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SUMMARY

Determining the maximum tolerated dose (MTD) is the main challenge of phase I clinical
trials. There are many methods in the literature to determine the MTD. The D-optimal
design can also be used to find the MTD. The D-optimal design depends on the Fisher
information matrix (FIM), and it minimizes the generalized variance of the parameter es-
timates. However, the D-optimal design is yet to receive much attention from clinicians.
Since a dose-response model is usually non-linear, the FIM depends on the unknown model
parameters. To optimize the FIM through the D-criterion, values need to be assumed for
the model parameters. This paper focuses on investigating four different D-optimal designs
depending on parameter values: design based on posterior Bayes estimators, design based
on maximum likelihood estimators, sequential Bayesian design and two-stage Bayesian
design. Six plausible dose-response scenarios and a real scenario are investigated through
a simulation study. Except for the D-optimal design that utilizes maximum likelihood es-
timates in FIM optimization, all other D-optimal designs are found very competitive for
the correct MTD recommendation. The D-optimal designs are also compared with an A-
optimal design. The performance of A-optimal design is not attractive as these designs.
Because of its numerical simplicity compared to the others, the posterior-based D-optimal
design is recommended for dose-finding in phase I clinical trials.
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1 Introduction

Clinical trials explore whether a medical strategy, treatment, or device is safe and effective for
humans. They are commonly divided into four phases: phase I, phase II, phase III, and phase
IV. Phase I is the first for testing in humans and designed to assess the safety, tolerability, and
pharmacokinetics of a drug. A phase I clinical trial tries to explore the dose-limiting toxicity (DLT)
of a drug. The goal is to find the dose with a probability of DLT that patients can maximally bear
and is known as the MTD. There are two classes of designs for phase I trials: rule-based and model-
based. Standard rule-based designs assign new patients to dose levels according to prespecified
rules. They do not stipulate any assumption regarding the dose-toxicity curve. An alternative dose
escalation method uses statistical models that actively seek a dose level that produces a prespecified
probability of DLT using information from all the enrolled patients. This method is conveniently
carried out under the Bayesian framework. These model-based designs use all of the available
data to model the dose-toxicity curve. Conventional model-based designs include the continual
reassessment method (CRM), escalation with overdose control, and time-to-event monitoring CRM,
etc.

The CRM is the first Bayesian model-based method proposed for phase I trials (O’Quigley et al.,
1990). The initial estimate of parameters required for this method is generally elicited from the ex-
perts familiar with the preclinical data or who have experience with similar drugs, if any exists.
Although this initial estimate may not be accurate, it guides dose escalation. In the original de-
scription of the CRM, all patients are treated at the dose thought to be closest to the MTD, which
corresponds to the dose at the target toxicity level. The estimation of the probability of encountering
a DLT is updated for each new patient who enters the study at any dose level until a prespecified
condition is met, at which point the trial is stopped. The trial continues until a fixed sample size of n
is achieved. The original CRM allowed for multiple-dose escalations and de-escalations. However,
the original CRM version received considerable debate in the statistical literature since it starts with
the initial MTD. Many patients are also likely to be exposed to high toxicity because of skipping a
dose. As a result, many modifications have been proposed by O’Quigley and Chevret (1991), Korn
et al. (1994), Faries (1994), Goodman et al. (1995), Møller (1995), Piantadosi et al. (1998), and
Heyd and Carlin (1999).

The D-optimal design, a model-based design, can also be used to find the MTD. Chaloner and
Verdinelli (1995) presented a unified view of Bayesian experimental design by putting experimental
design in a decision-theoretic framework. This framework justifies many optimality criteria, includ-
ing the D-optimality criterion, and opens new possibilities for implementing D-optimal designs.
For example, Haines et al. (2003) presented a broad approach to the design of phase I trials for the
efficient estimation of the MTD. They constructed constrained Bayesian c- and D-optimal designs.
The imposed constraint incorporates the optimal design points and their weights, confirming that the
probability that an administered dose exceeds the maximum acceptable dose is low. They consid-
ered both log doses on the real line and discrete doses in practical consideration. Their exploration
was mainly in a sequential Bayesian D-optimal design discussed in Section 2.2.4. They found the
design effective and efficient for estimating model parameters and protecting patients from highly
toxic doses. Alam (2016) compared the continual reassessment method with the D-optimal design.
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In this article, we engage D-optimal designs to find the MTD. The design maximizes the de-
terminant of the FIM or equivalently minimizes the determinant of the inverse of the FIM. That is,
it minimizes the generalized variance of the parameter estimates. The A-optimality minimizes the
total variance of the parameter estimates. The c-optimality is different from the previous criteria
because here interest is in the estimation of a linear combination of the model parameters with min-
imum variance. Since interest is on the variance of the parameter estimates only, we are using the
D-optimality criterion. The Cramér-Rao inequality tells that the variance of an unbiased estimator is
greater than or equal to the inverse of the FIM. Also, the maximum likelihood estimators’ variance
approaches the inverse of the FIM for large n. Therefore, by minimizing the inverse of the FIM’s
determinant, we minimize the asymptotic variance of the estimates of the model parameters. It is
well known that the FIM for a non-linear model depends on the unknown model parameters (White,
1973). We can begin with a guess about the parameters, but with the advancement of a trial, the
up-to-date estimates of the parameters can be used.

This paper looks at four different D-optimal designs based on parameter values. The first design
we consider is a posterior mean-based D-optimal design. The second one is based on the maximum
likelihood estimates (MLE) of the model parameters. Instead of using single values as in the previous
two designs, the third and fourth ones use the prior distribution of the model parameters. The latter
two designs are Bayesian D-optimal designs. An MLE-based A-optimal design is also incorporated
to assess the D-optimal designs. The paper attempts to help the clinicians choose a D-optimal
design out of many. It is organized as follows. Section 2 describes the designs for comparison. The
simulation setup is presented in Section 3. Section 4 provides the numerical results. Implementation
of the designs based on a real study is included in Section 5. Finally, a discussion appears in Section
6.

2 Methods

A principal goal of phase I trials is to establish a dose to be tested in phase II trials. The guiding prin-
ciple for dose escalation in phase I trials is to avoid unnecessary patient exposure to subtherapeutic
doses of a drug while preserving safety and maintaining rapid accrual. In the following sections, we
describe the dose-response model and dose-optimization criteria used in this paper.

2.1 Model

Assume that there are d ordered doses X = {x(1), x(2), . . . , x(d)} for an experimental drug based
on the preclinical studies. Responses are often continuous measurements in phase I trials, and they
are dichotomized for the convenience of modeling. To characterize the dose-response relationship
for such a binary response, the following logistic model is used

ψ(x,ϑ) =
exp

(
ϑ1 + ϑ2x

)
1 + exp

(
ϑ1 + ϑ2x

) , (2.1)
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where ϑ = (ϑ1, ϑ2) is the vector of dose response parameters and x is the dose given to a patient.
For simplicity, we present ψ(x,ϑ) by ψ. Let us define a binary random variable

R =

{
1, if the patient experiences DLT;

0, otherwise,

with probabilities Pr(R = 1) = ψ and Pr(R = 0) = 1−ψ. This R has a Bernoulli distribution with
probability function as

f(r) = ψr(1− ψ)1−r,

Then the likelihood function for the model in (1) is

L(ϑ|x, r) = ψr(1− ψ)1−r,

and the log-likelihood function is

l(ϑ|x, r) = r log(ψ) + (1− r) log(1− ψ).

The score functions can be obtained as

U1 =
∂l

∂ϑ1
= r − ψ,

and
U2 =

∂l

∂ϑ2
= x(r − ψ).

Using the scores, we can easily obtain the FIM for a single patient as

I(x,ϑ) =

 ψ(1− ψ) xψ(1− ψ)

xψ(1− ψ) x2ψ(1− ψ)

 . (2.2)

This FIM is used in the construction of various D-optimal designs that we discuss below.

2.2 Design criteria

The construction of D-optimal designs for non-linear models depends on the unknown model pa-
rameters ϑ. As the first patient usually receives the lowest dose in a trial, it is possible to utilize
the parameter estimates based on the available data to determine the D-optimal dose for the second
patient. The parameters are re-estimated each time in an adaptive trial, and hence the up-to-date es-
timates can be used in the dose-optimization criterion. Using the posterior means of the parameters
or maximum likelihood estimates will result in two designs: posterior-based D-optimal design and
MLE-based D-optimal design. An alternative is to adopt a Bayesian approach to design by optimiz-
ing the average function of the information matrix over a prior distribution placed on the unknown
parameters. This approach can be applied in two ways: sequential Bayesian D-optimal design and
two-stage Bayesian D-optimal design.

A D-optimal design tends to choose doses from the extremes of the design region. As a result,
there is a chance of allocating a patient to the highly toxic dose, which may cause harm. Hence, a
more straightforward constraint on dose escalation proposed by Goodman et al. (1995) is used in
our designs, increasing the dose by only one pre-specified level at a time.
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2.2.1 Posterior-based D-optimal design

Assume that we are at the kth step of a trial, which means k patients have been treated with different
doses from X . Then x be a k × 1 dose vector with components xl, and let r be a k × 1 outcome
vector with rl as the lth row (l = 1, . . . , k) representing the outcome obtained from a patient. The
likelihood function for the kth step is written as

Lk(ϑ|x, r) ∝
k∏

l=1

{
ψ(xl,ϑ)

}rl{
1− ψ(xl,ϑ)

}1−rl
.

The posterior means of the components of ϑ at the kth step are obtained as

ϑ̂ik =

∫
Θ
ϑi p(ϑ)Lk

(
ϑ|x, r

)
dϑ∫

Θ
p(ϑ)Lk

(
ϑ|x, r

)
dϑ

, i = 1, 2,

where Θ is the parameter space and p(ϑ) is the prior distribution of the parameters. A bivariate
uniform density can be assumed for the parameters. A choice of u1<ϑ1<u2 and u3<ϑ2<u4 gives
a restricted parameter space as Θ̃ =

{
ϑ : u1<ϑ1<u2, u3<ϑ2<u4

}
so that

p(ϑ) =
1

(u2 − u1)(u4 − u3)
, ϑ ∈ Θ̃.

The doses received by the k successive patients from X are represented as ξk = {x1, x2, . . . , xk}.
Now let us define

M
(
x|ξk, ϑ̂k

)
=

k

k + 1
M

(
ξk, ϑ̂k

)
+

1

k + 1
I
(
x, ϑ̂k

)
,

where M(ξk, ϑ̂k) =
∑k

i=1 I(xl, ϑ̂k) and I(xl, ϑ̂k) is the FIM for a patient who received the dose
xl, as shown in (2.2).

According to the construction of optimal experimental designs by Atkinson et al. (2007), we can
select the dose xk+1 for the next patient such that

xk+1 = argmax
x∈X

ϕD

{
M

(
x|ξk, ϑ̂k

)}
, (2.3)

where ϕD{M} = |M |. A trial is continued until a fixed sample size n is achieved. We represent
this design by D1.

2.2.2 MLE-based D-optimal design

This design is similar to the posterior-based design apart from the fact that the dose-response pa-
rameters ϑ are estimated through the maximum likelihood estimation procedure. It is well known
that the maximum-likelihood estimates can be obtained by solving the iterative equation

I(i−1)ϑ̂
(i)
k = I(i−1)ϑ̂

(i−1)
k +U (i−1),
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where I refers the FIM in (2.2), U is the score vectors, and the superscript (i) indicates the ith
approximation. The obtained estimates ϑ̂k are then used in the dose optimization criterion in (2.3)
to find the appropriate dose for the next patient.

Getting nontoxic responses only means there is no heterogeneity in the information. This lack
of sufficient information makes MLE unattainable (Silvapulle, 1981). Hence, Storer’s up-and-down
design can be used until the first DLT occurs. Storer (1989) recommended three designs to follow in
phase I clinical trials. Among the recommended designs, we have followed the first design, where
cohort size is kept one at each dose, and escalation is done to the next higher dose if a nontoxic
outcome occurs. After the occurrence of a toxic outcome, the MLE-based design starts. As like the
previous design, a trial is continued until a fixed number of patients n is achieved, and the design is
referred to as D2.

2.2.3 Sequential Bayesian D-optimal design

The sequential Bayesian D-optimal design at any step k, for any given dose x, can be constructed
so that it maximizes the expectation

ϕDseq

(
ξk

)
= Eϑ ln

∣∣∣M(x|ξk,ϑ)
∣∣∣

=

∫
Θ

ln
∣∣∣M(x|ξk,ϑ)

∣∣∣ pk (ϑ|x, r) dϑ, (2.4)

where ξk has been defined earlier, pk (ϑ|x, r) is the posterior density for any step k, obtained by
updating the prior p(ϑ), as

pk (ϑ|x, r) =
p(ϑ)Lk

(
ϑ|x, r

)
dϑ∫

Θ
p(ϑ)Lk

(
ϑ|x, r

)
dϑ

, (2.5)

and for a specific dose x, M(x|ξk,ϑ) is defined as

M (x|ξk,ϑ) =
k

k + 1
M (ξk,ϑ) +

1

k + 1
I(x,ϑ),

with M (ξk,ϑ) =
∑k

i=1 I (xl,ϑ) , and I (x,ϑ) is the FIM for a patient who received the dose x.
In this design, we can select the dose xk+1 for the next patient such that

xk+1 = argmax
x∈X

ϕDseq(ξk).

As like the previous two designs, a trial is continued until a fixed number of patients n is achieved,
and the design is presented as D3.

2.2.4 Two-Stage Bayesian D-optimal design

This design is constructed based on the paper of Haines et al. (2003), which they called the se-
quential design. However, our design is slightly different from that of Haines et al. (2003). In both
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stages of the sequential design, a constraint on the dose space using an upper value of the dose’s
distribution function is used. This constraint makes the computation of the design complex for any
user. In contrast, we have used the dose-skipping constraint suggested by Goodman et al. (1995), as
mentioned in Section 2.2. The stages of the design proceed as follows.

In the first stage, a Bayesian D-optimal design ξ∗D is obtained by maximizing

ϕDstage1 (ξ) = Eϑ ln
∣∣∣M(ξ,ϑ)

∣∣∣
=

∫
Θ

ln
∣∣∣M(ξ,ϑ)

∣∣∣ p (ϑ) dϑ,
where

M(ξ,ϑ) =

d∑
i=1

wiI
(
x(i),ϑ

)
, (2.6)

is constructed over a finite set of d ordered doses X = {x(1), x(2), . . . , x(d)}, and p (ϑ) is the
prior distribution. Here, wi’s are the weights on the distinct points x(i) for i = 1, 2, . . . , d, wi>0,∑d

i=1 wi = 1 for a continuous design

ξ =

x(1) x(2) . . . x(d)

w1 w2 . . . wd

 ,

and I(x(i),ϑ) is the FIM defined in (2.2). After having an appropriate optimal design ξ∗D, initially,
n1 patients are allocated to the appropriate doses and their responses are recorded. The number
of initial patients n1, is kept as small as possible for ethical reasons, in particular, if the prior is
not informative. However, at the same time, greater precision in starting the sequential procedure
is achieved if n1 is large. To achieve an integer allocation of the n1 patients to the d doses, the
algorithm in Pukelsheim (1993) has been used.

In the second stage of this procedure, patients are allocated to the appropriate optimal dose
levels in a stepwise allocation. In this case, after having n1 patients in the first stage, n2 patients
are considered in the second stage. Thus, in a total, n1 + n2 patients are considered in the whole
design. Specifically, in the first step of the second stage, a single patient or a small cohort of patients
is assigned to the dose x that maximizes

ϕDstage2 (ξ) =

∫
Θ

ln
∣∣∣nM(ξ∗D,ϑ) + I(x,ϑ)

∣∣∣ p(ϑ|x, r) dϑ, (2.7)

where n = n1 + 1, M(ξ∗D,ϑ), as shown in (2.6), is the information matrix at the updated optimal
design ξ∗D, I(x,ϑ) is the FIM for a single dose x, and p (ϑ|x, r) is the posterior density defined in
(2.5).

In subsequent steps and as the data accrue, the dose allocated at each step is chosen to maximize
the above criterion, but with the number of the patients already in the study n, the optimal design
ξ∗D, and the posterior density p(ϑ|x, r), appropriately updated. We can select the dose xk+1 for the
next patient such that

xk+1 = argmax
x∈X

ϕDstage2(ξk),
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where ϕDstage2(ξk) is defined according to (2.7) for any step k. As like the other designs, a trial
is continued until a fixed number of patients, the sum of n1 and n2, is achieved. This design is
presented as D4.

2.2.5 MLE-based A-optimal design

This design is similar to the MLE-based D-optimal design with the exception that A-optimality
criterion selects the dose xk+1 as follows:

xk+1 = argmax
x∈X

ϕA(ξk),

where ϕA(ξk) = tr
{
M−1(ξk, ϑ̂k)

}
reserving all notations defined earlier (Atkinson et al., 2007).

The design is referred as A in the paper.

3 Setup to Simulations
A simulation study is conducted to investigate the operating characteristics of the designs. Six
plausible dose-response scenarios are considered, as shown in Figure 1. Each scenario has the set
of six available doses as X = {1, 3, 5, 7, 9, 11}. We use equally spaced doses, as it is a common
practice in dose-finding studies. Moreover, we choose six doses since a typical dose-finding study
uses 5-6 doses to determine the MTD. The scenarios differ only in terms of the shape of the toxicity
curve. The target toxicity level of γ is assumed to be 0.33. The first four scenarios have the true
MTDs as doses 3, 5, 7, and 11, respectively, and they all are available in the dose vector X . These
are the doses at which the probabilities of DLT are less than or equal to the target toxicity level
γ. More specifically, the probabilities of DLT at these doses are 0.32, 0.32, 0.33, and 0.32. In
the last two scenarios, the dose, at which the probability of DLT close to the target rate, is in the
middle of two available doses from X . The true MTD in Scenario 5 is 6, which lies between the
available doses 5 and 7 with probabilities of DLT as 0.24 and 0.43, respectively. Since dose 6 is
not available in X , dose 5 is assumed to be the true MTD. In Scenario 6, we see that the true MTD
is 10, which is not available in X ; it lies between the available doses 9 and 11 with probabilities
of DLT as 0.28 and 0.39, respectively. Hence, dose 9 is assumed to be the true MTD. These two
scenarios are considered, as in real trials, we may start with the set of doses, where none of them
has the probability of DLT exactly or approximately equal to the target toxicity level.

For the Bayesian designs, a bivariate uniform distribution is assumed for the dose-response pa-
rameters ϑ. A single parameter space Θ̃ =

{
ϑ : −4.3 < ϑ1 < − 2.3, 0 < ϑ2 < 1

}
is con-

sidered for all the six scenarios. The parameter space has been found to allow a wide range of
dose-response scenarios including the assumed ones for simulation study. The Bernoulli distribu-
tion is used to generate the response following the assignment of a dose to a patient.

Each trial starts with the lowest dose of 1 mg/kg-body weight applied to a patient for the first
two designs. As described in Section 2, the dose-response parameters are estimated after receiving
the outcomes. Then a dose is selected following the dose-optimization criterion associated with the
particular design. The selected dose is applied to a new patient. After receiving the second patient’s
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Figure 1: Dose-response scenarios for the simulation study with respective parameter values: Sce-
nario 1, ϑ = (−3.3, 0.85); Scenario 2, ϑ = (−3.3, 0.51); Scenario 3, ϑ = (−3.3, 0.37); Scenario
4, ϑ = (−3.3, 0.23); Scenario 5, ϑ = (−3.3, 0.43); Scenario 6, ϑ = (−3.3, 0.26). The dashed
horizontal line indicates the target toxicity level.

outcomes, the dose-response parameters are re-estimated, and a dose is chosen for the third patient.
The process continues until the trial reaches the maximum number of patients n, after which the
MTD is determined. The estimated dose-toxicity curve based on the parameter estimates at the last
stage is used to find the MTD. The dose for which the absolute difference between the estimated
probability of DLT and the target toxicity level is minimum is taken as the MTD. That is, we find
the dose as

xn+1 = argmin
x∈X

∣∣∣ψ(x, ϑ̂n)− γ
∣∣∣.

For the third design, the process is similar to the previous two designs. The difference is that
dose-response parameter estimates have no use in dose selection for the successive patients. Instead,
at each step we maximize the objective function in (2.4), which utilizes the prior distribution of the
parameters ϑ. The prior is updated after receiving outcomes at each step, accordingly (2.5). Once
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the trial reaches n, the dose-response parameters are estimated to obtain the MTD, as in the previous
two designs.

As described in Section 2.2.4, in its first stage of the fourth design, we find an appropriate
optimal design ξ∗D. The R package Rsolnp is used to obtain the weights wi of that optimal design.
Initially, n1 = 5 patients are assigned to the corresponding doses in the optimal design, and then
the responses are simulated. For an efficient rounding of the integer allocation of the 5 patients, the
R function efficient.rounding() is utilized under the package AlgDesign. The function
implements an efficient rounding procedure developed by Pukelsheim and Rieder (1992), to round
approximate theory designs into replicated integer approximations. We obtain the response vector r
for the first n1 patients. Before starting the second stage, we update the prior p(ϑ) using the response
vector r and the dose vector x, accordingly (2.5), which is a function of the unknown parameters
ϑ. In its first step of the second stage, the design searches for the best dose according to the design
criterion in (2.7). Using the information obtained in that step, we update n, ξ∗D, and p(ϑ|x, r). The
subsequent steps continue in a similar way until a pre-specified n is achieved. It is worth mentioning
that weights wi of the optimal design ξ∗D are the percentages of dose allocation calculated in each
step. Also, the determination of the MTD and the stopping rule are the same for all the four designs
presented.

At the end of each simulated trial, we record the MTD, allocated doses to the patients, and
estimate the probability toxicity at the MTD. The recorded estimates of toxicity over the simulations
are averaged to find the bias in estimating the probability of toxicity at the recommended MTD.
Varying n is considered for the scenarios, and it includes the values 15, 20, 25, and 30. Each case is
investigated through 1000 simulations using a self-developed code in R. In a computer with a Core
i7 processor and 8 GB RAM, the average processing times of 1000 simulations for the successive
designs are 20 minutes, 10 minutes, 18 hours, and 25 hours, respectively.

4 Numerical Results

Scenario 1 has dose 3 as the true MTD. If n = 15, it is selected as the MTD in 95.8%, 76.5%,
96.5%, and 96.1% of the trials by the designs D1, D2, D3, and D4, respectively: see Table 1. As n
increases, the identification of the MTD improves for all the designs. The percentage of patients that
receive the true MTD during the trials is highest in D2, followed by D1, D4 and D3, respectively.
For instance, when n = 20, 32.9%, 23.9%, 22.4%, and 18.5% of the patients are treated at the true
MTD by the designs D2, D1, D4 and D3, respectively. The percentage of trials recommending a
highly toxic dose as the MTD is highest for D2. Except D2, the other three designs perform almost
in a similar way.

The true MTD in Scenario 2 is dose 5. If we engage 15 patients, as shown in Table 2, dose 5
is selected as the MTD in 75.4%, 52.2%, 66.7%, and 67.7% of the trials by D1, D2, D3, and D4,
respectively. The designs become more able to identify the true MTD as n increases. The percentage
of patients that receive the true MTD during the trials is highest at D2, followed by D4, D3 and D1,
respectively. If n = 15, the percentage of patients treated at the true MTD by the successive designs
are 23.5%, 19.1%, 13.7%, and 8.2%, respectively. The percentage of trials recommending a highly
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toxic dose as the MTD is highest for D2. Other than D2, the designs perform very similarly.
Dose 7 is the right dose to be identified in Scenario 3. If n = 15, the successive designs D1

to D4 recommend this dose as the MTD in 46.6%, 42.4%, 46.7%, and 45.2% of the trials, respec-
tively: see Table 3. This identification of the MTD improves for all the designs as n increases. The
allocation of the true MTD during the trials is almost the same in all the designs. The percentage
of trials recommending highly toxic doses and subtherapeutic doses as the MTD is highest for D2.
To conclude, except D2, the other designs perform very similarly. Note that D2 is the design ob-
tained following the traditional approach to D-optimality. The maximum likelihood estimates of
parameters are plugged in to obtain the next dose at each stage of a trial. Therefore, the behavior
that D-optimum design can allocate doses from the extreme of the design region is quite evident in
these scenarios.

Scenario 4 has dose 11 as the true MTD, and it is the highest available dose in X . As indicated
in Table 4, if n is 15, the true MTD is selected in 23.6%, 43.2%, 44.2%, and 24.8% of the trials
by the successive designs. Except for D4, the MTD identification does not always increase with
the increase in n. The percentage of patients that receive the true MTD during the trials are very
similar across the designs. Since dose 11 is the highest available dose and the probability of DLT
at that dose is within the acceptable level, we do not have any trial with toxic dose as the MTD. In
recommending subtherapeutic doses like 1 and 3, D2 shows unsatisfactory performance, as many
trials recommend these as the MTD. As a whole, D2 performs better than the other designs.

Scenario 5 has the true MTD between doses 5 and 7. Since the true MTD is not available in X
for this scenario, a dose-finding algorithm will tend to select these doses as the MTD. Since the DLT
at dose 5 is closer to the target, it is expected to be selected as the MTD more often than the other
dose 7. Table 5 reflects this expectation for all the designs except D2. When n = 15, these two dose
levels are selected as the MTD in 90.5%, 77.1%, 90.2%, and 86.8% of the trials by the successive
designs. This performance improves for all the designs with an increase of n. The number of trials
recommending a highly toxic dose as the MTD is highest for D2. The percentage of patients that
receive doses 5 and 7 during the trials is highest at D2. Here again, except D2, the other designs
perform very similarly.

Like the previous scenario, the true MTD for Scenario 6 is not available in X . Instead, it lies
between the available doses 9 and 11. The target DLT is closer to the DLT at dose 9. As a result, all
the designs select dose 9 as the MTD more often, as shown in Table 6. When n is 15, doses 9 and 11
are selected as the MTD in 57.8%, 68.3%, 62.9%, and 51.4% of the trials by the successive designs.
D2 allocates more patients to doses 9 and 11 during the trials than in other designs. To conclude,
D2 performs better than the other designs.

We observe a downward bias in estimating the probability of DLT for the scenarios in Table 7.
These indicate that along with the correct identification, the designs tend to choose lower doses than
the unacceptably toxic doses more often as the MTD. Generally, bias decreases for the designs as n
increases. Other than D2, all the designs experience relatively small bias in Scenarios 1, 2, 3, and
5. However, for Scenarios 4 and 6, the bias in D2 is less compared to that of the other designs. The
presented biases are in line with the selection of the correct MTD in the earlier tables.

The percentages of MTD selection and dose allocation for MLE-basedA-optimal design are pre-
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Table 1: The percentage of times the doses are identified as the MTD and the percentage of patients
treated at these doses during the trials (in parenthesis) for Scenario 1. The dose level in bold is the
MTD for this scenario.

n Design
Dose (Probability of DLT)

1 (0.08) 3 (0.32) 5 (0.72) 7 (0.93) 9 (0.99) 11 (1.00)

15

D1 0.1 (24.2) 95.8 (24.1) 4.1 (21.8) 0.0 (25.3) 0.0 (4.2) 0.0 (0.5)

D2 13.5 (19.3) 76.5 (33.9) 10.0 (31.4) 0.0 (11.9) 0.0 (2.5) 0.0 (0.9)

D3 0.0 (27.4) 96.5 (18.4) 3.5 (26.6) 0.0 (16.6) 0.0 (8.7) 0.0 (2.4)

D4 0.0 (24.3) 96.1 (23.6) 3.9 (24.8) 0.0 (14.8) 0.0 (6.7) 0.0 (5.7)

A 31.8 (6.7) 44.6 (6.2) 18.0 (11.6) 5.3 (5.1) 0.3 (4.1) 0.0 (66.4)

20

D1 0.4 (24.5) 97.5 (23.9) 2.1 (22.8) 0.0 (24.9) 0.0 (3.6) 0.0 (0.4)

D2 9.5 (18.1) 82.6 (32.9) 7.8 (33.5) 0.1 (12.2) 0.0 (2.6) 0.0 (0.8)

D3 0.4 (28.6) 97.3 (18.5) 2.3 (27.1) 0.0 (17.5) 0.0 (6.6) 0.0 (1.7)

D4 0.1 (26.0) 97.6 (22.4) 2.3 (26.3) 0.0 (16.0) 0.0 (5.0) 3.0 (4.3)

A 28.9 (5.0) 46.7 (4.6) 19.2 (10.0) 5.2 (4.4) 0.0 (3.4) 0.0 (72.5)

25

D1 0.4 (25.3) 98.9 (23.4) 0.7 (23.3) 0.0 (24.4) 0.0 (3.1) 0.0 (0.4)

D2 7.7 (19.3) 88.2 (32.5) 4.0 (33.7) 0.0 (11.7) 0.1 (2.3) 0.0 (0.6)

D3 0.0 (28.3) 98.7 (19.2) 1.3 (27.2) 0.0 (18.4) 0.0 (5.3) 0.0 (1.6)

D4 0.4 (27.1) 98.4 (21.9) 1.2 (26.7) 0.0 (16.8) 0.0 (4.0) 0.0 (3.5)

A 31.1 (4.0) 46.5 (3.7) 17.1 (9.1) 5.3 (4.3) 0.0 (4.1) 0.0 (74.1)

30

D1 0.5 (21.0) 99.3 (21.8) 0.2 (25.5) 0.0 (23.1) 0.0 (2.3) 0.0 (0.3)

D2 5.9 (19.1) 90.3 (31.9) 3.7 (34.3) 0.0 (12.2) 0.1 (2.1) 0.0 (0.5)

D3 0.5 (27.8) 98.9 (20.1) 0.6 (26.7) 0.0 (19.5) 0.0 (4.7) 0.0 (1.2)

D4 0.4 (27.4) 99.1 (21.5) 0.5 (27.1) 0.0 (17.5) 0.0 (3.6) 0.0 (3.0)

A 32.8 (3.3) 44.8 (3.1) 17.1 (9.5) 5.3 (3.8) 0.0 (4.1) 0.0 (76.2)

sented in Tables 1-6. The percentage of correct MTD selection in Scenario 1 is the lowest compared
to the D-optimal designs, and it does not improve with the increase of sample size remarkably. The
tendency of dose allocation is completely different from those for the other designs. The A-optimal
design generally allocates the highest toxic doses often and the true MTD rarely. This nature of
MTD selection and dose allocation prevails in other scenarios as well. As seen in Table 7, the bias
remains high for A-optimal design in most cases.
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Table 2: The percentage of times the doses are identified as the MTD and the percentage of patients
treated at these doses during the trials (in parenthesis) for Scenario 2. The dose level in bold is the
MTD for this scenario.

n Design
Dose (Probability of DLT)

1 (0.06) 3 (0.15) 5 (0.32) 7 (0.57) 9 (0.78) 11 (0.91)

15

D1 0.0 (8.3) 16.6 (29.8) 75.4 (8.2) 7.8 (26.7) 0.2 (13.0) 0.0 (14.0)

D2 3.9 (11.1) 18.4 (17.1) 52.2 (23.5) 23.6 (23.8) 1.9 (14.9) 0.0 (9.5)

D3 0.0 (14.8) 20.6 (22.3) 66.7 (13.7) 12.3 (19.4) 0.4 (12.5) 0.0 (17.3)

D4 0.0 (8.7) 19.2 (24.5) 67.7 (19.1) 12.8 (19.9) 0.3 (11.5) 0.0 (16.2)

A 10.3 (9.1) 24.0 (6.3) 42.2 (11.8) 19.1 (11.0) 1.9 (22.4) 2.6 (39.5)

20

D1 0.0 (6.1) 14.4 (32.0) 76.3 (6.0) 9.1 (28.7) 0.2 (11.7) 0.0 (15.5)

D2 2.6 (9.8) 12.9 (15.6) 58.5 (22.9) 25.6 (24.0) 0.4 (17.4) 0.0 (10.3)

D3 0.0 (11.1) 13.0 (25.8) 77.4 (10.6) 9.4 (22.2) 0.2 (11.7) 0.0 (18.6)

D4 0.0 (7.3) 15.8 (27.0) 74.8 (15.2) 9.2 (22.8) 0.2 (10.6) 0.0 (17.1)

A 9.4 (8.4) 26.6 (4.7) 44.4 (10.5) 16.1 (10.4) 1.1 (29.8) 2.4 (36.3)

25

D1 0.0 (5.3) 10.9 (32.9) 81.5 (5.2) 7.6 (29.3) 0.0 (11.3) 0.0 (15.9)

D2 0.9 (9.3) 14.6 (15.8) 63.9 (23.4) 20.4 (23.2) 0.2 (17.8) 0.0 (10.6)

D3 0.0 (9.3) 11.0 (28.2) 82.7 (8.8) 6.3 (24.8) 0.0 (10.9) 0.0 (18.1)

D4 0.0 (6.0) 9.6 (28.5) 84.0 (12.7) 6.4 (24.2) 0.0 (10.2) 0.0 (18.5)

A 8.4 (8.2) 22.4 (3.8) 47.6 (10.8) 17.4 (11.5) 1.2 (33.7) 3.0 (31.9)

30

D1 0.0 (4.5) 7.4 (33.6) 86.4 (4.4) 6.2 (29.7) 0.0 (11.6) 0.0 (16.2)

D2 1.2 (9.4) 12.8 (16.8) 69.1 (22.2) 16.9 (22.4) 0.0 (18.2) 0.0 (10.9)

D3 0.0 (7.8) 9.3 (29.8) 85.4 (7.4) 5.3 (26.1) 0.0 (10.8) 0.0 (18.1)

D4 0.0 (5.6) 10.0 (30.0) 83.2 (11.1) 6.8 (25.5) 0.0 (10.2) 0.0 (18.0)

A 9.7 (9.5) 24.1 (3.1) 48.6 (10.6) 13.6 (10.4) 1.5 (35.1) 3.0 (31.3)
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Table 3: The percentage of times the doses are identified as the MTD and the percentage of patients
treated at these doses during the trials (in parenthesis) for Scenario 3. The dose level in bold is the
MTD for this scenario.

n Design
Dose (Probability of DLT)

1 (0.05) 3 (0.10) 5 (0.19) 7 (0.33) 9 (0.51) 11 (0.68)

15

D1 0.0 (10.6) 1.5 (19.9) 34.4 (10.0) 46.6 (17.5) 15.4 (12.7) 2.1 (29.3)

D2 4.7 (11.4) 3.5 (12.3) 22.5 (16.0) 42.4 (19.4) 24.1 (19.5) 3.3 (21.3)

D3 0.0 (16.2) 1.6 (15.2) 32.3 (13.0) 46.7 (12.9) 14.8 (12.4) 4.6 (30.3)

D4 0.0 (9.0) 0.8 (16.5) 38.4 (17.3) 45.2 (17.0) 12.8 (14.0) 2.8 (26.0)

A 7.0 (11.6) 7.4 (6.3) 27.7 (12.8) 31.6 (17.3) 18.1 (36.3) 8.2 (15.8)

20

D1 0.0 (8.6) 0.2 (21.8) 25.4 (8.3) 57.8 (18.6) 14.5 (10.8) 2.1 (32.1)

D2 2.3 (10.3) 2.2 (10.3) 19.9 (15.1) 48.2 (18.4) 25.7 (20.7) 1.7 (25.3)

D3 0.0 (12.8) 0.5 (18.5) 30.8 (10.5) 53.9 (15.5) 12.2 (10.4) 2.6 (32.3)

D4 0.0 (7.7) 0.6 (18.4) 27.6 (13.6) 56.1 (18.4) 13.3 (12.4) 2.4 (29.4)

A 6.4 (11.3) 7.0 (4.8) 25.9 (11.8) 38.1 (16.1) 16.6 (41.9) 6.6 (14.2)

25

D1 0.0 (7.4) 0.3 (22.6) 21.6 (7.0) 63.3 (20.2) 13.2 (9.2) 1.6 (33.7)

D2 2.3 (10.3) 1.9 (10.3) 21.7 (15.6) 47.5 (17.6) 25.6 (19.5) 1.0 (26.7)

D3 0.0 (10.9) 0.3 (19.9) 25.1 (9.0) 60.8 (17.2) 12.8 (9.1) 1.0 (33.9)

D4 0.0 (6.9) 0.0 (19.6) 23.2 (11.7) 63.6 (19.4) 11.6 (10.7) 1.6 (31.7)

A 4.2 (11.7) 7.4 (3.8) 24.1 (10.6) 42.7 (16.5) 14.4 (45.3) 7.2 (12.1)

30

D1 0.0 (6.4) 0.0 (23.6) 20.8 (6.3) 67.2 (20.9) 11.8 (8.2) 0.2 (34.6)

D2 1.3 (9.6) 1.6 (9.1) 21.6 (16.2) 53.1 (17.4) 21.7 (19.9) 0.7 (27.7)

D3 0.0 (9.5) 0.0 (21.0) 21.0 (8.0) 66.7 (18.1) 11.5 (8.0) 0.8 (35.4)

D4 0.0 (6.0) 0.0 (21.4) 23.2 (9.8) 65.0 (20.7) 10.8 (9.3) 1.0 (32.8)

A 4.0 (11.8) 7.1 (3.1) 24.9 (10.3) 42.0 (14.6) 15.8 (49.2) 6.8 (10.9)
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Table 4: The percentage of times the doses are identified as the MTD and the percentage of patients
treated at these doses during the trials (in parenthesis) for Scenario 4. The dose level in bold is the
MTD for this scenario.

n Design
Dose (Probability of DLT)

1 (0.04) 3 (0.07) 5 (0.10) 7 (0.16) 9 (0.23) 11 (0.32)

15

D1 0.0 (22.4) 0.1 (4.7) 22.6 (19.9) 10.1 (4.8) 43.6 (18.4) 23.6 (29.8)

D2 7.3 (12.0) 0.6 (10.2) 7.7 (13.0) 9.3 (11.2) 31.9 (22.3) 43.2 (31.4)

D3 0.0 (25.0) 0.0 (4.0) 25.1 (17.5) 9.4 (3.7) 65.6 (16.9) 44.2 (33.0)

D4 0.0 (15.2) 0.0 (7.5) 31.2 (21.6) 9.2 (7.7) 34.8 (20.3) 24.8 (27.7)

A 12.1 (9.1) 2.7 (6.4) 11.1 (12.6) 5.8 (20.8) 27.0 (30.5) 41.8 (20.6)

20

D1 0.0 (21.5) 0.0 (5.1) 16.9 (19.1) 10.4 (5.0) 33.3 (18.6) 39.4 (30.7)

D2 6.9 (12.5) 0.2 (8.9) 13.6 (12.9) 8.7 (11.3) 28.1 (21.7) 42.6 (32.8)

D3 0.0 (24.5) 0.0 (3.9) 36.8 (18.1) 8.5 (3.6) 27.1 (17.3) 27.6 (32.6)

D4 0.0 (17.0) 0.0 (6.3) 23.0 (21.3) 7.7 (6.5) 39.5 (20.7) 29.8 (28.3)

A 9.8 (9.0) 1.8 (4.8) 11.8 (9.6) 4.8 (20.3) 20.6 (33.1) 51.3 (23.2)

25

D1 0.0 (20.9) 0.0 (5.3) 16.6 (18.6) 7.7 (5.2) 32 (18.5) 43.7 (31.4)

D2 7.0 (13.6) 0.1 (9.0) 14.8 (12.7) 7.5 (11.2) 27 (20.3) 43.6 (33.2)

D3 0.0 (24.0) 0.0 (4.2) 28.2 (18.8) 6.3 (3.5) 36.8 (17.7) 28.7 (32.1)

D4 0.0 (17.6) 0.0 (5.6) 21.6 (20.9) 6.0 (5.7) 34.8 (20.1) 37.6 (29.9)

A 9.4 (9.6) 1.8 (3.8) 10.2 (9.2) 5.3 (18.6) 21.9 (37.9) 52.0 (20.9)

30

D1 0.0 (21.1) 0.0 (5.0) 18.0 (18.7) 5.5 (4.5) 33.9 (18.6) 42.6 (31.7)

D2 4.6 (13.6) 0.1 (7.6) 14.6 (12.7) 6.8 (11.7) 30.3 (20.3) 43.6 (34.0)

D3 0.0 (23.1) 0.0 (4.2) 23.7 (18.6) 5.5 (4.0) 37.7 (17.7) 33.1 (32.3)

D4 0.0 (18.4) 0.0 (5.4) 20.7 (20.5) 4.0 (5.2) 33.9 (20.5) 41.4 (30.1)

A 10.1 (9.1) 2.8 (3.2) 9.8 (8.9) 5.5 (21.2) 21.5 (37.7) 51.9 (20.0)
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Table 5: The percentage of times the doses are identified as the MTD and the percentage of patients
treated at these doses during the trials (in parenthesis) for Scenario 5. The true MTD for this scenario
lies between the dose levels in bold.

n Design
Dose (Probability of DLT)

1 (0.05) 3 (0.12) 5 (0.24) 7 (0.43) 9 (0.64) 11 (0.81)

15

D1 0.0 (8.4) 4.8 (25.3) 60.5 (8.2) 30.0 (22.5) 4.3 (12.3) 0.4 (23.3)

D2 4.8 (10.9) 7.8 (14.2) 36.4 (18.9) 40.7 (22.1) 10.2 (18.2) 0.6 (15.5)

D3 0.0 (14.4) 5.4 (19.6) 57.9 (12.6) 32.3 (16.4) 3.6 (12.2) 0.8 (24.9)

D4 0.0 (7.9) 6.6 (20.5) 53.4 (17.7) 33.4 (18.8) 6.0 (12.6) 0.6 (22.5)

A 6.2 (11.0) 12.9 (6.3) 37.6 (12.6) 32.4 (15.4) 6.8 (31.6) 4.3 (23.0)

20

D1 0.0 (6.4) 1.9 (27.4) 60.6 (6.3) 34.8 (23.5) 2.7 (10.8) 0.0 (25.8)

D2 2.8 (10.0) 4.6 (12.6) 39.3 (18.8) 45.7 (21.1) 7.4 (19.4) 0.2 (18.2)

D3 0.0 (11.1) 2.0 (22.5) 55.3 (9.7) 40.2 (18.7) 2.3 (10.37) 0.2 (27.7)

D4 0.0 (6.2) 3.3 (23.1) 54.0 (13.4) 39.8 (21.5) 2.7 (10.5) 0.2 (25.2)

A 7.1 (11.3) 11.9 (4.7) 40.3 (11.3) 33.2 (13.6) 4.8 (39.0) 3.5 (20.1)

25

D1 0.0 (5.3) 0.9 (27.9) 56.8 (5.2) 40.4 (24.4) 1.7 (9.5) 0.2 (27.6)

D2 2.0 (9.1) 3.5 (12.1) 40.9 (18.2) 49.0 (20.5) 4.6 (20.0) 0.0 (20.0)

D3 0.0 (8.9) 1.4 (24.4) 56.1 (8.0) 40.2 (20.8) 2.1 (8.8) 0.2 (29.2)

D4 0.0 (5.3) 1.6 (24.9) 58.4 (11.5) 38.8 (22.2) 1.2 (8.9) 0.0 (27.3)

A 6.0 (10.7) 13.8 (3.8) 38.2 (11.3) 35.6 (14.9) 3.3 (40.7) 3.1 (18.6)

30

D1 0.0 (4.5) 1.1 (28.7) 57.1 (4.5) 41.1 (24.8) 0.7 (8.6) 0.0 (28.9)

D2 0.9 (8.4) 3.3 (11.2) 42.2 (19.3) 49.5 (20.1) 4.0 (19.8) 0.1 (21.2)

D3 0.0 (7.6) 0.6 (25.7) 57.8 (6.9) 40.3 (21.8) 1.2 (8.1) 0.1 (29.9)

D4 0.0 (4.5) 0.9 (26.0) 58.2 (9.6) 39.7 (23.5) 1.1 (8.4) 0.0 (28.0)

A 6.5 (10.6) 14.4 (3.2) 39.1 (11.0) 34.0 (12.3) 3.0 (47.7) 3.0 (15.3)
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Table 6: The percentage of times the doses are identified as the MTD and the percentage of patients
treated at these doses during the trials (in parenthesis) for Scenario 6. The true MTD for this scenario
lies between the dose levels in bold.

n Design
Dose (Probability of DLT)

1 (0.05) 3 (0.07) 5 (0.12) 7 (0.19) 9 (0.28) 11 (0.39)

15

D1 0.0 (19.8) 0.0 (7.58) 23.1 (17.4) 19.1 (7.3) 40.0 (16.9) 17.8 (31.0)

D2 7.2 (11.8) 0.8 (10.5) 9.4 (13.2) 14.9 (13.5) 37.8 (21.4) 30.5 (29.6)

D3 0.0 (23.1) 0.0 (5.6) 18.4 (16.7) 18.7 (5.1) 24.3 (16.0) 38.6 (33.5)

D4 0.0 (14.3) 0.0 (8.7) 32.0 (21.0) 16.6 (9.1) 33.2 (19.2) 18.2 (27.7)

A 11.1 (9.7) 2.4 (6.4) 12.9 (11.7) 11.1 (21.8) 30.7 (33.3) 32.6 (17.1)

20

D1 0.0 (18.9) 0.0 (8.1) 14.4 (16.8) 20.7 (7.5) 36.7 (16.7) 28.2 (32.1)

D2 7.2 (12.9) 0.5 (9.9) 12.3 (12.8) 14.5 (12.2) 34.8 (20.2) 30.7 (32.0)

D3 0.0 (21.6) 0.0 (6.8) 25.1 (16.3) 19.7 (6.0) 29.2 (15.6) 26.0 (33.7)

D4 0.0 (15.0) 0.1 (8.4) 22.5 (19.6) 17.6 (8.6) 38.3 (19.1) 21.5 (29.4)

A 8.0 (10.3) 2.6 (4.8) 13.7 (11.2) 10.1 (19.2) 26.0 (37.6) 40.3 (17.0)

25

D1 0.0 (18.8) 0.0 (7.9) 14.9 (16.7) 14.8 (7.5) 39.4 (16.7) 30.9 (32.5)

D2 5.2 (13.1) 0.2 (8.5) 12.5 (12.9) 10.8 (12.5) 38.3 (19.9) 33 (32.9)

D3 0.0 (21.7) 0.0 (6.3) 26.2 (16.9) 15.3 (5.7) 37.6 (16.0) 20.9 (33.4)

D4 0.0 (15.7) 0.0 (8.0) 16.2 (19.0) 14.8 (7.8) 40.6 (18.6) 28.4 (30.8)

A 6.9 (10.1) 3.0 (3.8) 12.5 (9.8) 8.5 (20.1) 31.6 (40.0) 37.5 (16.2)

30

D1 0.0 (18.3) 0.0 (8.3) 17.4 (16.1) 15.9 (7.9) 35.7 (16.2) 31.0 (33.2)

D2 0.0 (13.1) 0.2 (8.3) 14.8 (13.4) 10.3 (12.6) 42.5 (19.2) 28.9 (33.5)

D3 0.0 (20.6) 0.0 (6.8) 22.8 (16.7) 12.6 (6.3) 41.5 (15.9) 23.1 (33.7)

D4 0.0 (16.3) 0.1 (7.6) 17.9 (18.6) 13.1 (7.5) 39.1 (18.6) 29.8 (31.5)

A 8.3 (8.8) 2.4 (3.2) 9.1 (8.9) 5.2 (18.7) 36.0 (42.8) 39.2 (17.6)
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Table 7: Bias in the estimation of probability of DLT at the recommended MTD.

Scenario Design
n

15 20 25 30

1

D1 -0.00833 -0.00715 -0.00722 -0.00622

D2 -0.05136 -0.04028 -0.03834 -0.03471

D3 -0.01115 -0.00548 -0.00055 -0.00343

D4 -0.00981 -0.00925 -0.00599 -0.00751

A -0.28452 -0.28721 -0.27908 -0.07964

2

D1 -0.00894 -0.00668 -0.00515 -0.00450

D2 -0.04431 -0.02234 -0.02207 -0.01928

D3 -0.01346 -0.00434 -0.00596 -0.00101

D4 -0.00727 -0.00745 -0.00850 -0.00789

A -0.10877 -0.07403 -0.05342 -0.07964

3

D1 -0.02341 -0.01762 -0.00988 -0.01190

D2 -0.05741 -0.03441 -0.02305 -0.02297

D3 -0.01702 -0.01240 -0.01312 -0.01766

D4 -0.02198 -0.01784 -0.01281 -0.01242

A -0.04934 -0.03567 -0.03558 -0.02655

4

D1 -0.13927 -0.11797 -0.10883 -0.10519

D2 -0.06487 -0.07678 -0.08177 -0.07942

D3 -0.12773 -0.10255 -0.10536 -0.10739

D4 -0.13468 -0.13041 -0.11659 -0.11399

A -0.07604 -0.07085 -0.06957 -0.06650

5

D1 -0.01412 -0.01345 -0.00674 -0.01145

D2 -0.04977 -0.02669 -0.01717 -0.01832

D3 -0.00827 -0.01136 -0.00527 -0.01276

D4 -0.01065 -0.00690 -0.00960 -0.00898

A -0.05672 -0.03932 -0.03145 -0.02277

6

D1 -0.10929 -0.08851 -0.07779 -0.08082

D2 -0.06510 -0.06191 -0.05381 -0.06573

D3 -0.10094 -0.07102 -0.07514 -0.07514

D4 -0.12207 -0.09883 -0.08409 -0.07964

A -0.05709 -0.05372 -0.05371 -0.04400
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5 An example

Now, dose-response data from Karp et al. (2001) is used to implement the designs considered
in this paper. It was a phase I clinical trial conducted at the University of Maryland School of
Medicine, Baltimore, involving 34 acute leukemia patients. A conventional up-and-down design
with a chemotherapeutic agent was employed. The dose space selected was X = {100, 300, 600, 900,
1200}, where the unit is in mg. The administration of these doses to a group of 34 patients resulted
in the following toxicities: 0/6 at 100 mg, 0/5 at 300 mg, 3/8 at 600 mg, 6/11 at 900 mg and 3/4
at 1200 mg. We fit the logistic regression model of Section 2 to these data and obtain the MLE
estimates of parameters as ϑ1 = −3.80 and ϑ2 = 0.0045. The fitted dose-toxicity curve is shown in
Figure 2.
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Figure 2: Dose-response scenario with parameter values ϑ = (−3.80, 0.0045). The dashed hori-
zontal line indicates the target toxicity level.

The target toxicity rate is γ = 0.33. The prior for Bayesian designs is assumed as Θ̃ =
{
ϑ :

−4.3 < ϑ1 <− 2.3, 0.0 < ϑ2 < 0.01
}

. The true MTD for this scenario is dose level 3, which
is 600 mg. We consider n = 15 patients in each trial and 1000 simulated trials are explored for
each design. Table 8 summarizes the performance of the D-optimal designs for this scenario. The
selection of dose 600 as the MTD for the designs D1, D2, D3, D4 and A are 75.0%, 54.8%, 89.6%,
90.2% and 57.6%, respectively. The percentage of patients that receive the true MTD is highest in
D2, followed by A, D4, D1, and D3. The design D1 has the least bias, followed by D4, D3, A and
D2. Overall, D4 is the best design in terms of the correct MTD identification, while D2 and A are
the two low-performing designs.
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Table 8: The percentage of times the doses are identified as the MTD, the percentage of patients
treated at these doses during the trials (in parenthesis) and the bias in the estimation of probability
of DLT at the recommended MTD for the scenario in Figure 2.

Design
Dose (Probability of DLT)

Bias
100 (0.03) 300 (0.08) 600 (0.25) 900 (0.56) 1200 (0.83)

D1 0.0 (7.8) 7.6 (30.04) 75.0 (10.3) 16.9 (29.0) 0.5 (22.9) -0.00667

D2 0.7 (11.2) 14.8 (15.3) 54.8 (26.1) 29.0 (27.9) 0.7 (19.5) -0.07451

D3 0.0 (4.1) 1.2 (34.9) 89.6 (5.1) 9.2 (30.3) 0.0 (25.7) -0.01592

D4 0.0 (3.8) 1.0 (32.5) 90.2 (11.1) 8.8 (28.8) 0.0 (23.8) -0.01568

A 5.2 (7.5) 15.2 (6.4) 57.6 (15.3) 17.7 (32.4) 4.3 (38.3) -0.06302

6 Discussion

This paper has investigated six dose-response scenarios to explore the performance of different D-
optimal designs. Except for D2, all the designs have shown competitive performance in Scenarios
1, 2, 3, and 5 in identifying the correct MTD. Notably, the D1 is always entirely satisfactory in these
scenarios, with the increase in n. The design D2 performs well in Scenarios 4 and 6, where the
MTD lies towards the upper end of the dose region. The MLE-based D-optimal design works well
when the correct MTD is in the upper end. If we consider allocating patients to the correct MTD,
D2 has been found to allocate the highest percentage of patients to the correct MTD compared to the
other designs in almost all the scenarios. Scenarios 1, 2, 3, and 5 have doses bearing the probability
of DLT above the acceptable level. The tendency to select these toxic doses as the MTD is highest
in D2 compared to that of the other designs. The recommendation of a subtherapeutic dose as the
MTD is also highest at D2. As mentioned earlier, the MTD selection in various designs is well
supported by the estimates of bias. Comparing the A-optimal design with the D-optimal designs
shows that A performs poorly most of the time. The paper also includes an example extracted from
a published study. The results there again assure the performance of the designs.

No design has been found to perform uniformly best in all situations. Although D2 performs
well in terms of dose allocation, except Scenarios 4 and 6, the dose recommendation is not attractive.
Implementation ofD2 requires an up-and-down design to consider until the first toxicity occurs. The
D3 and D4 require a complicated function to optimize. The D1 is numerically much simpler than
the D3 and D4. Considering all these, D1 may be preferred over the other designs presented. The
methodologies presented here are quite general and can be applied to other dose-response models in
phase I trials. In general, an optimal design tries to identify the support points and its best distribution
of the number of trials over those points. In this study, we fix the trial points and only consider the
second part of the problem. We had to make this choice, as clinical trials are usually conducted at
the discrete choice of pre-specified doses. However, we would like to mention this as a limitation of
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the work.
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