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SUMMARY

Divergence between two distributions has been of statistical interest for more than a cen-
tury, beginning with Karl Pearson with his famous chisquare test. The paper revisits some
of the well-known density divergence measures, and studies their interrelationship. In addi-
tion, it is demonstrated how Scheffe’s pointwise density convergence implies convergence
of distributions, based on different divergence measures.
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1 Introduction

Measuring the divergence or distance between two distributions has a long statistical history. Its
importance was felt many years ago, especially for testing goodness of fit for a given set of data
to an assumed model. Beginning with Karl Pearson’s classical chisquare goodness of fit test, there
exists a multitude of other tests addressing similar problems. Two of the more popular tests, namely
the Kolmogorov-Smirnov test and the Cramer-von Mises test measure the closeness of the empirical
distribution function, and an assumed null distribution.

While the above two tests and similar other tests are based on measuring the divergence between
two distribution functions, of equal importance is to measure the divergence between two density
functions. This is very much reflected in the Total Variation (TV) distance between two distribu-
tions, which simplifies into an L1 distance between densities. But there are other equally popular
measures of divergence, in particular, the Kullback-Leibler (KL) (Kullback and Leibler, 1951) and
the Bhattacharyya-Hellinger (H) (Hellinger, 1909; Bhattacharyya, 1946) measures. However, the
last two measures are special cases of a general α-divergence measure, originally introduced by
Rényi (1961), followed up later by several others, notably by Amari (1982) and Cressie and Read
(1984). Another important example belonging to the α-divergence class is the chisquare divergence.
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All these divergence measures belong to a more general family, known as f -divergence, studied by
Csiszar (1967) and others.

One objective of this note is to set up a relationship between different measures of divergence
between two densities using certain elementary inequalities. Many of the results as presented here
are well-known, but, at least to our knowledge, not at the level of generality as given here. Also,
we have included the proofs, mostly for the sake of completeness, while giving reference to some of
the readily available sources. A second objective is to show that the pointwise density convergence
as given in Scheffé (1947) is enough to justify density convergence under most of the divergence
measures considered, with the exception of the KL divergence. Also, we will state a very strong
and useful result related to f -divergence from Gilardoni (2006) which may and possibly has led
to a common misconception that TV is the weakest form of convergence between densities. How-
ever, in this paper we will explain why this is not always true. An important consequence of our
results is that for verifying the convergence of a sequence of pdf’s to another pdf either under TV
or any α-divergence measure (0 < α < 1), it suffices to show convergence under the H divergence.
Finally, we provide two important examples involving the t and F distributions, where pointwise
convergence of a sequence of densities to another density yields KL convergence. If the latter holds,
so does convergence under the TV or any α-divergence measure (0 < α < 1).

Section 2 of this paper introduces the different divergence measures, and points out the rela-
tionship among these. Section 3 shows how Scheffe’s pointwise density convergence is enough to
guarantee convergence according to the different divergence measures that we have considered.

2 Divergence Measures and Their Relationship

We begin with the Total Variation (TV) divergence between two densities and prove the following
result. The result is available in Billingsley (1968, p. 224) who outlined the proof. Here we provide
more details.

Theorem 1. Let p and q be two densities, each absolutely continuous with respect to some σ-finite
measure µ. Also, let P (A) =

∫
A
pdµ and Q(A) =

∫
A
qdµ for every Borel set A. Then

TV (p, q) = sup
A
|P (A)−Q(A)| = (1/2)

∫
|p− q|dµ.

Proof. First, for every Borel set A, using
∫
pdµ =

∫
qdµ = 1,

|P (A)−Q(A)| = |
∫
A

[p(x)−q(x)]dµ| = |−
∫
Ac

[p(x)−q(x)]dµ| = |
∫
Ac

[p(x)−q(x)]dµ|. (2.1)
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Hence,

2|P (A)−Q(A)| = |
∫
A

[p(x)− q(x)]dµ|+ |
∫
Ac

[p(x)− q(x)]dµ|

≤
∫
A

|p(x)− q(x)|dµ+

∫
Ac

|p(x)− q(x)|dµ

=

∫
|p(x)− q(x)|dµ. (2.2)

This leads to |P (A)−Q(A)| ≤ (1/2)
∫
|p(x)− q(x)|dµ for every Borel set A. Since the right hand

side in (2.2) does not depend on A, one gets the inequality

sup
A
|P (A)−Q(A)| ≤ (1/2)

∫
|p− q|dµ. (2.3)

Conversely, let A = {x : p(x) ≥ q(x)}. Then, using once again
∫
pdµ =

∫
qdµ = 1,∫

|p(x)− q(x)|dµ =

∫
A

[p(x)− q(x)]dµ+

∫
Ac

[q(x)− p(x)]dµ

= 2

∫
A

[p(x)− q(x)]dµ = 2[P (A)−Q(A)]

≤ 2 sup
A
|P (A)−Q(A)|. (2.4)

Combine (2.3) and (2.4) to get the result.

Next we introduce α-divergence by Rényi (1961) between two distributions. This is given by

Rα(p, q) =
1

α− 1
log[

∫
pαq1−αdµ]]. (2.5)

Similarly, one can define another class ofDα divergence (or information divergence of type (1−α))
as

Dα(p, q) =
1

α(1− α)
[1−

∫
pαq1−αdµ]. (2.6)

It is straight forward to see

Rα(p, q) =
1

α− 1
log[1− α(1− α)Dα(p, q)], (2.7)

which is increasing in Dα(p, q). Also, as a special case of the latter, we have

D1/2(p, q) = 4[1−
∫
p1/2q1/2dµ] = 2

∫
(p1/2 − q1/2)2dµ = 2H2(p, q),

where H(p, q) = {
∫

(p1/2 − q1/2)2dµ}1/2 is the Bhattacharyya-Hellinger distance between two
densities p and q. Further, using L’hospital’s rule,

limα→1Dα(p, q) =

∫
log(p/q)pdµ = KL(p, q);
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limα→0Dα(p, q) =

∫
log(q/p)qdµ = KL(q, p),

the two KL divergence measures, thus arising as limiting cases of Dα divergence. One can go with
α < 0 as well. We point out two interesting examples 2D−1(p, q) =

∫
(p − q)2/pdµ, which is

known as the Neyman χ2 divergence, and 2D2(p, q) =
∫

(p− q)2/qdµ, which is known as Pearson
χ2 divergence. From the identity given in (2.7), one immediately gets for all 0 < α < 1,

Rα(p, q)→ 0 ≡ Dα(p, q)→ 0. (2.8)

We can also see all of these convergences (except Renyi’s divergence) as special cases of f -divergences
introduced by Csiszar (1967). The general definition of f -divergence with respect to a convex
fuction f : [0,∞) → (−∞,∞) such that f(x) is finite for all x > 0, f(1) = 0, and f(0) =

limx→0+f(x) given by

Df (p, q) =

∫
f

(
p

q

)
qdµ. (2.9)

It is easy to show if we choose f(x) as (1/2)|x − 1|, (xα − αx)/[α(α − 1)], x log x, − log(x),
(x − 1)2, (1/x) − 1, then Df (p, q) will be equal to TV distance, Dα(p, q), KL(p, q), KL(q, p),
Pearson χ2 and Neyman χ2 divergence respectively. Gilardoni (2006) proved the following result.

Lemma 2.1. Suppose that the convex function f is differentiable up to order 3 at x = 1 with
f

′′
(1) > 0, then Df (p, q) ≥ 2f

′′
(1)(TV (p, q))2 and the constant 2f

′′
(1) is best possible.

Now, for all of our previous choices of f , one gets f
′′
(1) = 1. This implies that Dα(p, q),

KL(p, q), KL(q, p), Pearson χ2 and Neyman χ2 divergences are bounded below by 2(TV (p, q))2.
This may lead to a misconception that TV (p, q) is weakest among all distances, while one talks
about convergence of densities. However, in the next few paragraphs we will show that that may not
always be a valid conclusion.

We now establish an inequality between TV (p, q) and Dα(p, q).

Theorem 2. α(1− α)Dα(p, q) ≤ TV(p, q), 0 ≤ α ≤ 1.

Proof. For 0 ≤ α ≤ 1,

α(1− α)Dα(p, q) = 1−
∫
pαq1−αdµ

≤ 1−
∫

(min(p, q))α(min(p, q))1−αdµ = 1−
∫

min(p, q)dµ

= (1/2)(2− 2

∫
min(p, q)dµ) = (1/2)

∫
[p+ q − 2min(p, q)]dµ

= (1/2)

∫
|p− q|dµ = TV(p, q).

The result shows that if TV(p, q)→ 0, so does Dα(p, q) for all α ∈ (0, 1). This does not imply
however that Dα(p, q) → 0 when α → 0 or α → 1, i.e., the two KL measures are left out in
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general. Also, for the H divergence mesure, it gives the inequality H2(p, q) ≤ 2TV(p, q). There
exists however, a second result which provides an upper bound for TV(p, q) in terms of H(p, q).
This is attributed to Le Cam, and is given in Wainwright (2019) as an Exercise. We prove the result
below.

Theorem 3. [TV(p, q)]2 ≤ H2(p, q)[1− 1
4H

2(p, q)] ≤ H2(p, q).

Proof. The last inequality is obvious since H2(p, q) ≤ 2. To prove the first inquality, we proceed as

[TV (p, q)]2 = (1/4)(

∫
|p− q|dµ)2 = (1/4)[

∫
(p1/2 + q1/2)(p1/2 − q1/2)dµ]2

≤ (1/4)[

∫
(p1/2 + q1/2)2dµ][

∫
(p1/2 − q1/2)2dµ]

= (1/4)[2 + 2

∫
(p1/2q1/2)dµ]H2(p, q)

= (1/4)(4−H2(p, q))H2(p, q) = H2(p, q)[1− 1

4
H2(p, q)].

An important consequence of Theorems 2 and 3 is that TV(p, q) ≤ H(p, q) ≤ 2[TV(p, q)]1/2.
Thus convergence of TV(p, q) to zero is equivalent to convergence of H(p, q) to zero. This yields
the important equivalence result

H(p, q)→ 0 ≡ TV (p, q)→ 0 ≡ Dα(p, q)→ 0 ≡ Rα(p, q)→ 0 for all 0 < α < 1.

The above TV and Hellinger equivalence is mentioned also in Gibbs and Su (2002). The general
Renyi or α divergence, however, was not mentioned there.

The next inequality in this section provides a relationship between KL(p, q) and Dα(p, q).

Theorem 4. KL(p, q) ≥ (1− α)Dα(q, p).

Proof. With the result log(x) ≤ x− 1 for x ≥ 0, one obtains

KL(p, q) =

∫
log(p/q)pdµ = −

∫
log(q/p)pdµ

= (−1/α)

∫
log(qα/pα)pdµ

≥ (−1/α)

∫
[qα/pα − 1]pdµ

= (1/α)[1−
∫
qαp1−αdµ] = (1− α)Dα(q, p).

It follows as an immediate consequence of the above theorem and D1/2(p, q) = D1/2(q, p),
KL(p, q) ≥ (1/2)D1/2(q, p) = (1/2)D1/2(p, q) = H2(p, q) ≥ (TV(p, q))2. A sharper inequality
KL(p, q) ≥ 2[TV(p, q)]2, attributed to Pinsker, Csiszar and Kullback, is proved in Wainwright
(2019). However, this is just a special case of lemma 2.1 by Gilardoni (2006). Also, this in-
equality may be vacaous when KL(p, q) > 2, since total variation distance is atmost 1. For
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such cases, an alternative bound can be used due to Bretagnolle and Huber (1978) is given by
TV (p, q) ≤

√
1− exp(−KL(p, q)).

The final inequality in this section provides a relationship between the KL divergence and the
chisquare divergences.

Theorem 5. KL(p, q) ≤
∫

[(p− q)2/q]dµ = 2D2(p, q).

Proof. Using the elementary inequality log z ≤ z − 1 for z ≥ 0, one gets

KL(p, q) =

∫
log(p/q)pdµ =

∫
log(p/q)(p/q)qdµ

≤
∫

(p/q − 1)(p/q)qdµ =

∫
[(p− q)2/q2 + (p− q)/q]qdµ

=

∫
[(p− q)2/q + (p− q)]dµ =

∫
[(p− q)2/q]dµ = 2D2(p, q).

Similarly, one can check that KL(q, p) is bounded above by Neyman χ2 divergence.
It is clear from our discussion that all the divergence measures considered above can be used for

detecting the proximity between distributions. For large n if we define efficiency of these divergence
measures in a limiting sense it is clear that total variation distance, Hellinger distance, α divergence,
Renyi’s divergence for α ∈ (0, 1) are equally efficient for showing whether two distributions are
close to each other or not. Also for small or large n, the perception that the TV distance is much
weaker than the others mentioned above is no more a truth. Thus a researcher will now have more
liberty to choose one among these measures which will make her/his calculations simpler. However,
it appears that the KL distance is stronger than the above divergence measures, and the χ2 distance
is even stronger than the KL distance. Hence, the χ2 distance seems to be the most efficient one in
terms on checking proximity between two distributions, since if this distance tends to 0, all of the
above mentioned distances will tend to 0.

3 Scheffe’s Theorem and Its Applications
Consider a sequence of pdf’s {pn, n ≥ 1}. We have found already from Theorems 2 and 3 that
H(pn, p)→ 0 ≡ TV (pn, p)→ 0 ≡ Dα(pn, p)→ 0 ≡ Rα(pn, p)→ 0 for all 0 < α < 1.

The original density convergence theorem of Scheffe implies that if a sequence of pdf’s pn
converges to a pdf p pointwise, then TV(pn, p)→ 0. While this is equivalent to Dα(pn, p)→ 0 and
Rα(pn, p) → 0 for all 0 < α < 1, it may be interesting to see a direct proof of these results. The
result follows from an elementary inequality and the dominated convergence theorem.

Theorem 6. Suppose a sequence of pdf’s pn converges to a pdf p pointwise. Then Dα(pn, p)→ 0.
for every 0 < α < 1.

Proof. First use the elementary inequality pαnp
1−α ≥ min(pn.p). This leads to the inequality

Dα(pn, p) ≤ [α(1−α)]−1[1−
∫

min(pn, p)dµ] = [2α(1−α)]−1
∫

[pn+p−2min(pn, p)]dµ. (3.1)
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Since pn → p pointwise, min(pn, p) → p pointwise. Further,
∫

min(pn, p)dµ ≤
∫
pdµ = 1. Now

by the dominated convergence theorem,
∫

min(pn, p)dµ → 1. Hence, by (3.1), Dα(pn, p) → 0.
This proves the theorem.

One can get a similar direct proof for Rα(pn, p)→ 0 when pdf’s pn converges to a pdf p point-
wise. The only issue that is left now is to examine whether pn converges to p pointwise implies
that KL(p, pn) converges to zero. I am not aware of any general result in this direction. However,
it is obvious that if log(p/pn) is bounded above by a function integrable with respect to p, then the
dominated convergence theorem continues to apply, and the pointwise convergence will imply the
KL convergence. We demonstrate this with two examples, one involving Student’s t distribution,
and the other involving the F distribution.

To this end, I first prove a lemma involving Gamma functions which may be of independent
interest.

Lemma 3.1. ((n− 1)/2])1/2 ≤ Γ((n+ 1)/2)/Γ(n/2) ≤ (n/2)1/2.

Proof. Γ((n + 1)/2) =
∫∞
0

exp(−z)z(n−1)/2dz =
∫∞
0

exp(−z)z(n−2)/4zn/4dz. Now applying
the Cauchy-Schwarz inequality, one gets

Γ((n+ 1)/2) ≤
(∫ ∞

0

exp(−z)z(n−2)/2dz
)1/2(∫ ∞

0

exp(−z)zn/2dz
)1/2

= Γ1/2(n/2)Γ1/2((n+ 2)/2) = Γ(n/2)(n/2)1/2.

This establishes the upper bound. To obtain the lower bound, once again applying the Cauchy-
Schwarz inequality, one gets

Γ(n/2) =

∫ ∞
0

exp(−z)z(n−2)/2dz =

∫ ∞
0

exp(−z)z(n−1)/4z(n−3)/4dz

≤
(∫ ∞

0

exp(−z)z(n−1)/2dz
)1/2(∫ ∞

0

exp(−z)z(n−3)/2dz
)1/2

= Γ1/2((n+ 1)/2)Γ1/2((n− 1)/2) = Γ((n+ 1)/2)/((n− 1)/2).

This establishes the lower bound, and thus completes proof of the lemma.

Now, in view of this lemma and the fact that (1 + t2/n)−(n+1)/2 converges to exp(−t2/2) as
n → ∞, one gets pn(t) = Γ((n + 1)/2)/[Γ(n/2)(nπ)1/2])(1 + t2/n)−(n+1)/2 converges to
φ(t) = (2π)−1/2 exp(−t2/2), the standard normal pdf. It remains to prove that | log(φ(t)/pn(t)| is
bounded above by a function not depending on n, integrable with respect to φ(t).

To this end, by virtue of lemma 3.1, one gets the inequalities log(pn(t)) ≤ log(2π)−1/2 and

log(pn(t)) ≥ (1/2) log(1− n−1) + log(2π)−1/2 − ((n+ 1)/2) log(1 + t2/n)

≥ (1/2) log(1− n−1) + log(2π)−1/2 − (t2/2)(1 + n−1).
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Noting that log φ(t) = −t2/2− log(2π)−1/2, one has the inequality

−t2/2 ≤ log φ(t)− log(pn(t)) ≤ t2/(2n)− (1/2) log(1− n−1).

Thus | log φ(t) − log(pn(t))| ≤ t2/2 + (1/2) log(n/(n − 1)) ≤ t2/2 + (1/2) log 2 for n ≥ 2, an
integrable function with respect to φ(t). This shows that KL(φ(t), pn(t))→ 0 as n→∞.

Next consider the F statistic. It is well-known that an F statistic with m,n degrees of freedom
converges in distribution to χ2

m/m as n → ∞, while m remains fixed. I prove now the pointwise
convergence of a Fm,n density to a χ2

m/m density, and subsequently the convergence of the KL
divergence between the two to zero as n→∞, but m is held fixed.

To this end, we first write the Fm,n density as

pm,n(u) = [Γ((m+ n)/2)/(Γ(m/2)Γ(n/2))](m/n)m/2um/2−1(1 +
m

n
u)−(m+n)/2.

Next, by repeated application of lemma 3.1, one gets the inequality

m−1∏
j=0

(n+ j − 1)1/22−m/2 ≤ Γ((m+ n)/2)/Γ(n/2) ≤
m−1∏
j=0

(n+ j)1/22−m/2. (3.2)

Hence, [Γ((m + n)/2)/(nm/2Γ(n/2))] → 2−m/2 as n → ∞. Further, (1 + m
n u)−(m+n)/2 →

exp(−mu/2) as n→∞, but m is held fixed. Thus as n→∞, but m is held fixed,

pm,n(u)→ exp(−mu/2)um/2−1mm/2/[2m/2Γ(m/2)],

which is the pdf of a χ2
m/m random variable. From now on, we will denote this random variable by

Um with its density given by gm(u).

Next to show the boundedness of | log(gm(u)/pm,n(u))|, by virtue of (3.2), one gets the upper
bound

log gm(u)− log pm,n(u) ≤ −(mu/2)− (1/2)

m−1∑
j=0

log
n+ j − 1

n
+ (1/2)(m+ n) log(1 +mu/n)

≤ −(mu)/2 + (1/2)(m+ n)(mu/n) = m2u/(2n) ≤ m2u/2. (3.3)
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By (3.2) again, and the fact that (1 + m
n u)−(m+n)/2 ≤ 1, one gets the lower bound

log gm(u)− log pm,n(u) ≥ −(mu/2)− (1/2)

m−1∑
j=0

log(n+ j − 1) + (m/2) log n

= −(mu/2)− (1/2)

m−1∑
j=0

log(1 + j/n)

≥ −(mu/2)− (1/2)

m−1∑
j=0

(j/n) = −(mu/2)− (1/2)m(m− 1).

(3.4)

Combining (3.3) and (3.4), one gets | log gm(u)− log pm,n(u)| ≤ m2u/2 +m(m− 1)/2, which is
integrable with respect to gm(u). An application of the dominated convergence theorem once again
yields KL(gm, pm,n)→ 0 as n→∞, while m is held fixed.
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