− nPt

N
,

dAt

dt
=

(1− r)Pt

Dp
− At

Di
− nAt

N
,

dIt
dt

=
rPt

Dp
−

(
1

Di
+

1

Dq

)
It,

dHt

dt
=

It
Dq

− Ht

Dh
,

dRt

dt
=

At + It
Di

+
Ht

Dh
− nRt

N
.

To fit the SAPHIRE model, the observed number of ascertained cases in which individuals ex-
perienced symptom onset on day t, Y I

t , were assumed to follow a Poisson distribution:

Y I
t ∼ Poisson

(
λI
t = rPt−1/Dp

)
,

https://github.com/lilywang1988/eSIR
https://github.com/lilywang1988/eSIR
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where Pt−1 denotes the underlying number of pre-symptomatic individuals and r denotes the ascer-
tained rate. For an observation window spanning t = 1 to t = T , the sampling pseudo-likelihood
function for the underlying prevalence parameters is given by:

L(β, r) =

T∏
t=1

e−λI
tλI

t
Y I
t

Y I
t !

(2.1)

after plugging τ2 = (XT
0 , α,De, Dp, Dq, Di, Dh) and Xt = (St, Et, Pt, At, It, Ht, Rt). Here, Xt

denotes the vector of the underlying population counts of the compartments at time t. With the initial
values for the compartments X0 set at pre-fixed values, the pseudo-likelihood function in (2.1) can
be approximated as a function of the parameters of interest, i.e. β and r, by the following steps:

Step 0 The transition parameters τ2 = (XT
0 , α,De, Di, Dh, Dq) and the initial values for the com-

partments X0 = (S0, E0, P0, A0, I0, H0, R0) are fixed;

Step 1 Use the differential equations to generate the change of each compartment at time t = 1, i.e.
dXt/dt = (dSt/dt, dEt/dt, dPt/dt, dAt/dt, dIt/dt, dHt/dt, dRt/dt);

Step 2 Compute the state values of each compartment at time t = 1: Xt = X(t−1) +
dXt−1

d(t−1) , and
the expected new ascertained cases λI

t on day t;

Step 3 Repeat the step 1-3 for t = 2, 3, 4, . . . , T .

For the SAPHIRE model, the MCMC algorithm is implemented with the delayed rejection adap-
tive Metropolis algorithm implemented in the R package BayesianTools (version 0.1.7) to col-
lect posterior samples of the underlying parameters r and β, then calculate the derived quantities the
effective reproduction number Re based on the posterior draws. We refer the reader to (Hao et al.,
2020) for more details.

2.3 eSEIRD model

Similar to the hierarchical structure used in eSIR model, this eSEIRD model (see Fig. 3) works
by assuming that the true underlying probabilities of the 7 compartments follow a latent Markov
transition process which fits not only the count of daily infected, but also the recovered and death
counts.

The dynamics of these 7 compartments across time t were described by the following set of
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Figure 3: Schematic diagram of the proposed eSEIRD model

ordinary differential equations:

dSt

dt
= n− βπ(t)St (It + aAt)

N
− nSt

N
,

dEt

dt
=

βπ(t)St (It + aAt)

N
− Et

De +Dp
− nEt

N
,

dAt

dt
=

(1− r)Et

De +Dp
−

(
(1− κ1)

Di
+

κ1

Di

)
At −

nAt

N
,

dIt
dt

=
rEt

De +Dp
−

((
(1− κ1)

Di
+

κ1

Di

)
+

1

Dq

)
It,

dHt

dt
=

1

Dq
It −

(
(1− κ2)

Dh
+

κ2

Dh

)
Ht,

dRt

dt
=

(
(1− κ1)

Di
It +

(1− κ1)

Di
At

)
+

(1− κ2)

Dh
Ht −

nRt

N
,

dDt

dt
=

(
κ1

Di
At +

κ1

Di
It

)
+

κ2

Dh
Ht.

Hierarchical model: We assumed three observed time series of daily counts of infected, recovered
and death cases are emitted from Poisson state-space models, independent conditionally on the
underlying process, and the Markov process associated with the latent proportions is constructed
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as:

Y I
t | Xt, τ3 ∼ Poisson

(
λI
t =

rEt−1

De +Dp

)
,

Y R
t | Xt, τ3 ∼ Poisson

(
λR
t =

(1− κ1)

Di
It−1 +

(1− κ2)

Dh
Ht−1

)
,

Y D
t | Xt, τ3 ∼ Poisson

(
λD
t =

κ1

Di
It−1 +

κ2

Dh
Ht−1

)
,

Xt | Xt−1, τ3 ∼ Poisson
(
f2 (Xt−1, β, r, κ1, κ2)

)
,

where Xt = (St, Et, At, It, Ht, Rt, Dt) denotes the vector of the underlying population counts
of the 7 compartments: τ3 = (XT

0 , α, β, r,De, Dp, Dq, Di, Dh, κ1, κ2) denotes the whole set of
parameters where XT

0 denotes the prior for the initial states and κ1 and κ2 denote the IFR for
non-hospitalized and hospitalized cases, respectively. The function f2(·) is also solved using RK4
approximation as before (see the solution in Supplementary Section S.4).

f2 (Xt−1, β, r, κ1, κ2) =



XS
t−1 + 1/6

[
kS1
t−1 + 2kS2

t−1 + 2kS3
t−1 + kS4

t−1

]
XE

t−1 + 1/6
[
kE1
t−1 + 2kE2

t−1 + 2kE3
t−1 + kE4

t−1

]
XA

t−1 + 1/6
[
kA1
t−1 + 2kA2

t−1 + 2kA3
t−1 + kA4

t−1

]
XI

t−1 + 1/6
[
kI1t−1 + 2kI2t−1 + 2kI3t−1 + kI4t−1

]
XH

t−1 + 1/6
[
kH1
t−1 + 2kH2

t−1 + 2kH3
t−1 + kH4

t−1

]
XR

t−1 + 1/6
[
kR1
t−1 + 2kR2

t−1 + 2kR3
t−1 + kR4

t−1

]
XD

t−1 + 1/6
[
kD1
t−1 + 2kD2

t−1 + 2kD3
t−1 + kD4

t−1

]


:=



α1(t−1)

α2(t−1)

α3(t−1)

α4(t−1)

α5(t−1)

α6(t−1)

α7(t−1)


We implemented the MCMC algorithm to sample from the posterior distribution of the underly-

ing parameters r and β, and calculate the derived quantities:

R0 = β

[
α(1− r)(Di) +

r

(1/Di + 1/Dq)

]
.

We obtain the posterior mean estimates and credible intervals for the unknown parameters in the
model. Because of the hierarchical structure in the state-space model considered in this model, the
posterior sampling can be done in a straightforward fashion like eSIR using the R package rjags.

3 Modeling COVID-19 Transmission Dynamics in South Africa

3.1 Study design and data source

COVID-19 daily time series data for South Africa were extracted from the COVID-19 Data Reposi-
tory by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (Dong
et al., 2020) from the onset of the first 50 confirmed case (March 15, 2020) to April 1, 2021. We
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fitted the models using data up to December 31, 2020 and predicted the state of COVID-19 infection
in South Africa in a time window, from January 1 to April 1, 2021. To compare the model prediction
performance of different models, we used the symmetric mean absolute percentage error (SMAPE),
given by:

SMAPE =
100%

n

n∑
t=1

|Ft −At|(
|At|+ |Ft|

)
/2

,

where At is the observed value and Ft is the forecast value in the same time period. This design
enabled us to select an optimal modeling strategy for South Africa data and check the robustness of
prediction performance across different models.

3.1.1 Prior specification

We describe the prior choices and where appropriate, initial values for the model hyper-parameters
in this section and a complete summary and list of notations and assumptions are available in Supple-
mentary Table S.1.1. To begin with, we assumed a constant population size (N = 57, 779, 622) for
all models and fixed a few transition parameters below in the SAPHIRE and eSEIRD model. First,
we set an equal number of daily inbound and outbound travelers (n), in which n = 4 × 10−4 N

from March 15 to 25, 2020 estimated by the number of international travelers to South Africa in
2018 (The World Bank, 2020), otherwise n = 0 when border closed, i.e. after March 26. We fixed
the transmissibility ratio between unascertained and ascertained cases at α = 0.55 assuming lower
transmissibility for unascertained cases (Li et al., 2020b), an incubation period of 5.2 days, and a
pre-symptomatic infectious period of Dp = 2.3 days (Li et al., 2020b; He et al., 2020b), implying
a latent period of De = 2.9 days. The mean of total infectious period was Di + Dp = 5.2 days
(Li et al., 2020b), assuming constant infectiousness across the pre-symptomatic and symptomatic
phases of ascertained cases (Li et al., 2020a), thus, the mean symptomatic infectious period was
Di = 2.9 days. We set the period of ascertained cases from reporting to hospitalization Dq = 7

days, the same as the median interval from symptom onset to admission reported (Ferretti et al.,
2020; Garg et al., 2020). The period from being admitted in hospital to discharge or death was
assumed as Dh = 8.6 days (Wang et al., 2020b). We fit the SAPHIRE and eSEIRD model in six
time periods of 2020: March 15-March 26, March 27- April 30, May 1- May 31, June 1- August 17,
August 18-September 20, and September 21-December 31, separated by the change-points of the
lockdown strictness level, and denote the ascertained rate and transmission rate in the time periods as
r1, r2, r3, r4, r5, r6, β1, β2, β3, β4, β5 and β6. In addition, we denote the IFR for non-hospitalized
cases κ11, κ12, κ13, κ14, κ15, κ16 and for hospitalized cases κ21, κ22, κ23, κ24, κ25, κ26 in eSEIRD
model.

Choice of Initial states: For the eSIR model, the prior mean for the initial infected/removed pro-
portion was set at the observed infected/removed proportion on March 15, 2020, and that for the
susceptible proportion was the total number of the population minus the infected and removed pro-
portions (Song et al., 2020). For the SAPHIRE model, other than setting prior parameters for initial
states, we set the number of initial latent cases E(0) was the sum of those ascertained and unascer-
tained cases with onset during March 15-17, 2020 as De = 2.9 days (Hao et al., 2020) and the
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number of initial pre-symptomatic cases P (0) was that from March 18-19, 2020 as Dp = 2.3 days
(Hao et al., 2020). The number of ascertained symptomatic cases I(0) was assumed as the number
of observed infected cases on March 15, 2020 excluding H(0), R(0) and D(0) (the initial numbers
for hospitalized, recovered, and deaths). The initial ascertainment rate (r0) was assumed as 0.10 as
reported in literature (Bhattacharyya et al., 2021; Lau et al., 2020), implying A(0) = 0.90/0.10I(0),
and a sensitivity analysis with r0 = 0.25 was conducted to address weak information for r0 obtained
in South Africa and variation of r0 in different scenarios. H(0) was assumed as 50% of the observed
ascertained cases on March 9, 2020 (by assuming the period from reported to hospitalized was 7 days
(Ferretti et al., 2020; Garg et al., 2020) at the early stage of the pandemic). In addition, we denoted
R(0) as the sum of observed recovered and death cases on March 15. The number of initial sus-
ceptible cases S(0) was calculated as the total population (N) minus E(0), P (0), I(0), A(0) and
R(0).

In the eSEIRD model, we set the prior mean of initial ascertained, unascertained and hospitalized
cases as I(0), A(0) and H(0) discussed above. However, since the latent compartment incorporates
the pre-symptomatic cases, the mean of the initial latent cases was set as the sum of those ascertained
and unascertained cases with onset during March 15-19, 2020 as De +Dp = 5.2 days (Hao et al.,
2020).The prior mean of initial recoveries and deaths were fixed as the number of observed recovered
and death cases on March 15, 2020, respectively. Therefore, the prior mean of initial susceptible
compartment was set as the total population excluding the mean of other compartments.

Prior distributions: In the eSIR model, the log-normal priors were used for the removed rate ν

and the basic reproduction number R0, in particular ν ∼ LogN(2.955, 0.910), with E(ν) = 0.082

and SD(ν) = 0.1 (Song et al., 2020), and R0(= β/ν) ∼ LogN(0.582, 0.223) with E(R0) = 3.2

and SD(R0) = 1 (Ray et al., 2020). Flat Gamma priors were used for the scale parameters of the
Beta-Dirichlet distributions as follows (Ray et al., 2020):

ω ∼ Gamma(2, 0.0001), λI ∼ Gamma(2, 0.0001), and λR ∼ Gamma(2, 0.0001).

In the eSEIRD model, for the six time periods, all the transmission rates β1, β2, β3, β4, β5 and β6

were given a U(0, 2) prior, ascertained rates r1, r2, r3, r4, r5 and r6 were given Beta(10, 90) prior
(Lau et al., 2020; Rahmandad et al., 2020), the IFR for non-hospitalized cases κ11, κ12, κ13, κ14, κ15,

κ16 ∼ Beta(0.03, 2.93) and for hospitalized cases κ21, κ22, κ23, κ24, κ25, κ26 ∼ Beta(0.44, 1.76)

with mean equal to 0.1% and 20% , respectively (U.S. CDC, 2020; Jassat et al., 2020).
In addition, to account for the effect of time-varying contact rate during the prediction period, we

set a time-varying contact rate modifier π(t) in the eSIR and eSEIRD model where t from January
1 to April 1, 2021: π(t) was set as 0.75 since the lockdown was tuned to level 3 after December 28,
2020. Note that the modifier π(t) is a conjectural quantity and hence must be guided by empirical
studies (Ray et al., 2020). Using MCMC sampling method for the eSIR and eSEIRD model, we set
the adaptation number to be 104, thinned by 10 draws to reduce auto-correlation, and set a burn-in
period of 5× 104 draws under 105 iterations for 4 parallel chains.

We fit the SAPHIRE model in six time periods as in the eSEIRD model. We used r1 ∼
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Beta(10, 90) and reparameterized r2, r3, r4, r5, and r6 by

logit (ri) = logit (ri−1) + δi−1, i = 2, . . . , 6,

where logit(r) = log(r/(1 − r)), and δi ∼ N (0, 1), for i = 1, . . . , 5. We use non-informative
prior distributions for transmission rates βi ∼ U(0, 2) for i = 1, . . . , 6 to reflect lack of information
about these hyperparameters (Hao et al., 2020). Therefore, β and r were assumed to follow different
distributions for these six time periods. Finally, the effective reproduction number can be derived to
be:

Re = β

[
αDp + α(1− r)Di +

r

(1/Di + 1/Dq)

]
.

We set a burn-in period of 105 iterations and continued to run 105 iterations with a sampling step
size of 10 iterations for the MCMC algorithm of the SAPHIRE model.

A comparison between assumptions of the three models in the Supplementary Section S.2.
All analyses were conducted in R (version 4.0.0), and source codes are available at https://
github.com/umich-cphds/south africa modeling. Posterior mean and corresponding
95% credible interval (95% CrI) were reported for the parameters of interests.

4 Results

Here we present the detailed results for South Africa, subdivided into estimation of key epidemiolog-
ical parameters, short-term and long-term forecasts, and finally model evaluation in terms prediction
and quality of fit.

4.1 Reproduction number and intervention evaluation

The estimated posterior mean of R0 was 1.18 (95%CrI: [1.09, 1.28]) in the eSIR model throughout
the training period while in the eSEIRD model, the value of R0 started at 3.22 (95%CrI: [3.19, 3.23])
then dropped though still significantly above 1 after the lockdown implementation and increased to
3.27 (95%CrI: [3.27, 3.27]) during the last three months of 2020 (Table 2). It suggests that the ef-
fective contact rate decreased by more than 50% over the lockdown time period and attained the
lowest point in its trajectory during August to September, 2020 though the lockdown was eased to
a relatively less strict level. On the other hand, the effective reproduction number (Re) in different
lockdown periods estimated by the SAPHIRE model demonstrates that a similar trend but the mag-
nitude of the estimated Re decreased dramatically when r0 increases from 0.10 to 0.25 (Table 2,
Fig. 4), possibly suggesting lack of robustness with respect to the choice of initial r0.

4.2 Short-term and long-term forecasts

We first forecast the total cumulative number of infections, including unascertained cases, in the
SAPHIRE model up to February 28, 2021 depending on the time-period considered for estimating
the trend, and then extend it to April 1, 2021. On February 28, 2021, the estimated cumulative

https://github.com/umich-cphds/south_africa_modeling
https://github.com/umich-cphds/south_africa_modeling
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number of infections are: (a) 43.3 million if the trend of the least strict lockdown (level 1) was
assumed, (b) 36.9-37.8 million if the trend of the lockdown level 2-4 was assumed, and (c) 29.3
million if the trend of strict lockdown was assumed (r0 = 0.10). However, the short-term forecasts
in SAPHIRE model exhibits lack of robustness under different r0 settings, for example, when r0 =

0.25 the estimated cumulative number of infections was 10.6 million if the trend of the least strict
lockdown (level 1) was assumed and 0.9 million if the trend of the lockdown level 2 was assumed.
In the eSEIRD model, the predicted total cumulative number of cases reach 41.2 million under
r0 = 0.10, and 41.6 million under r0 = 0.25, along with estimated total deaths counts as 35 or
37 thousand when r0 = 0.10 or 0.25, respectively, by February 28, 2021. Furthermore, we used
the eSEIRD model to forecast the epidemic trajectory for a relatively longer time period, where we
found that by April 1, the cumulative number of total infected (including the unascertained cases)
and deaths would reach roughly 41.3 million (which is around 70% of the total population in South
Africa) and 35 thousand, respectively. For comparison, the observed number of cases and deaths on
April 1 were 1,549,451 and 52,897, respectively. It is also worth noting that the SIR model used in
Ding et al. (2021) predicted the pandemic to cease transmission by April 28, 2021 with an estimated
fatality count of 17,072.

4.3 Fitting and prediction performance

All the three candidate models were applied to the COVID-19 data in South Africa with high accu-
racy as the estimated daily new cases were close to the observed numbers from March to October,
2020 (Fig. 4 (a)-(c)). However, the eSEIRD model showed a poorer fit during the second pan-
demic wave in South Africa from November to December 2020, compared to the other two models.
The eSIR model performed best in terms of fitting the cumulative ascertained cases with the small-
est SMAPE (2.43% when r0=0.10) while the SAPHIRE model had the second smallest training
SMAPE (Table 4). In terms of predictive accuracy, the SAPHIRE model performed best with the
smallest SMAPE (4.41% for 15 days, 5.92% for 31 days and 6.94% for 91 days when r0=0.10)
while the eSIR model had the second smallest SMAPE (6.90% for 15 days, 10.78% for 31 days and
8.40% for 91 days when r0=0.10) (Table 4). We note that for a few selected important time points,
the predicted number of cases in the eSIR and SAPHIRE model are closer to the observed (Table 3).
The predictive performances for the three competing models substantiate their credibility in terms
of capturing the transmission dynamics for the time-period considered in this study.

4.4 Unascertained cases and deaths

As demonstrated by SAPHIRE modeling results in Figure 4 (d), the large number of unascertained
and pre-symptomatic cases contributed to the rapid spread of disease.The estimated ascertained rates
were very low, starting at 8.99% (95% CrI: [8.20%, 9.80%]), decreasing to below 2 during level 5
to level 3 lockdown and then increasing to 15.48% (95% CrI: [15.24%, 15.73%]) during the second
pandemic wave in South Africa, respectively (Table 2, Fig. 4 (f)). Similarly, in the eSEIRD model,
the estimated ascertained rates were also at a very low level (1.65% to 9.17%) and had a similar
trend as in SAPHIRE model (see Table 2). As mentioned before, the estimated ascertained rates
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were robust with respect to choices for r0 in eSEIRD model, but changes drastically in SAPHIRE
model with r0 changed to 0.25: 95.58% (95%CrI: [76.20%, 99.50%]) before lockdown, between
30.18% to 35.93% during level 5 and 4 lockdown, 95.53% (95%CrI: [81.09%, 99.58%]) in level 3
lockdown, and then decreasing form 33.23% to 18.80% in level 2 to level 1 lockdown.

By the eSEIRD model, the overall IFR was estimated as 0.06% (95%CrI: [0.04%, 0.22%])
throughout the whole time period taking the reported and unreported cases and deaths into account
while the observed overall case fatality ratio was estimated as 2.88% (95% CrI: [2.45%, 6.01%])
(Fig. 5). Furthermore, the eSEIRD model provided Bayesian estimates for IFR and deaths among
hospitalized and non-hospitalized cases. The estimated IFR for hospitalized cases was 15.28%
(95%CrI: [0.01%, 69.10%]) before lockdown and increased to 65.86% (95%CrI: [51.00%, 82.91%])
in the first time period of lockdown. After that, the IFR for hospitalized cases decreased from 22.9%
(95%CrI: [20.75%, 25.18%]) to 7.46% (95%CrI: [7.22%, 7.71%]) during May to September. By
the end of 2020, it again increased to 19.25% (95%CrI: [18.82%, 19.69%]). The IFR of hospitalized
cases was much larger than that of non-hospitalized cases (less than 0.01%),and these estimates were
robust to the choice of r0.

5 Discussion

In this paper, we propose a new infectious disease forecasting model that incorporates the unascer-
tained cases, population movement over different time periods, and the effect of intervention strate-
gies in a unified way and use it to investigate the spread of COVID-19 in South Africa, the hardest hit
country on the African continent. The methodological tools developed here can be used to estimate
the IFR as well as estimate actual COVID-19 deaths from the reported death counts.

The lockdown intervention and mandatory face-mask wearing in public places employed in
South Africa seemed to contain the spread of COVID-19 effectively as the Re decreased dramati-
cally initially but increased later following the relaxation of lockdown stringency afterwards. How-
ever, the Re was consistently above 1 throughout the whole period analyzed, which implies the
interventions failed to dampen the transmission fully, further substantiated by the basic reproduction
number estimates in the eSEIRD model as well. This agrees with the public health experts advice
of carefully implemented intervention policies while taking account their potential economic costs
(Stiegler and Bouchard, 2020).

We also found that the estimated ascertainment rate is very low in South Africa compared to that
reported for many other countries (Hao et al., 2020; Bhattacharyya et al., 2021; Rahmandad et al.,
2020), also implied by the low testing rate and high testing positive rate in South Africa. As of
February 21, the number of total tests conducted is 8.9 million, suggesting that about 15.4% popu-
lation were tested (Ritchie et al., 2020). Furthermore, the estimated ascertainment rate is consistent
with that in other multiple global epicenters under severe pandemic of COVID-19, such as France,
the United States, Italy and Spain in March (Lau et al., 2020). The large number of unascertained
cases is likely to contribute significantly to the continuing spread of COVID-19 Li et al. (2020b);
Cereda et al. (2020); Ioannidis (2021). Our findings suggest that there are around 70% of the total
population in South Africa infected by December 31, 2020, which is roughly consistent with the
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(a) (b)

(c) (d)

(e) (f)

Figure 4: (a)-(c) Daily new number of ascertained infections cases estimated by the mod-
els compared with observed data: (a) eSIR, (b) SAPHIRE, and (c) eSEIRD; (d) Current pre-
symptomatic/unascertained/ascertained infectious in the SAPHIRE model; (e)-(f) Estimated effec-
tive reproduction number (Re) and ascertained rate (r) in the SAPHIRE model in four time periods.
(Assume initial ascertained rate (r0) equal to 0.10.)

seroprevalence survey conducted in South Africa that the estimated prevalence is around 63% in the
Eastern Cape, one of the pandemic centers in South Africa (Sykes et al., 2021). Despite the potential
high prevalence of COVID, the second wave of pandemic appeared in South Africa and other pan-
demic centers like Brazil, which may due to the waning immunity against infection with the time to
the first wave increasing, and the coronavirus lineages might have higher inherent transmissibility
than the pre-existing lineages and be able to evade the immunity generated in response to previous
infection (Sabino et al., 2021). To prevent potential resurgence in the future, addition to the strict
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Figure 5: Case fatality ratio (CFR) and estimated infection fatality ratio (IFR) in the eSEIRD model.
CFR =(Number of reported deaths)/(Number of reported deaths and recovered) ; IFR1 = (Number
of reported deaths)/(Number of of reported and unreported cases); and IFR2 = (Number of reported
and unreported deaths)/(Number of of reported and unreported cases)[20].

interventions, more surveillance testing and effective testing strategies under conditions of limited
test availability, such as contact tracing of the contacts and confirmed cases, will be helpful to curtail
the pandemic in South Africa (Garba et al., 2020).

Although highly transmissible and poorly ascertained, the COVID-19 IFR is estimated as 0.06%
taking account of unreported cases and deaths in South Africa, comparable to the estimates in other
locations with similar low mortality rate based on serological data (Ioannidis, 2021).

The low IFR may be due to the South African population being relatively young which lessens
the fatal impact on general population to some extent (Statista, 2021). Our estimates of the IFR of
hospitalized cases are much higher than that for non-hospitalized cases, suggesting that the most
severe cases may have been admitted to hospitals despite the relatively lack of the testing arrange-
ments. The very low estimated IFR for the non-hospitalized cases also imply that the degree of
under-reporting for death by the model is very low (0.24% by April 1, 2021), and likely to be af-
fected by the same factors.

Comparison of the models: The eSIR and the SAPHIRE model have been successfully applied
to the data in India and Wuhan, China, separately (Song et al., 2020; Hao et al., 2020). Although
SAPHIRE model exhibits superior prediction performance on COVID-19 cases, the estimates of
underlying paratemters and unascertained cases showed lack of robustness to the change of initial
ascertainment rate r0. On the other hand, the eSIR model has the best estimation capability in terms
of the ascertained cases but a relatively poor predictive capacity for capturing the change in the trend
of the epidemic in time for neglecting some important clinical characteristics. The eSEIRD model
also has a good fitting performance but a relatively poor prediction capacity. Table 2 also suggests
that the estimates in eSEIRD model are robust estimated compared to the SAPHIRE model, probably
an artifact of the Bayesian hierarchical model used.
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Table 2: The posterior mean and credible intervals of the basic/effective reproduction number (R0

or Re) and ascertained rate (r) obtained from different models and settings.

Model r0

R0 or Re r(%)

Mean 95%CrI Mean 95%CrI

eSIR 0.1 1.18 [1.09,1.28] - -

0.25 1.18 [1.09,1.28] - -

SAPHIRE

0.1

Mar 15-26 3.6 [3.46,3.74] 8.99 [8.20,9.80]

Mar 27-Apr 30 1.39 [1.37,1.41] 1.67 [1.57,1.78]

May 1-31 1.44 [1.43,1.45] 1.98 [1.93,2.02]

Jun 1-Aug 17 1.62 [1.62,1.62] 1.67 [1.65,1.68]

Aug 18- Sept 20 1.14 [1.13,1.15] 4.01 [3.96,4.06]

Sept 21-Dec 31 3.45 [3.43,3.46] 15.48 [15.24,15.73]

0.25

Mar 15-26 1.44 [1.28,1.72] 95.58 [76.20,99.50]

Mar 27-Apr 30 1.4 [1.35,1.47] 30.18 [23.92,33.17]

May 1-31 1.39 [1.37,1.41] 35.93 [28.99,38.41]

Jun 1-Aug 17 1.07 [1.07,1.07] 94.53 [81.09,99.58]

Aug 18- Sept 20 0.8 [0.79,0.80] 33.23 [28.76,34.99]

Sept 21-Dec 31 1.25 [1.24,1.25] 18.8 [16.47,20.01]

eSEIRD

0.1

Mar 15-26 3.22 [3.19,3.23] 4.7 [4.27,5.17]

Mar 27-Apr 30 1.48 [1.46,1.51] 1.85 [1.77,1.94]

May 1-31 1.52 [1.51,1.54] 2.02 [1.99,2.06]

Jun 1-Aug 17 1.68 [1.67,1.68] 1.65 [1.64,1.66]

Aug 18- Sept 20 1.38 [1.36,1.39] 2.23 [2.21,2.25]

Sept 21-Dec 31 3.27 [3.27,3.27] 9.17 [9.01,9.34]

0.25

Mar 15-26 3.25 [3.23,3.26] 7.2 [6.50,7.95]

Mar 27-Apr 30 1.57 [1.54,1.59] 2.17 [2.05,2.28]

May 1-31 1.54 [1.53,1.56] 2.07 [2.03,2.11]

Jun 1-Aug 17 1.68 [1.67,1.68] 1.65 [1.64,1.65]

Aug 18- Sept 20 1.38 [1.36,1.39] 2.23 [2.20,2.25]

Sept 21-Dec 31 3.27 [3.27,3.27] 9.14 [8.95,9.31]

Recent Developments: Anticipating increased inter-provincial holiday travel during December
2020, and Easter 2021, the South Africa government imposed ad-hoc lockdown measures in poten-
tial hotspot areas around the country, which did contribute positively to the COVID-19 prevention
measures as is evident from the trajectory on Fig. 4. Several reports (e.g. National COVID-19
Modelling Consortium SACEMA, 2021; South African Medical Research Council, 2021) predict
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Table 3: Comparison of the models regarding the cumulative ascertained infected and death with the
observed (in thousands). Bold-faced entries indicate column winners regarding the closeness to the
observed.

Model r0

Infected Death

Estimation Prediction Estimation Prediction

Dec 31 Jan 31 Feb 28 Apr 1 Dec 31 Jan 31 Feb 28 Apr 1

2020 2021 2021 2021 2020 2021 2021 2021

eSIR 0.1 1052 1256 1403 1549 - - - -

0.25 1052 1256 1402 1535 - - - -

SAPHIRE 0.1 1058 1379 1624 1776 - - - -

0.25 1055 1576 2320 3243 - - - -

eSEIRD 0.1 878 917 928 932 31 34 35 35

0.25 924 966 977 980 33 36 37 37

Observed - 1052 1454 1513 1549 28 44 50 54

Table 4: Symmetric mean absolute percentage error (SMAPE) of short-term forecasting in 2021.
Bold-faced entries indicate column winners regarding prediction performance.

Cumulative ascertained cases Cumulative ascertained deaths

Model r0
Training

Testing
Training

Testing

Jan 1 -Jan
15

Jan 1 -Jan
31

Jan 1 -Jan
15

Jan 1 -Jan
31

eSIR 0.1 2.43% 6.90% 10.78% - - -

0.25 2.41% 6.90% 10.78% - - -

SAPHIRE 0.1 3.17% 4.41% 5.92% - - -

0.25 11.13% 2.40% 2.74% - - -

eSEIRD 0.1 13.17% 28.37% 35.50% 66.80% 5.07% 12.89%

0.25 6.03% 23.31% 30.49% 60.30% 5.97% 9.88%

the third wave of COVID-19 to hit South Africa in the austral-winter of 2021.
Around October-November 2020, the B.1.351 or 501.V2 variant, first identified in South Africa,

was considered to be highly transmissible (Tang et al., 2021; Tegally et al., 2021). At the time
of writing, international travel is still restricted, and hence also contributing to the containment of
spread outside South Africa borders.

The AstraZeneca vaccine rollout was halted by the South African Health Products Regulatory
Authority (SAHPRA) as it was examined to be ineffective for the variant prevalent in South Africa,



286 Gu et al.

which delayed the vaccination plan. Thereafter, the Sisonke (‘together’ in Zulu) trial was underway
(South African Medical Research Council, 2021), which is a Phase 3 ENSEMBLE trial managed
by the SAMRC aimed to ‘ . . . make a vaccine available while the licensing process takes place’.
At the time of writing, the J&J single-dose vaccine is being administered to healthcare workers. It
is estimated that the total cost of immunizing two-thirds of South Africa’s population to achieve
herd-immunity could be around ZAR22 billion, excluding logistical cost of deployment. Another
important logistical constraint that remains in South Africa, albeit for all of sub-Saharan Africa,
is the requirement of low storage temperatures for mRNA vaccines (Fontanet et al., 2021) thus
restricting the options from the variety of vaccines available currently.

Strengths and Limitations: The key methodological innovation for the proposed method is re-
vealed by a quick comparison between the schematic diagrams for eSEIRD model (Fig. 3) and
SAPHIRE model (Fig. 2(b)). Broadly speaking, eSEIRD incorporates π(t), the transmission rate
modifier as well as splits the ‘removed’ compartment into ‘recovered’ and ‘deaths’ while accounting
for separate rates for ascertained, unascertained and hospitalized cases.

Despite the superior performance and robustness exhibited by the models examined here, there
are some important limitations. First, the model assumptions were elicited from previous reports
from other countries because of the dearth of such information for South Africa, especially for the
fixed values for hyper-parameters. Though the estimation of parameters and prediction of infections
seem to be robust to these assumptions to some extent, the inference and prediction would be much
more convincing when based on accurate information specific to South Africa.

Second, the ascertained rate was assumed to follow the same distribution in a long time pe-
riod in the eSEIRD model although in reality it might be time-varying depending on the accumu-
lating knowledge and deployment of clinical resources for COVID-19, given the spatial variation
within South Africa regarding the population density and movement, as well as regarding location
of COVID-19 hotspots and hospital resources. Further, the population density is highly heteroge-
neous in different regions in South Africa with higher concentration near high-density economic-hub
cities, such as Johannesburg, Cape Town and Durban. COVID-19 cases are also diversely spread.
For instance, Gauteng Province is spatially very small, and is a highly dense province, with roughly
30% of total cases in the nation, while about 49% of confirmed cases cluster in KwaZulu-Natal,
Eastern Cape and Western Cape Provinces. In addition, the seroprevalence study also suggested
that the prevalence may vary from city to city: 63% in the Eastern Cape, 52% in the KwaZulu Na-
tal and 32% in the Northern Cape (Sykes et al., 2021). Without considering these heterogeneities
and potential confounding factors in individual regions, the conclusion on the national data might
be biased. The burden of HIV and tuberculosis comorbidity, particularly among the less privileged
socio-economic population, also adds to the complexity of analyzing the COVID-19 data from South
Africa (Boulle et al., 2020).

Third, in this paper we implicitly assumed that the recovered cases would not be infected again,
but this assumption is still inconclusive based on extant research for COVID-19 (Gousseff et al.,
2020). It might lead to a resurgence if this assumption is not valid and the interventions are to-
tally lifted. Thus, it might be necessary to conduct more national serological surveys on COVID-
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19 among the general population in South Africa to confirm the national, as well as provincial,
seroprevalence. Such large-scale studies will also provide more powerful evidence to examine the
evolving benefits of non-pharmaceutical intervention decisions and provide guidance to manage
provincial level disparity.

Finally, from the early stage of this pandemic to now, there has been an explosive development
in COVID-19 forecasting models, but systematic comparison between the available models in terms
of out-of-sample prediction and inference has been rare (see e.g. Friedman et al., 2020), as are
carefully executed simulation studies where the ‘ground truth’ is known. Lack of simulation studies
comparing the candidate methods is also a limiting feature of this paper, and we hope to pursue this
in a future endeavor.
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