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SUMMARY

When researchers use statistical models to gain insights into various phenomena, they make
a tacit assumption that most (if not all) of the important predictor variables with respect to
the outcome are included in the analysis. However, in practice this may not always be
possible, whether because some important variables could not be measured, or because a
researcher was not aware of all such important predictors. Prior research has shown that
when important variables are omitted from both linear and nonlinear regression models, the
model coefficients can be biased, with greater levels of bias being associated with larger
correlations between the missing and retained variables. However, very little work has
examined how such omissions impact the performance of variable importance measures
used with popular machine learning algorithms. Therefore, the purpose of this simulation
study was to address this gap in the literature and thereby provide insights into the impact
of such omissions on variable importance measures for classification and regression trees,
random forests, and boosting algorithms. Results showed that when an important variable
is omitted from an analysis, other predictors that are correlated with and/or involved in
an interaction with it will have inflated variables importance measures themselves. An
empirical example and implications of these results are discussed.
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1 Introduction
Machine learning algorithms are increasingly important tools in a variety of research areas. Re-
searchers in fields as diverse as education (Hew et al., 2018), business (Christensen et al., 2017; Zhu
et al., 2019), medicine (Dias et al., 2019; Rossi et al., 2018), psychology (Delgadillo and Gonzalez
Salas Duhne, 2020; Bone et al., 2016), and engineering (Zhang and Zhang, 2016; Gautier et al.,
2015), to name a few, have made use of these tools in order to better understand processes under-
lying a variety of phenomena, and to obtain predictions for outcome variables of interest. These
models come in a variety of forms, including linear and logistic regression, recursive partitioning
algorithms, ensemble learning techniques, and neural networks. These models differ from one an-
other in many 19 ways, including with the type of outcome data for which they are appropriate (e.g.,
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dichotomous, counts, continuous scores), distributional assumptions made about the outcomes, and
the nature of the relationships among the predictors. One commonality among these models is a
general structure that includes an outcome variable of interest, and a set of independent or predictor
variables that are thought to explain a relatively large portion of the variance in the outcome. In
addition, these models also have in common a tacit assumption that the set of predictors used in the
analysis contains all of the most important variables for predicting the outcome. In other words,
there is an assumption that no important predictors have been left out of the model.

Although in an ideal case the predictive model does include all relevant independent variables
for understanding the response, in practice it may not be realistic to make such an assumption. In
some cases, researchers will know that such variables exist, but will not have access to them, while
in other instances they may not be aware of some important factors that 4 should have been measured
and included in the model. In either scenario, whether this tacit assumption is met falls to the data
analyst and is dependent on exigencies within the domain of study. Prior research has found that
the omission of important variables yielded biased coefficients in regression models, (Nystrom et al.,
2019; Kutner et al., 2005). This bias in regression estimates was greater when the correlations among
the predictor variables were higher. In addition, the Type I error rate for regression coefficients were
inflated when the predictor correlations were higher.

The current Monte Carlo simulation study was designed to extend this earlier research by in-
vestigating how omission of important variables impacts importance measures associated with three
widely used machine learning algorithms, classification and regression trees (CART), random forest
(RF), and boosting. The remainder of the manuscript is organized as follows. First, a brief review
of each machine learning method is presented, followed by a discussion of the literature on variable
omission in the context of regression. The goals of the current study, and associated research hy-
potheses are then presented, followed by a description of the methods used to address them. Finally,
the results of the simulation study are described, along with an empirical example, and then the
results are discussed in the context of prior research with implications for practice.

1.1 Classification and regression trees

Classification and regression trees (CART) are based on a binary recursive partitioning algorithm
designed to identify splits within a set of predictor variables that will optimally allocate observa-
tions in a sample into maximally separated groups based on values of a response variable (Breiman
et al., 1984). The algorithm creates a series of binary splits (or nodes) based upon the predictors,
thereby yielding a decision tree that culminates in a 5 set of terminal nodes for which the indi-
viduals contained therein cannot be further divided using the predictors. CART can be used with
response variables of varying types, including continuous scores, ordinal, nominal, or dichotomous
categorical variables. In order to achieve maximal separation based upon the response variable, the
recursive partitioning algorithm finds the split among the predictor variables that minimizes the de-
viance within each node with respect to the outcome variable. For a continuous outcome this is akin
to finding the split from among all of the predictors at a given node that minimizes the variance of
the outcome within each of the resulting two nodes. A particular advantage for researchers using
CART is that it doesn’t rest on any assumptions regarding relationships between the predictors and
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the outcome, and thus easily accommodates (and identifies) interactions among the predictors with
respect to the response variable.

When interpreting the results of a CART analysis, researchers will not only want to understand
the nature of the splits, but also the relative importance of each predictor variable in terms of build-
ing the tree. The measure of relative importance in this context was first introduced in Breiman et al.
(1984), and then further described in Zhang and Singer (2010) . For each of the J variables at each
candidate split, each of the predictor variables is assessed in turn. The optimal split for variable j is
determined, and the resulting improvement in prediction of the outcome variable is then recorded.
This is repeated for each of the J variables, and the optimal variable split is determined, and the algo-
rithm continues on. However, all of the candidate splits and prediction accuracy values are recorded
and then averaged across the tree for all of the variables. These individual importance measures are
then summed, and the average importance across all splits is calculated for each variable and then
divided by the sum. This proportion serves as the measure of relative importance for each variable.

1.2 Random forests

Random forest (RF) is an ensemble methodology, which applies CART to a dataset a large number
(e.g., 500) of times, and then averages across the resulting trees to gain an understanding of how the
response variable and predictors are related (Friedman et al., 2001). RF creates its tree ensemble by
drawing B random samples of a subset (e.g., 75%) from the original sample, as well as a randomized
subset of m predictors. CART is then applied to the subset of individuals and variables in order to
grow a tree. For a given tree, the portion of the sample not used by the algorithm is known as the out
of bag (OOB) sample, and can be used to validate the model, or for determining variable importance,
as described below. The random sampling of both individuals and variables for each tree helps
to minimize the overfitting problem endemic to CART, and also ensures that no single predictor
variable dominates the overall model (Dietterich, 2000). RF has been found to successfully counter
the tendency of CART to overfit the training data, thus improving the generalizability of predictions
obtained from the (Breiman, 2001).

Variable importance in the context of RF is based upon a measure of improvement in the ho-
mogeneity of nodes created at a split. Thus, for each potential split of the Bth trees, each of the
predictor variables is assessed using the bootstrap sample. The resulting split is then applied to the
OOB sample and prediction accuracy for these cases is recorded. The effectiveness of the split is
measured as the improvement in prediction accuracy from using the variable at that split. The values
of the variable are then randomly permuted and the split is applied to the data. The difference in
prediction accuracy as a result of randomly reorganizing the data, as compared to the accuracy for
the original data, serves as the measure of variable importance. A larger difference between the
results for the original and permuted data indicates that the variable is 7 relatively more important
at that split, whereas a small difference would indicate that the variable is relatively less important.
These values are then averaged across all m trees in the forest. As with CART, the variable impor-
tance values are then summed across the variables, and importance for a specific variable for the full
forest is expressed as the ratio of its importance to the sum.
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1.3 Boosting

Like RF, boosting is an ensemble method that combines a set of prediction models, such as trees,
in order to develop a better predictor than would be possible using a single one. It is based on the
principle of combining a set of weak learners in order to obtain a strong learning algorithm that
can accurately predict the outcome of interest. In the first step of this process, an algorithm, such as
CART (but any prediction model could be used) is applied to the data and predictions of the response
variable are obtained for each individual in the sample. The difference between the predicted and
actual values, known as the residuals, are then calculated. The model is then fit to these residuals
and new prediction are made, and residuals are again calculated (Freund and Schapire, 1997; James
et al., 2013). This process is repeated many times (e.g., 100), resulting in a model that should
yield accurate predictions of the outcome through the gradual reduction of error, in the form of the
residuals. The boosting approach has been shown to yield more accurate predictions of the outcome
variable than do individual models, such as a single CART (Bauer and Kohavi, 1999).

Variable importance in the context of boosting is very similar to the approaches used with CART
and RF. For each tree, the improvement in prediction accuracy is recorded for each variable at each
split, and then these values are squared and averaged across all of the trees produced by the boosting
algorithm. The sum across all such importance measures is then taken, 8 and the ratio of each
individual variable and the sum is calculated in order to obtain a relative importance value. An
alternate version of this method for assessing variable importance is to include the permutation of
observations described above with respect to RF. In this version, all of the observations are permuted,
and the split for variable j is applied. The difference in prediction accuracy for the split using the
original data and that using the permuted data serves as the variable importance measure at that split.
As with the other measure of importance, values are averaged across the splits for each variable
and then divided by the sum of all variable importance measures across the trees produced by the
boosting algorithm.

1.4 Prior research on omitted variables

There has been relatively little work examining the impact of omitting important variables from ma-
chine learning algorithms such as CART, RF, or boosting. However, there has been research investi-
gating the impact of such omissions on the performance of linear and nonlinear regression models.
Prior research in the context of linear regression models has demonstrated that when variables that
are associated with the dependent variable in the population are omitted from the sample model, the
result can be biased regression coefficients, poorly estimated standard errors, and an inflation of the
Type I error rate (Afshartous and Preston, 2011; Kutner et al., 2005; Hölters et al., 2002). This work
was extended to generalized linear models, and similar results with respect to parameter estimation
bias and Type I error inflation were found (Cramer, 2005). Collectively, results of these studies
showed that the degree of estimation bias was more severe when the omitted variable was strongly
associated with the dependent variable. Furthermore, when the omitted variable was strongly cor-
related with one or more of the other predictors, parameter estimation bias was greater, and Type I
error rates were more severely inflated. furthered this area of investigation by examining the impact



Impact of Variable Omission on Variable Importance Measures. . . 339

of omitting important independent variables when interactions are present in the data generating
model. Their study involved a regression model in which the outcome variable was generated from
the normal distribution, and was related to a set of two predictors through a nonlinear equation. The
nonlinearity took the form of an interaction between two predictors. In addition to manipulating the
magnitude of this interaction, Nystrom et al. (2019) . also examined the impact of the correlation
between the independent variables. The goal of this study was to assess the impact of omitting one
of these variables on the estimation of the regression relationship for the non-omitted variable. The
results of this simulation study showed that the coefficient for the non-omitted variable exhibited
positive bias that increased concomitantly with increases in the correlation with the omitted vari-
able. In addition, this bias in the coefficient for the non-omitted variable decreased as the coefficient
associated with the interaction term became a larger negative number. In summary Nystrom et al.
(2019) found that there was larger bias present in the coefficient of the non-omitted variable when
its relationship with the omitted variable was stronger, regardless of the population relationship be-
tween the omitted variable and the outcome. This bias was diminished as the coefficient for the
interaction term was made more strongly negative.

1.5 Study goals

The purpose of this study was to investigate the performance of variable importance measures for
popular and effective machine learning algorithms when an important variable in the population
was omitted from the sample based data analysis. As reviewed above, prior work with linear and
nonlinear regression models has demonstrated that such an omission can result in biased parameter
estimates, incorrect standard errors, and inflated Type I error rates (Nystrom et al., 2019).Thus, it
was of some interest to ascertain what impact such omissions might have on the variable importance
assessment for other prediction models that are frequently used by researchers. The Monte Carlo
simulation design, which is described below, focused on a relatively complex model that is based
on one seen with actual data. It is hypothesized that omission of an important variable will alter the
variable importance measures of a variable associated with it, and that this impact will be more se-
vere when the correlation between the omitted and included variables is larger. A second hypothesis
is that when the omitted variable is involved in an interaction with an included variable, the relative
importance of the included variable will be impacted when a variable is omitted. A third hypothesis
is that the relative importance of variables not associated with the omitted variable, either through
correlation or interaction will be less severely impacted than is that of the variable associated with
the omitted predictor.

2 Methods

In order to address the study goals described above, a Monte Carlo simulation methodology was
used. The study conditions, which are described below, were drawn from prior research involving
omitted variables in regression analysis, as well as empirical data to which machine learning algo-
rithms have been applied. In addition to the simulation methodology, an empirical example was also
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included in the study, and which is described in the Results section, below. For each combination of
the study conditions described below, 1000 replications were done.

The data were generated using the following population model

y = β0+β1x1+β2x2+β3x3+β4x4+β5x5+β12x1x2+β34x3x4+β123x1x2x3+β52x
2
5+ϵ. (2.1)

Table 1: Data generating model parameter values

Model term Value

β0 0

β1 1

β2 0.5

β3 0.5, 1, 1.5

β4 0.2

β5 0.7

β12 0.4

β34 0.2, 0.4, 0.8

β123 0.2, 0.4, 0.8

β52 0.4

ρ12 0.4

ρ34 0.2, 0.4, 0.8

ρ13 0.2, 0.4, 0.8

The values of the model parameters appear in Table 1. The coefficients involving the target
omitted variable, x3 were manipulated in the study, as can be seen in the table. These values were
selected to represent a range of effects from small to large for the main effects and interactions.
The error term in model 3 was generated from a standard normal distribution (mean of 0, standard
deviation of 1), as were each of the predictors. Given that the predictors and the error term were
distributed as standard normal variates, the response variable was distributed as a standard normal as
well. The R function rnorm was used to generate the predictors and error term. Equation 2.1 was
then applied to these predictors in order to obtain a value of y for each observation in the simulated
data. Finally, in addition to selected coefficients, the sample size was also manipulated to be 100,
500, or 1000.

Three models were fit to the data, CART, RF, and boosting. The R software package version 3.6.2
(R Core Development Team, 2018) was used. For CART, the rpart library was used, party was
used to fit RF, and gbm was used for boosting. With respect to RF, 1000 trees were fit, with 75%
of the sample and 3 of the predictors selected for each. For the boosted tree, a total of 1000 trees
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for each analysis were fit to the data, and both the standard and permutation methods for calculating
variable importance were used.

For each combination of sample size and parameter values, two models for each of the algorithms
were fit to the data. The first of these models included all of the variables that appear in equation
2.1, and the second model excluded variable x3 The outcome variables were the variable importance
measures of x4 for each of the algorithms. In order to ascertain which of the manipulated variables
were related to the outcome, analysis of variance (ANOVA) was used in conjunction with a partial
η2 effect size. The ANOVA models included the manipulated factors and their interactions. Those
that are found to be statistically significant were then examined in order to better understand the
nature of these terms.

3 Results

3.1 Correct model

When the correct model was fit to the data, the highest order term that was statistically significantly
related to the relative importance of X4 was the interaction of method by the correlation between
X3 and X4, by the coefficient of X3*X4 interaction by the coefficient of X3 (F24,336 = 6.035, p <

0.001, η2 = 0.301). All other terms were either not statistically significant, or subsumed in this
interaction. Figure 1 Panel A displays the relative importance of X4 method, correlation between
X3 and X4, coefficient for X3*X4, and the coefficient of X3, These results demonstrate that across
prediction methods the relative importance for X4 as generally similar across levels of the corre-
lation with X3 and across values of X3. However, the importance values were slightly larger for
larger coefficients of the X3*X4 interaction. With respect to the methods themselves, CART and
the standard boosting algorithm consistently yielded the largest relative importance values, and the
boosting approach based on permutation yielded the lowest relative importance for X4.

Panel B of Figure 1 displays the relative importance of X5 by prediction method, correlation
between X3 and X4, X3 and coefficient for the X3*X4 interaction. The purpose for including
this variable was to assess how a variable completely unrelated to X3 would be influenced by its
inclusion and exclusion from the model. The results in Figure 1 Panel B reveal that the relative
importance of X5 as slightly lower for larger values of X3, and that the two boosting approaches
consistently yielded the largest relative importance values across the prediction methods. It was
anticipated that as the relationship of X3 increased in value, the relative importance ofX5 would
decline, given that its own relationship with the dependent variable remained unchanged. When
compared with X4 the relative importance of X5 as greater, which might be expected given that X5

and a population coefficient of 0.7 whereas X4 had a coefficient of 0.2. Thus, even when X4 as
involved in a relatively large interaction effect with X3 it was not found to be as relatively important
as was X5. One final point in this regard is that although X5 had higher relative importance than
X4 for all prediction methods, this result was most notable for the boosting methods, whereas for
CART and RF, the difference in relative importance was somewhat smaller.
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Figure 1: Relative importance of X4 and X5 by prediction method, correlation between X3 and X4,
coefficient for X3 ×X4, and coefficient of X3 : Correct model (continued on next page)
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Figure 2: Relative importance of X4 and X5 by prediction method, correlation between X3 and X4,
coefficient for X3 ∗X4, and coefficient of X3 : Correct model

Finally, the relative importance values for variable X1 appear in Figure 1 Panel C. Recall that
X1 was involved in a 3-way interaction with X2 and X3 and had a coefficient of 1 in the population.
Across the other conditions, the relative importance of X1 declined with increases in the value of
the X3 coefficient, and separately the coefficient for the X3*X4 interaction. There was relatively
little relationship between the importance scores for X1 and the correlation between X3 and X4.

3.2 Incorrect model

As was the case for the correct model including all of the independent variables that make up the
prediction model, ANOVA was used to identify those factors that were associated with the rela-
tive variable importance of X4 when X3 was mistakenly removed from the model. The ANOVA
results revealed that the interaction of prediction method by coefficient for the 3-way interaction
of X1*X2*X3 (F6,222 = 34.137, p < 0.001, η2 = 0.480), and the interaction of method by the
coefficient for X3 by the coefficient for X3*X4 by the correlation between X3 and X4 (F24,336 =

6.802, p < .001, η2 = 0.327) were both statistically significantly associated with the relative im-
portance of X4 All other manipulated variables in the simulation were either not associated with the
relative importance of X4, or were subsumed in one of these two interactions.



344 Finch

Figure 2 includes the relative importance forX4 (Panel A), X5 (Panel B), and X1(Panel C)
by prediction method and coefficient for the X1*X2*X3 interaction. Perhaps the most notable
result for both variables is that their relative importance was greater when X3 was removed from
the model than when it was included (see Figure 1). This would be expected, given that relative
importance reflects the proportion of total importance accounted for by each variable in the model.
Therefore, when there are fewer variables in the model, it would stand to reason that those remaining
would each account for a larger share of the total importance; i.e., there are fewer variables among
which the total importance must be shared. In addition, when X3 is mistakenly omitted from the
model, the relative importance of X4 exceeds that of X5 across conditions. Thus, X4 went from
having a relative importance value of between 0.07 and 0.15 when X3 was in the model to between
0.25 and 0.35 when it was omitted. By contrast, the relative importance values for X5 increased
from between 0.10 and 0.20 when X3 was in the model to between 0.18 and 0.25 when it was
excluded. With respect to the interaction between method and the coefficient for X1*X2*X3 the
relative importance of X4for each method increased concomitantly with increases in the coefficient
value, with somewhat greater increases for CART and RF as compared to boosting. For X1 or X5

there was essentially no difference in the relative importance for each method across the interaction
coefficient value.

Figure 3 contains the relative importance results for X4 (Panel A), X5 (Panel B), and X1 (Panel
C) by prediction method, the correlation between X3 and X4, the coefficient for the X3*X4 interac-
tion, and the coefficient for X3. As was evident in Figure 2, the relative importance of X4 exceeded
that of X5 across study conditions, which was not the case when X3 was correctly included in
the model, and despite the fact that in the population X5 had a larger coefficient than did X4. In
addition, the relative importance of X4 increased concomitantly with increases in the population
coefficient for X3, and this effect was magnified by a larger correlation between X3 and X4. The
relative importance of X4 also increased in value along with increases in the correlation between X3

and X4, with the largest such effect occurring when the coefficient for the X3*X4 interaction was
0.8. Indeed, generally speaking the relative importance of X4 was somewhat larger when the coef-
ficient for its interaction with X3 increased in value, which would be expected. With respect to the
prediction methods, boosting coupled with the permutation approach yielded the largest importance
values for X4 across conditions, with RF providing similar results when the b3 coefficient was 1.5.

The relative importance of X5 was largely unaffected by any of the study conditions, except for
prediction method, where the permutation method used with the boosting algorithm yielded larger
results than did the other methods. In contrast, the relative importance values for X1 were lower
when the value of X3 was larger. In addition, as with both X4 and X5, the relative importance of
X1 was larger when X3 was removed from the model. The difference in importance for X1 between
the two conditions was greater than was the case for X5, but not as large as for X3. This latter
results seems to reflect the fact that whereas X1 was part of a 3-way interaction with X3, it was
not correlated with X3. In contrast, X4 was involved in an interaction with X3 and had a higher
correlation value than did X1 (which was 0).
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Figure 3: Relative importance of X4 and X5 by prediction method and coefficient of X1 ∗X2 ∗X3

interaction: Incorrect model (continued on next page)
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Figure 4: Relative importance of X4 and X5 by prediction method and coefficient of X1 ∗X2 ∗X3

interaction: Incorrect model
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Figure 5: Relative importance of X4 and X5 by prediction method, correlation between X3 and X4,
coefficient for X3 ∗X4, and coefficient of X3 : Incorrect model (continued on next page)
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Figure 6: Relative importance of X4 and X5 by prediction method, correlation between X3 and X4,
coefficient for X3 ∗X4, and coefficient of X3 : Incorrect model

4 Empirical Example
In order to demonstrate the use of the relative importance measures, and the impact on them when
important variables are removed from the model, data taken from the 2017 CDC Youth Risk Behav-
ior Surveillance System (YRBS) were used (Centers for Disease Control and Prevention, 2018). The
YRBS is a survey administered to 10th grade students in the United States that includes questions
about a wide variety of health related behaviors. It includes items asking about student engagement
in suicidal ideation and planning, violence, alcohol, tobacco, and drug use, dietary behaviors and
physical activity, and sexual-related behaviors. The sample used in this study included 203, 663
participants from the 2017 administration of the survey. The outcome variable in this study was
whether an individual had attempted suicide or not, with the predictor variables appearing in Table
2.

Table 2 includes the relative importance values for each prediction method when the full set
of predictor variables was included. CART identified Considering suicide and Suffered physical
dating violence as the two most important predictors of an adolescent making a suicide attempt.
RF also identified the consideration of suicide as the most important predictor of a suicide attempt,
along with being bullied at school. And as was true with CART, being the victim of physical dating
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Table 2: Relative importance for suicide prediction model with all variables included

Variable CART RF Boosting Boosting permutation

Considered suicide 0.24 0.21 0.15 0.17

Physical dating violence 0.23 0.19 0.14 0.14

Sexual dating violence 0.15 0.07 0.04 0.03

Bullied at school 0.11 0.21 0.37 0.33

Bullied electronically 0.05 0.10 0.15 0.16

Current sexual activity 0.04 0.07 0.05 0.05

Carried gun last 12 months 0.03 0.04 0.02 0.03

Sexual identity 0.03 0.01 0.01 0.01

Weight loss recently 0.02 0.001 0.001 0.003

Sad/hopeless 0.02 0.02 0.01 0.02

Gender 0.02 0.004 0.002 0.003

Age 0.01 0.01 0.03 0.02

Initial alcohol use 0.01 0.01 0.002 0.004

Number of concussions 0.01 0.004 0.004 0.005

Amount of computer use per day 0.01 0.001 0.001 0.001

Fruit/vegetable consumption per day 0.004 0.01 0.01 0.01

Participate in sports team 0.004 0.03 0.01 0.01

Amount of sleep per night 0.002 0.003 0.004 0.004

violence was also an important predictor of a suicide attempt. Both relative importance measures
associated with boosting identified being bullied at school as the most important predictor for at-
tempting suicide. Considering suicide, being bullied electronically, and being the victim of physical
dating violence followed being bullied at school in terms of relative importance.

In order to assess the relative importance of these variables when an important predictor was
removed, each algorithm was fit to the data with the variable Considered suicide removed. The
resulting relative importance measures for the remaining variables appear in Table 3. The relative
importance results for CART appear to have changed the most when Considered suicide was re-
moved from the analysis. In that case, the most important variable was Bullied at school, with a
value of 0.51, compared to 0.11 and 4th most important in the original analysis. The second most
important variable was Sad/hopeless, which increased in relative importance from 0.02 to 0.16, and
second most important as a predictor of attempting suicide. The physical dating violence variable
fell in relative importance with a value of 0.13 (compared to 0.23 when Considered suicide was in-
cluded). Finally, fewer variables had non-zero relative importance values when Considered suicide
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Table 3: Relative importance for suicide prediction model with Considered Suicide removed

Variable CART RF Boosting Boosting permutation

Physical dating violence 0.13 0.18 0.17 0.15

Sexual dating violence 0.04 0.14 0.03 0.05

Bullied at school 0.51 0.33 0.40 0.38

Bullied electronically 0.06 0.07 0.18 0.20

Current sexual activity 0 0.07 0.04 0.05

Carried gun last 12 months 0 0.01 0.02 0.04

Sexual identity 0 0.001 0.02 0.01

Weight loss recently 0 0.01 0.003 0.003

Sad/hopeless 0.16 0.05 0.05 0.03

Gender 0 0.002 0.003 0.01

Age 0.01 0.02 0.04 0.03

Initial alcohol use 0 0.02 0.02 0.01

Number of concussions 0 0.004 0.01 0.01

Amount of computer use per day 0 0.001 0.001 0.01

Fruit/vegetable consumption per day 0.08 0.02 0.01 0.004

Participate in sports team 0 0.04 0.004 0.004

Amount of sleep per night 0 0.03 0.004 0.01

was removed from the analysis. The relative importance measures for RF, as well as both boosting
based approaches appear to have been impacted less markedly than was true for CART. For these
three methods, being bullied at school remained among the most, if not the single most, important
predictor of a suicide attempt. In addition, being the victim of physical dating violence, and being
bullied electronically also continued to have relatively high relative importance measures. There
were some differences in relative importance among the less salient predictors for RF and boosting
between the full and reduced models, but these differences were relatively minor. In summary, when
Considered suicide was removed from the model the results for CART changed dramatically, with
being bullied at school becoming far and away the most important predictor. In contrast, though
individual importance values for the variables differed for RF and boosting with and without Con-
sidered suicide, these differences were not so great, and the relative ordering of the variables in terms
of importance remained largely the same.

4.1 Identifying when important variables are omitted

The focus of this manuscript up to now has been centered on investigating the impact of omitted
variables on the performance of several commonly used machine learning algorithms. Of course,
in practice the data analyst may not realize that important variables have been omitted from the
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model. Therefore, it is important that the researcher have tools for ascertaining whether important
variables have been omitted from the model. An approach for doing this that has been recommended
in the regression literature (e.g., Fox, 2016; Pedhazur, 1997) involves plotting model residual values
by individual independent variables that were used in the model. For a correctly specified model
(i.e., a model with the important independent variables included) the residuals should not exhibit
relationship with the individual independent variables that were included in the model. When the
plot demonstrates a non-random relationship between the residuals and a predictor, the researcher
would conclude that an important variable may have been omitted from the model. In addition,
the correlation coefficient between the residuals and each of the independent variables can also
be calculated for investigating the possibility of omitted variables being an issue. If the model is
correctly specified (i.e., no important variables are omitted), these correlations should be near 0.

For the current example, the residuals were first plotted for the variable Bullied at School because
it exhibited the greatest change in variable importance when the Considered Suicide variable was
removed from the model. The plots for each of the three prediction methods studied here appear in
Figure 4, with the biserial correlations appearing in the title of each graph. From these results, we can
see that for both CART and RF, the relationship between the Bullying variable and the residuals was
statistically significant and in the small range based on Cohen’s (1988) guidelines. In contrast, for
the Boosted trees model, the biserial correlation was not statistically significant and was negligible
in size. Next, the residuals were plotted against participant age, as it did not exhibit a major shift
in importance when Considered Suicide was removed from the model. The results presented in
Figure 4 show that the correlations between age and the residuals were not statistically significant
and were in the negligible for the three methods featured here. This result demonstrates that when
an unimportant variable is missing there was not a relationship between age and the residuals. Taken
together, the results for bullying and age demonstrate that use of the residual plots and correlation
coefficients with CART and RF appear to be useful for identifying the presence of important missing
variables in these two modeling techniques.

5 Discussion

The purpose of this study was to examine the impact on the relative importance measures of three
popular machine learning algorithms, CART, RF, and Boosting, of omitting important predictor vari-
ables. The results presented above reveal that omitting such variables can indeed prove problematic,
but that the algorithms are not impacted in the same way. As described above, when the correct
model, including all relevant predictors, is fit to the data, the more important variable(s) are identi-
fied as such. In addition, it appears that the relative importance measures are somewhat sensitive to
the role of interactions in determining which variables contribute most to the outcome. On the other
hand, when a predictor that was associated with the outcome was omitted from the model, the rela-
tive importance values for the remaining variables in the model were clearly impacted. As would be
expected, when fewer variables were in the model, the relative importance of all variables increased.
This result would be expected, given that there are fewer variables among which the overall impor-
tance would need to be shared. More interestingly perhaps, was that a variable that was involved
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Figure 7: Residual by Bullying plots for CART, RF, and Boosted tree models (continued on next
page)



Impact of Variable Omission on Variable Importance Measures. . . 353

Figure 8: Residual by Bullying plots for CART, RF, and Boosted tree models (continued on next
page)
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Figure 9: Residual by Bullying plots for CART, RF, and Boosted tree models
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in an interaction with the omitted predictor showed a larger increase in relative importance than did
one that was not associated with the omitted variable in any way. Thus, it would appear that the
importance of the omitted predictor was, to some extent, transferred to the remaining variable with
which it was related. This effect was magnified by a larger correlation with the omitted variable,
by a stronger interaction effect with it, and by a stronger relationship between the omitted variable
and the response. Finally, the results presented above, particularly those for the empirical exam-
ple, suggest that the relative importance measure associated with CART is particularly sensitive to
the omission of important variables from the prediction model. RF and boosting, while certainly
impacted as well, were less affected in this study

The results of this study have a number of implications for statistical practice. Certainly first
and foremost, they highlight the importance of researchers carefully considering which variables
should be included in their study, and ensuring that these are measured, if at all possible. Excluding
important variables will not only limit the utility of a model conceptually, but could also impact
interpretations made by researchers regarding the importance of these variables. Indeed, even when
the omitted predictor has only a moderate relationship with the outcome, its exclusion can have a
dramatic impact on the relative importance values of the remaining variables in the model. This
finding appears to be most important for CART, which not only exhibited changes in the absolute
values of the relative important measures for individual variables, but also had a change in the
ordering of the variables by importance. In other words, exclusion of an important model predictor
could lead researchers to draw very incorrect conclusions about which variables are most important
in terms of predicting a specific dependent variable. This leads to a second important implication
for data analysts, which is that if a researcher’s primary goal is to identify which variables are
most strongly related to the outcome, and they are unsure whether all important variables have been
included in the model, then they may be best off using RF or boosting rather than CART.

A third implication of this study is that when all of the relevant variables are included in the
model, main effects appear to play a larger role in determining variable importance for CART, RF,
and Boosting than do interactions. Figure 1 shows that only when the coefficient for the interaction
of X3 and X4 is 0.8, their correlation is 0.8, and the coefficient for X3 is 1.5 is the relative importance
of X4 comparable to that of X5. Given that the main effect for X5 was simulated to be 0.7, whereas
that of X4 was 0.2, it would appear that the relative importance measures studied here are more
strongly influenced by the main effects than by the interactions.

A fourth implication, which can be drawn from the empirical example, is that the use of resid-
ual/independent variable plots and correlations may be an effective tool for identifying the presence
of important missing variables with both CART and RF. In this example, there was are relationship
between the residuals and the bullied in school variable for these models when the Considered Sui-
cide variable was excluded, whereas for age no such relationship was found. Given that the removal
of Considered Suicide did alter the variable importance values for bullying but not age, it appears
that examining the relationships involving residuals and these independent variables for the CART
and RF models may be helpful in identifying when important missing variables have been excluded.
On the other hand, this approach did not yield similar results for boosted trees, meaning that it may
not be as useful for that modeling strategy.
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Directions for future research

The results of this study point to several directions for additional work. First, future simulation work
should examine the impact of omitting relevant predictors on the relative importance measures when
the outcome variable is binary. This study did include an empirical example with a binary outcome
as a way of showing the potential impact of such omissions, but future work involving simulated
data would be helpful in this regard. Future research should also examine the impact omitting non-
normal variables from the model. In particular, it would be of interest to see the impact of omitting
important nominal predictors with differing numbers of categories. A third area for future research
involves the simulation of different model structures. The model selected here is based upon results
from an existing dataset, but clearly other model structures would be of interest as well. Specifically,
models including more predictor variables, a mix of categorical and continuous predictors, and
more complex nonlinear terms would provide additional useful information for researchers using
these prediction algorithms. Finally, and perhaps most importantly, future work should focus on
approaches for ameliorating the impact of omitting important variables from the model. The results
of the current study seem to indicate that more ensemble algorithms, such as RF and Boosting,
which rely on multiple recursive partitioning trees, may yield more dependable results than was the
case for a single tree produced by CART. However, it is also clear that more work needs to be done
to determine under what conditions this is the case, and why it might be so. The current study is a
first step in this direction. Finally, the possibility of using the relationships between residuals and
independent variables for identifying when important predictors have been omitted from the model
should be examined in future research with these data mining techniques. The empirical example
appears to show that examining scatterplots and correlations between the residuals and individual
independent variables may be quite helpful for this purpose, but a more systematic simulation study
needs to be conducted in order to more fully understand this issue.

Conclusions

The results of this study build upon earlier work (Nystrom et al., 2019) by examining the impact
of omitting important predictors from popular machine learning algorithms when the underlying
model is nonlinear in nature. It seems clear that, just as for regression, the omission of important
variables from a prediction model can result in major changes to the relative importance values
for the remaining predictors in the model. The impact of the omitted variables was apparently
transferred, at least in part, to the remaining predictor(s) with which it was associated. The result
was that when the outcome variable was continuous in nature, the ordering of the predictors in
terms of their importance might be altered, thus leading researchers to mistakenly attribute greater
import to the variable than it warrants. Thus, researchers must be extremely vigilant when designing
a study so that they include the relevant variables in their analyses. Not doing so could lead to
mistaken conclusions regarding which variables are most associated with the outcome of interest.
This result was not so strongly in evidence for RF or Boosting in the empirical example. However,
given that the true model underlying that data is not known, those results must be given somewhat
less weight than those associated with the simulation itself. It is hoped that these results provide
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researchers with both a caveat for practice (carefully consider which variables are important and be
sure to measure them if at all possible), and directions for future investigation.
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