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SUMMARY

In this paper, by making regression adjustment, a class of estimators of the finite popula-
tion mean under two-phase sampling is suggested which incorporates auxiliary information
on quantitative and qualitative variables. Making approximation up to first order, bias and
mean squared error (MSE) are obtained. A few particular cases of the estimators are dis-
cussed. The numerical and empirical comparisons of these estimators with ordinary ratio
and regression estimators are carried out using a Monte Carlo simulation.
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1 Introduction
In sample surveys quit often information on one, two or multiple auxiliary variables, which are
linearly related to the survey variable, is available prior to surveys. In such situations, it can be
incorporated at estimation stage to improve the efficiency of the ordinary estimators of finite pop-
ulation parameters under simple random sampling without replacement (SRSWOR). The problem
of estimation of the population total or mean has been extensively studied by many authors under
single-phase sampling. Cochran (1940), under the assumption that the study variable and auxiliary
variables are highly positively correlated, introduced the ratio estimator where as Watson (1937) in-
troduced the regression estimator. This estimator is preferable when the relation between the study
variable and auxiliary variable is linear but not passes through origin. Mohanty (1967), Khare and
Srivastava (1981), Sahoo et al. (1993), Samiudin and Hanif (2006, 2007), Kadilar and Cingi (2004,
2005), Kadilar et al. (2007) among others have extended these estimators by incorporating auxiliary
information on two or more auxiliary variables. Many researchers, by utilizing some known param-
eters of the auxiliary variable x such as population mean (X̄), standard deviation (σx), coefficient
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of variation (Cx), skewness (β1 (x)), kurtosis (β2 (x)), correlation coefficient (ρyx) etc., used the
transformed variables to increase the precision of the ordinary ratio and regression estimators. For
details, one may refer Gupta and Shabbir (2007) and other related references cited in this paper.
Moreover, Dash and Mishra (2011), Khan (2016), Khan and Khan (2018) have extended the results
of one auxiliary variable by using two auxiliary variables. Considering single-phase SRSWOR, Jhajj
et al. (2006) proposed a general family of estimators under auxiliary attribute. Singh et al. (2008)
suggested many ratio and ratio-product type exponential estimators incorporating known parameters
of auxiliary attribute φ such as coefficient of variation Cφ, coefficient of kurtosis β2 (φ), Elfattah
et al. (2010) have proposed composite estimators, by using the estimators given in Singh et al.
(2008). Khan (2018) developed a class of almost unbiased estimators of the population mean by us-
ing auxiliary variable and attribute under systematic sampling. Shabbir and Gupta (2010) proposed
an estimator based on auxiliary attributes. Moeen et al. (2012) suggested the mixture regression
estimator based on multiple auxiliary variables and attributes. Most of the estimators proposed in
single phase, discussed in the above work, have been extended under two-phase sampling. Sukhatme
(1962) introduced the ratio estimator using single auxiliary variable under double sampling. Cochan
(1977) proposed the ratio and regression estimators under two-phase sampling. Raj (1965), Mo-
hanty (1967), Srivastava (1971), Hidiroglou and Särndal (1998), Fuller (2000), Hidiroglou (2000)
and many more researchers have suggested various estimators under two-phase sampling. Kung’u et
al. (2014) have extended the estimators suggested by Moeen et al. (2012) under two phase sampling
when full, partial and no auxiliary information is available.

Many times addition information on auxiliary variable z, closely related to the main auxiliary
variable x but compared to x remotely related to the study variable y (i.e., ρyz ≤ ρxz ), for entire
population is available. This information can be utilized to estimate the population mean X̄ of aux-
iliary variable using ratio or regression methods of estimation. Chand (1975) suggested a chain ratio
estimator whereas Kiregyera (1980, 1984) proposed the ratio-to-regression, ratio-in-regression and
regression-in-regression estimators under two-phase sampling. Sisodia and Dwivedi (1981), Upad-
hyaya and Singh (1999), Singh and Upadhyaya (2001), Singh (2001), Gupta and Shabbir (2007),
Singh (2011), Singh et al. (2011) among others have used the transformed auxiliary variables to in-
crease the precision of the ordinary ratio and regression estimators of X̄ , Motivated from Kiregyera
(1980, 1984), we propose a class of estimators for the population mean Ȳ incorporating auxiliary
information variable x and an attribute φ, highly positively correlated with x, at the estimation stage
under a two-phase sampling. We select a preliminary sample s′ of size n′ using SRSWOR and select
a subsample s of size n using SRSWOR.

This article is organized as follows. In Section 2, a class of estimators is suggested and bias and
MSE of estimators are obtained by considering approximation up to the first order. An empirical
comparison using a Monte Carlo simulation is made in Section 3. Conclusion is given in Section 4.

2 The Proposed Class of Estimators

Consider a finite population U of N identifiable units labeled as 1, . . . , N . Let (yi, xi, zi, φi) be
the values of the study variable y, auxiliary variables x and z, and an auxiliary attribute φ for
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the population unit i (= 1, 2, . . . N). We wish to estimate the population mean under two-phase
sampling by using the auxiliary information available on x and φ, The examples we may consider
are (i) y = amount of milk produced, x = amount of feed and φ = a particular breed of cow and (ii)
y = amount of yield of wheat, x = area under crop and φ = a particular variety of wheat. Further,
let φ take only two values 0 and 1. φi = 1, if the ith population unit possesses attribute φ and
φi = 0, otherwise.

We denote the population mean, variance and coefficient of variation of a variable v respectively
by

V̄ =

∑
i∈U vi

N
, S2

v = Svv =

∑
i∈U

(
vi − V̄

)2
N

, and Cv =
Sv

V
.

The population correlation coefficient between two variables v and w (v, w = y, x, z, φ) is denoted
by ρuv = Svw/

√
SvSw, where

Svw =

∑
i∈U

(
vi − V

) (
wi −W

)
(N − 1)

, Sv =
√
Svv.

The simple Karle–Pearson correlation coefficient between the variable y and the attribute φ (ρyφ) is
called bi-serial correlation. Suppose a sample s of size n is selected using SRSWOR. For discussions
to follow we need the following notations

f1 =
(
n−1 −N−1

)
, v =

∑
s

vi
n
, svw =

∑
s (vi − v) (wi − w)

(n− 1)
,

s2v = svv, V (v) = f1V
2
C2

v , Cov (v, w) = f1V WρvwCvCw.

Here,
∑

A (·) stands for
∑

i∈A (·).
Under SRSWOR, using bi-serial correlation between y and φ, Naik and Gupta (1996) proposed

the ratio and regression estimators of Y as

Ŷ NGR = y
P

p
, (2.1)

and Ŷ NGReg = y + byφ (P − p) ,

respectively. Here P = φ =
∑

U (φi/N) and p =
∑

s(φi/n) are the proportions of units possessing
attribute φ in the population and in a random sample s of size n and byφ = syφ/s

2
φ is the sample

regression coefficient between the variables y and φ. The approximate MSEs of these estimators are
given respectively by

MSE
(
Ŷ NGR

)
= f1Y

2
[
C2

y + C2
φ − 2ρyφCyCφ

]
,

MSE
(
Ŷ NGReg

)
= f1Y

2
C2

y

(
1− ρ2yφ

)
.

It is well-known that if the relationship between y and x is a straight line then under SRSWOR
the ordinary ratio and regression estimators are preferable. These estimators are useful only when
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complete auxiliary information about the population is available. In case only partial auxiliary
information is available, two-phase sampling method is adopted. In this sampling method the first-
phase sample s′ of size n′ is selected from U , according to SRSWOR, to obtain a good estimator
of X . Given s′, a second-phase sample s of size n is selected from s′ acording to SRSWOR. Let
x

′
= (

∑
s′ xi)/n

′, p
′
= (

∑
s′ φi)/n

′, and b
′

yx denote the regression coefficient of y and x for
preliminary sample. The two-phase ordinary ratio and regression estimators (Cochran, 1977, pp
358, 353) are given by

Ŷ Rd =
y

x
x′, (2.2)

Ŷ Regd = y + byx (x
′ − x) . (2.3)

Up to the first order of approximation, the biases and MSEs of these estimators are given by

B
(
Ŷ Rd

)
= Y f3

(
C2

x − ρyxCyCx

)
,

MSE
(
Ŷ Rd

)
= Y

2
f3

(
C2

y + C2
x − 2ρyxCyCx

)
+ f2Y

2
C2

y . and

B
(
Ŷ Regd

)
= −βyx

N

N − 1
f3

(
µ12

µ11
− µ03

µ02

)
,

MSE
(
Ŷ Regd

)
= Y

2
[
f2C

2
y + f3

(
1− ρ2yx

)
C2

y

]
= Y

2
C2

y

(
f1 − f3ρ

2
yx

)
,

where

f2 = (1/n′)− (1/N), f3 = f1 − f2, βyx =
Syx

S2
x

, and µrs =
1

N

N∑
i=1

(
yi − Y

)r (
xi −X

)s
.

In particularly,

µ12 = N−1
N∑
1

(
yi − Y

) (
xi −X

)2
, µ03 = N−1

N∑
1

(
xi −X

)3
Chand (1975), making ratio adjustment to x′, suggested a chain ratio estimator

Ŷ C =
y

x
· x

′

z′
· Z. (2.4)

Kiregyera (1980, 1984), noting that this estimator is not preferable when the regression of x on z is
linear but not passing through the origin, suggested the ratio-to-regression, ratio-in-regression and
regression-in-regression estimators

Ŷ k1 =
y

x

[
x′ + b′xz

(
Z − z′

) ]
, (2.5)

Ŷ k2 = y + byx
(
x′Z/z′ − x

)
, (2.6)

Ŷ k3 = y + byx

[
x′ + b′xz

(
Z − z′

)
− x

]
. (2.7)
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The approximate MSEs of above estimators and many more other estimators are given in Ahmed et
al. (2013).

Mohanty (1967) developed a regression-cum-ratio type estimator in the presence of two auxiliary
variables as

Ŷ M =
[
y + byx (x

′ − x)
]Z
z
. (2.8)

Mukherjee et al. (1987) proposed a series of estimators of the form regression-in-regression follow-
ing Kiregyera’s (1984) technique as

Ŷ MRV 1 = y + byx (x
′ − x) + byz (z

′ − z) , (2.9)

Ŷ MRV 2 = y + byx (x
′ − x) + byz

(
Z − z′

)
, (2.10)

Ŷ MRV 3 = y + byx (x
′ − x) + byxbxz

(
Z − z′

)
+ byz(Z − z). (2.11)

Sahoo and Sahoo (1993) suggested modified regression type estimators as

Ŷ SS1 = y
x

x′ + bxz
(
Z − z′

) , (2.12)

Ŷ SS2 = y + byx

(
x′ z

′

Z
− x

)
, (2.13)

Ŷ SS3 = y + byx (x
′ − x) + byz

(
Z − z′

)
= Ŷ MRV 2. (2.14)

A generalized ratio estimator was presented by Mishra and Rout (1997) in presence of two auxiliary
variables as

Ŷ MR = y + d1

(
x

′
− x

)
+ d2

(
Z − z

′
)
+ d3

(
Z − z

)
, (2.15)

where d1, d2 and d3 are suitably chosen constants.
Kung’u et al. (2014) have extended the estimator suggested by Moeen et al. (2012), regressing

the study variable on multi-auxiliary variables and attributes, under two-phase sampling. The esti-
mators given in (2.9) - (2.11), (2.14), (2.15) can be seen as special cases of the estimators suggested
in Kung’u et al. (2014). In particular, for one auxiliary variable and one auxiliary attribute, their
estimators are

Ŷ KCO1 = y + byx
(
X − x′)+ byφ (P − p′) ,

Ŷ KCO2 = y + byx

(
x

′
− x

)
+ byφ (P − p′) , (2.16)

Ŷ KCO3 = y + byx

(
x

′
− x

)
+ byφ

(
p

′
− p

)
.

Remark 1. The estimators given in (2.4) to (2.15) can be modified replacing variable z by attribute
φ.

We propose the following class of estimators by regressing the study variable y on the main
auxiliary variable x and making ratio-type adjustment to x

′
, using an attribute φ

Ŷ
(1)

= y + byx

[
x′

[
P + a (p′ − P )

P + b (p′ − P )

]J
− x

]
, (2.17)
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where a ̸= 0, b and J are either real numbers or the functions of the known parameters of the
auxiliary attribute such as P , σφ, β1 (φ), β2 (φ).

Remark 2. This class of estimators is different from the estimators suggested by Kung’u et al.
(2014) since the underlying assumptions are different. Moreover, the estimator given in (2.16) can
be derived from (2.17), see Equation (2.23).

The rationale for introducing the term
[
P+a(p′−P)
P+b(p′−P )

]J
in our proposed estimator is as follows.

(i) This term gives equal and unequal weights to the population and preliminary sample propor-
tions.

(ii) The estimator given in (2.17) gives better results as compared to the ordinary regression type
estimator y+ byx

[
x′ P

p′ − x
]

by capturing the effect of the auxiliary information over a longer
range.

(iii) The proposed class of estimators includes the following unknown estimators (with obvious
modifications under two-phase sampling of the estimators suggested by Singh (1969), Reddy
(1974), Sahai (1979), Srivenkataramana and Tracy (1979)) with suitable choice of a, b, and J .

Ŷ S =
y

x
x

′ P

p′ − (1− w) (p′ − P )
, Ŷ Re =

y

x
x′ P

P + b (p′ − P )
,

Ŷ Sahai =
y

x
x′wP + (1− w) p

′

wp′ + (1− w)P
, Ŷ ST =

y

x
x′

[
1 + a

p
′ − P

P

]
.

Theorem 1. The bias and MSE of Ŷ
(1)

to the terms of order O
(
n−1

)
are given by

B
( ̂̄Y (1))

=B
( ̂̄Y Regd

)
+∆

Nf2
N − 1

[
µ011

X
− {(J − 1) (a− b)− (a+ b)} µ002

P
+

µ111

µ110
− µ021

µ020

]
,

and

MSE
(
Ŷ

(1))
= f3

(
1− ρ2xy

)
S2
y + f2

(
S2
y +∆2S2

φ + 2∆Syφ

)
, (2.18)

where

∆ =
JβyxX (a− b)

P
and µrst =

1

N

N∑
i=1

(
yi − Y

)r (
xi −X

)s
(φi − P )

t
. (2.19)

Proof. See Appendix A, where we have used Taylor series expansion to obtain the approximate bias
and MSE. For more details about the method see Dash and Mishra (2011).

It can easily be seen that the optimum value of ∆ is

∆opt = −Syφ

S2
φ

= −βyφ. (2.20)
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Inserting (2.20) in (2.18) we obtain

Min MSE

(
Ŷ

(1)
)

= Y
2
C2

y

[
f3

(
1− ρ2xy

)
+ f2

(
1− ρ2yφ

) ]
,

or equivalently

Min MSE

(
Ŷ

(1)
)

= MSE
(
Ŷ Regd

)
− f2Y

2
ρ2yφC

2
y . (2.21)

In the following corollary, we proposed a subclass of (2.17) that exploits the linear relationship
between y and x which is passing through the origin.

Corollary 2.1. The class of estimators

Ŷ
(2)

=
y

x
x′

P + a
(
p

′ − P
)

P + b (p′ − P )

J

has the minimum MSE

Min MSE

(
Ŷ

(2)
)

= MSE
(
Ŷ Rd

)
− f2Y

2
ρ2yφC

2
y . (2.22)

Remark 3. The optimums values of a, b and J are not separately obtainable.

Remark 4. The optimum value ∆opt = −βyφ, given in (2.20) is usually unknown and must be
estimated using subsample information.

Motivated from (2.17), (2.19) and (2.20) we suggest the following estimators of Y .

(1) For b = 0, J = 1 in (2.17), a takes the optimal value a = −(βyφP )/(βyxX). Inserting a by
its sample estimate, viz. â = −(byφP )/(byxx

′), in (2.17) we obtain the estimator of the form

Ŷ
(1)

prop = y + byx (x
′ − x) + byφ (P − p′) = Ŷ KCO2. (2.23)

(2) For a = 0, J = 1 , inserting b by its sample estimate, viz. b̂ = (byφP )/(byxx
′), in (2.17) we

find

Ŷ
(2)

prop = y + byx

[
x′

1−byφ(P−p′)
x′

− x

]
. (2.24)

(3) Inserting b = 0, J = 1, and â = −(byφP )/(x′) in (2.17) we have

Ŷ
(3)

prop = y + byx

[
(x′ − x) + byφ (P − p′)

]
= Ŷ k3. (2.25)

3 Comparison of Estimators
This section deals with the analytical and empirical comparison of the proposed estimators with the
bench mark estiamtors. Here, we compare the optimal estimator with the ordinary estimators. One
can extend this comparison including the estimators discussed in Section 2.
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3.1 Comparison under optimality conditions

We observe from (2.21) and (2.22) that

MSE
(
Ŷ Regd

)
−Min MSE

(
Ŷ

(1)
)

= Y
2
f2ρ

2
yφC

2
y ≥ 0,

MSE
(
Ŷ Rd

)
−Min MSE

(
Ŷ

(2)
)

= Y
2
[
f3 (Cx − ρyxCy)

2
+ f2ρ

2
yφC

2
y

]
≥ 0,

Min MSE

(
Ŷ

(2)
)
−Min MSE

(
Ŷ

(1)
)

= Y
2
f3 (Cx − ρyxCy)

2 ≥ 0.

Therefore, our proposed estimator Ŷ
(1)

given in (2.17) is at least as good as Ŷ Rd, Ŷ Regd and Ŷ
(2)

.

3.2 Numerical illustration

The estimators Ŷ NG, Ŷ Rd, Ŷ Regd, Ŷ
(1)

and Ŷ
(2)

, given in (2.1), (2.2), (2.3), (2.23) and (2.24)
respectively, were examined with help of three real data sets described below.

Data set I: (Source: The Fuel Consumption Guide 1985 published by Transport Canada. Also see
Jobson, 1992) (The observations are replicated 2 times)

y : Highway Rate, x : Engine size

φ : Automat transmission (φ = 1 if automatic and φ = 0 if standard)

N = 194, Y = 68.37, X = 27.5979, P = 0.5979,

σφ = 12.1268, ρyx = 0.7464, ρyφ = 0.7464, ρxφ = 0.2508,

Cy = 0.1869, Cx = 0.4394, Cφ = 0.4395, β1 (φ) = 0.9441, β2 (φ) = 2.5386.

Data set II : (Source: Fisher R.A. (1936). Also see Anderson, 1958) (The observations are
replicated 4 times)

y : Sepal length, x : Petal length

φ : Species (φ = 1 if unit come from Versicolor family and φ = 0 otherwise)

N = 200, Y = 6.264, X = 4.936, P = 0.5,

σφ = 0.5013, ρyx = 0.7957, ρyφ = −0.4321, ρxφ = −0.7804,

Cy = 0.1007, Cx = 0.1634, Cφ = 1.0025, β1 (φ) = 0, β2 (φ) = 1.

Data set III : (Source: Narula, S. C. and Wellington, J. F. (1977), Technometrics,19. Also see
Montgomery et al., 2003) (The observations are replicated 9 times)
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y : Sale price of house, x : Living space

φ : Number of baths ( φ = 1 if number of baths is 1 and φ = 0 otherwise)

N = 216, Y = 34.612, X = 1.38, P = 0.708,

σφ = 0.4556, ρyx = 0.7101, ρyφ = −0.6475, ρxφ = −0.7582,

Cy = 0.1701, Cx = 0.1959, Cφ = 0.6431, β1 (φ) = −0.9167, β2 (φ) = 1.8403.

The percentage relative efficiency was calculated by considering Ŷ Rd as a benchmark estimator.

Table 1: Relative Efficiency in Percentage

Estimator Data set I Data set II Data set III

Ŷ Rd 100.00 100.00 100.00

Ŷ NG 14.95 0.95 3.84

Ŷ Regd 423.45 193.96 122.26

Ŷ
(1)

458.99 213.72 149.34

Ŷ
(2)

101.86 105.01 117.41

The ordinary two-phase regression estimator Ŷ Regd has performed very well for all the popula-

tions under study. The proposed estimator Ŷ
(1)

has exhibited substantial improvement over Ŷ Regd

and the use of additional auxiliary attribute φ makes the estimators more efficient than the other
estimators which do not utilize such information.

3.3 Empirical comparison using a Monte Carlo simulation

Here, we include the following estimators (motivated from Singh et al., 2008) in addition to the
estimators given in (2.2), (2.3), (2.23), (2.24), (2.25) for empirical comparison.

t1 = y + byx

({
x′ + b

′

xφ

(
P − p

′
)} P

p′
− x

)
,

t2 = y + byx

({
x′ + b

′

xφ

(
P − p

′
)} P + β2 (φ)

p′ + β2 (φ)
− x

)
,

t3 = y + byx

({
x′ + b

′

xφ

(
P − p

′
)} P + Cφ

p′ + Cφ
− x

)
,

t4 = y + byx

({
x′ + b

′

xφ

(
P − p

′
)} Pβ2 (φ) + Cφ

p′β2 (φ) + Cφ
− x

)
.

The above estimators are the members of the class

Ŷ
(3)

= y + byx

({
x′ + b

′

xφ

(
P − p

′
)} cP + d

cp′ + d
− x

)
,
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where c ̸= 0 and b are either real numbers or the functions of the known parameters of the auxiliary
attribute φ such as σφ, Cφ, β1 (φ), β2 (φ) etc.

For comparison of the estimators, a preliminary sample s′ of size n
′
= 50 (80) was drawn using

SRSWOR and a second-phase sample s of size n = 20 (30) was drawn using SRSWOR from each of
the above populations and these estimators were computed. This procedure was repeated M = 5000

times. The performances of the estimators were measured in terms of relative percentage bias and
relative percentage efficiency. Here many known and unknown estimators and the estimators which

are members of the three classes Ŷ
(i)

, i = 1, 2, 3, given above were included in the simulation;
however a few of them performed very well. The performances of such estimators were reported in
Tables 2 and 3 (see Appendix B).

For each estimator Ŷ its relative percentage bias was calculated as

RB
(
Ŷ
)
= 100 ∗

(
Ŷ − Y

)
Y

,

and the relative percentage efficiency as

RE
(
Ŷ
)
= MSEsim

(
Ŷ Rd

)
/MSEsim

(
Ŷ
)
× 100,

where

Ŷ =

∑M
j=1 Ŷ j

M
and MSEsim

(
Ŷ
)
=

∑M
j=1

(
Ŷ j − Y

)2

(M − 1)
.

Here Ŷ Rd was considered as the benchmark estimator.

Table 2: Simulated Relative Efficiency in Percentage for different set of sample sizes

n′ = 50, n = 20 n
′
= 80, n = 30

Estimator Pop 1 Pop 2 Pop 3 Pop 1 Pop 2 Pop 3

Ŷ Rd 100.00 100.00 100.00 100.00 100.00 100.00

Ŷ Regd 375.75 173.97 111.72 427.64 193.74 121.21

t1 387.34 83.73 132.73 446.05 103.63 113.45

t2 375.11 83.75 59.64 431.80 103.83 74.45

t3 373.71 83.76 95.95 423.99 103.41 56.69

t4 390.53 83.40 123.37 451.60 103.15 125.30

Ŷ
(1)

prop 393.45 189.23 145.10 455.85 206.80 136.17

Ŷ
(2)

prop 393.12 188.99 145.20 455.54 206.67 135.94

Ŷ
(3)

prop 394.98 186.87 146.82 457.09 206.91 137.49
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The scatter plot of Population 1 revealed that a linear model yi = α + βxi + εi might be
appropriate and the relationship between y and x is strong. For Population 2 scatter plot exhibited
two different straight lines (because the observations are taken from two different families - Iris
Setosa and Iris Versicolor) whereas for Population 3 no systematic pattern was found though the
correlation between y and x is moderate to high. Clearly, the populations had not fulfilled the
requirements for the suggested estimators.

From Tables 2 and 3, we have the following interesting observations.

(1) All the estimators have very small relative bias and decreased with increased in sample size
for Populations 1 and 2.

(2) Among t1, t2, t3 and t4, t4 is better performer.

(3) The proposed estimators Ŷ
(1)

prop, Ŷ
(2)

prop and Ŷ
(3)

prop have exhibited very good performance over
all the estimators. However, they are comparable among each other.

(4) The relative efficiency of the proposed estimators increased with sample size for Populations
1 and 2.

4 Conclusion
Many times addition auxiliary attribute φ is closely positively related to x; but compared to x, it
is remotely related to y. We have utilized such variables to develop a class of estimators of the
population mean under two-phase sampling and obtained the minimum MSE for the proposed class.
Theoretically, we have shown that the class of estimators is at least as good as the ordinary two-
phase ratio and regression estimators provided there is positive biserial correlation between x and
φ, In addition, to support these theoretical findings a small scale empirical study is carried out. Our
proposed estimators have performed better than the other estimators. Finally, our suggested estima-
tors are useful for those survey statisticians who are interesting in regression approach to estimation
of the population characteristic using auxiliary variable and attribute in two-phase sampling.
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Appendices

A Proof of Theorem 1
In order to obtain the approximate bias and MSE of Ŷ

∗
, let us use the approximate formulae for bias

and MSE of any continuous twice-differentiable function g(·) of θ̂ (expanded around θ = E(θ̂) (for
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more detail see Stuart and Ord (1987), Equation (10.12) or Wolter (2007) p. 230) as follows

B(g(θ̂)) =
1

2

∑
i

∑
j

[
∂2g(θ̂)

∂θ̂i∂θ̂j

]
θ̂=θ

E
(
θ̂i − θi

)(
θ̂j − θj

)
+O

(
n−3

)
, (A.1)

V (g(θ̂)) =
∑
i

[
∂g(θ̂)

∂θ̂i

]2

θ̂=θ

V
(
θ̂i

)
+
∑∑

i ̸=j

[
∂g(θ̂)

∂θ̂i
· ∂g(θ̂)

∂θ̂j

]
θ̂=θ

Cov
(
θ̂i, θ̂j

)
+O

(
n−3

)
.

(A.2)

Write Ŷ
(1)

= g
(
y, x, x′, p′, s2x, syx

)
= g(θ̂) and Y = g

(
Y ,X,X, P,S2x,Syx

)
= g(θ), where

θ̂1 = y, θ̂2 = x, θ̂3 = x′, θ̂4 = p′, θ̂5 = s2x, θ̂6 = syx,

θ1 = Y , θ2 = X, θ3 = X, θ4 = P, θ5 = S2
x , θ6 = Syx.

Since

∂Ŷ
(1)

∂y
= 1,

∂Ŷ
(1)

∂x
=

[
−sxy

s2x

]
ˆ̂
θ=θ

= −Sxy

S2
x

= −βyx,
∂Ŷ

(1)

∂x′ =

[
sxy
s2x

·
(
P + a (p′ − P )

P + b (p′ − P )

)]
θ̂=θ

= βyx,

∂2Ŷ
(1)

∂p′
=

[
J
sxy
s2x

x′ ·
(
P + a (p′ − P )

P + b (p′ − P )

)J−1
(a− b)P

(P + b (p′ − P ))
2

]
θ̂=θ

= JβyxX
a− b

P
,

∂2Ŷ
(1)

∂s2x
=

[
− sxy

(s2x)
2 ·

{
x′

(
P + a (p′ − P )

P + b (p′ − P )

)J

− x

}]
θ̂=θ

= 0,

∂2Ŷ
(1)

∂syx
=

[
1

s2x
·

{
x′

(
P + a (p′ − P )

P + b (p′ − P )

)J

− x

}]
θ̂=θ

= 0,

we obtain using (A.1) and (A.2) the approximate bias and MSE of Ŷ
(1)

as

B

(
Ŷ

(1)
)

= βyxX

[
Cov

(
x, s2x

)
XS2

x

− Cov (x, sxy)

XSxy

−
Cov

(
x′, s2x

)
XS2

x

+
Cov (x′, sxy)

XSxy

]

+ JβyxX(a− b)

[
Cov (x, p′)

XP
− {(J − 1)(a− b)− (a+ b)}V (p′)

P 2
+
Cov (p′, sxy)

PSxy
−

Cov
(
p′, s2x

)
PS2

x

]

= −βyx
Nf3
N − 1

(
µ120

µ110
− µ030

µ020

)
+∆

Nf2
N − 1

[
µ011

X
− {(J − 1)(a− b)− (a+ b)}µ002

P
+

µ111

µ110
− µ021

µ020

]
.



Regression-Type Estimation of a Finite Populaiton Mean in Two-Phase Sampling . . . 389

and

MSE

(
Ŷ

(1)
)

= V (y) +

(
−sxy

s2x

)2

V (x) +

(
sxy
s2x

[
P + a (p′ − P )

P + b (p′ − P )

]J)2

V
(
x′)

+

(
sxy
s2x

x′J

[
P + a (p′ − P )

P + b (p′ − P )

]J−1
(a− b)P

(P + b (p′ − P ))2

)2

V
(
p′
)

+

[
1

s2x

(
x′
[
P + a (p′ − P )

P + b (p′ − P )

]J
− x

)]2
V (sxy) +

[
−sxy

s2x

(
x′
[
P + a (p′ − P )

P + b (p′ − P )

]J
− x

)]2
V
(
s2x
)

− 2sxy
s2x

Cov(y, x) +
2sxy
s2x

[
P + a (p′ − P )

P + b (p′ − P )

]J
Cov

(
y, x′)+ 2sxy

s2x
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[[
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P + b (p′ − P )
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(a− b)P
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(
y, p′

)
+

2

s2x

(
x′
[
P + a (p′ − P )

P + b (p′ − P )

]J
− x

)
Cov (y, syx)−

2sxy
s2x

(
x′
[
P + a (p′ − P )

P + b (p′ − P )

]J
− x

)
Cov

(
y, s2x

)
− 2

(
sxy
s2x

)2 [
P + a (p′ − P )

P + b (p′ − P )

]J
Cov

(
x, x′)− 2

(
sxy
s2x

)2

x′J

[
P + a (p′ − P )

P + b (p′ − P )
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(P + b (p′ − P ))2
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(
x, p′

)
− 2sxy

s4x

(
x′
[
P + a (p′ − P )

P + b (p′ − P )

]J
− x

)
Cov (x, syx) + 2

(
sxy
s2x

)2
(
x′
[
P + a (p′ − P )

P + b (p′ − P )

]J
− x

)
Cov

(
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)
+ 2

(
sxy
s2x

)2

x′J

[
P + a (p′ − P )

P + b (p′ − P )
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(
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)
+

2sxy
s4x

[
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]J (
x′
[
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P + b (p′ − P )

]J
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Cov

(
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)
− 2

(
Sxy
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)2
(
x′
[
P + a (p′ − P )

P + b (p′ − P )

]J
− x
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Cov

(
x′, s2x

)
+

2sxy
s4x

x′J

[
P + a (p′ − P )

P + b (p′ − P )
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(P + b (p′ − P ))2

(
x′
[
P + a (p′ − P )

P + b (p′ − P )
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)
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(
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− 2

(
sxy
s2x

)2

x′J

[
P + a (p′ − P )

P + b (p′ − P )
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(a− b)P

(P + b (p′ − P ))2

(
x′
[
P + a (p′ − P )

P + b (p′ − P )

]J
− x

)
Cov

(
p′, s2x

)
− 2sxy
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(
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[
P + a (p′ − P )

P + b (p′ − P )
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)2
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(
syx, s

2
x

)
.

evaluated at θ̂ = θ.
Evaluating the above expression of MSE at θ̂ = θ and inserting expressions for variances and

covariances under two-phase sampling we obtain

MSE

(
Ŷ

(1)
)

= f1

[
S2
y + β2

yxS
2
x − 2βyxSyx

]
+ f2

[
β2
yxS

2
x + 2βyxSyx − 2β2

yxS
2
x

]
+ f2

[(
JβyxX

a− b

P

)2

S2
φ + 2JβyxX

a− b

P
Syφ

]
.
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Upon simplification

MSE

(
Ŷ

(1)
)

= f3
(
S2
y + β2

yxS
2
x − 2βyxSyx

)
+ f2

(
S2
y +∆2S2

φ + 2∆Syφ

)
,

where ∆ = JβyxX(a− b)/P.

Table A1: Relative Bias (in %) for different set of sample sizes

n′ = 50, n = 20 n′ = 80, n = 30

Estimator Pop 1 Pop 2 Pop 3 Pop 1 Pop 2 Pop 3

Ŷ Rd 0.20 -1.20 -0.04 0.11 -0.87 0.13

Ŷ Regd -0.14 0.41 0.11 -0.05 -0.33 0.22

t1 0.33 -0.42 0.12 -0.02 -0.32 0.25

t2 0.45 -0.41 0.02 -0.01 -0.32 0.35

t3 0.44 -0.40 0.01 -0.01 -0.32 0.41

t4 0.41 -0.41 0.02 -0.03 -0.32 0.22

Ŷ
(1)

prop -0.41 -0.42 0.12 -0.06 -0.32 0.17

Ŷ
(2)

prop 0.41 -0.54 0.16 -0.04 -0.33 0.19

Ŷ
(3)

prop -0.49 -0.41 0.14 -0.04 -0.34 0.17
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