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SUMMARY

Gene expression data can be challenging to analyze due to its high-dimensional nature.
Regularization techniques are useful in reducing the number of predictors and highlighting
the significant genes, in this case, genes that may indicate the presence of cancer. This study
aims to see if grouping the genes before applying the regularization techniques is beneficial
in reducing the prediction error of classification. We investigate the potential effectiveness
of using clustering algorithms to generate a grouping structure for high-dimensional data
sets. Using various regularization techniques, we seek to determine if the generated groups
are truly relevant to the response and if the accuracy and interpretability of the models can
be improved. We apply the clustered group structure to two real-world data sets. We also
employ simulation studies to assess the performance of different regularization methods
for both clustering and no-clustering methods.
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1 Introduction

The idea of using data and information to train models that are both accurate and interpretable has
been around for decades.Very recently, Lee et al. (2018) explored different analysis techniques for
microarray data to create a more effective predictor of age from DNA methylation level. One desires
to build a model based on the predictors that is both accurate and interpretable; we want our models
to predict the outcome correctly, and we want to know which predictors are responsible. However,
in the age of big data, it is becoming increasingly common that a data set is high-dimensional,
meaning the number of predictors p vastly exceeds the number of observations n. In this setting,
many longstanding statistical modeling techniques, such as linear and logistic regression, no longer
suffice. Regularization is a popular technique that imposes a penalty on the original model; in some
cases, the models are sparse, meaning they are very interpretable.

Sometimes, the predictors of a model belong to some kind of pre-defined group, and the response
is based on these groups, as opposed to the individual predictors. More advanced regularization
methods have been developed to accommodate group structure, and assuming that the groups are
well-represented can greatly improve the accuracy and interpretability of the models. Unfortunately,
while the response could truly be dependent on the group structure, the actual grouping structure is
unknown beforehand. In this situation, one would desire to properly identify the grouping structure
and build a model based on the result.

This paper aims to investigate the effect that clustering can have on regularized models. We seek
to answer two questions:

1. Can clustering algorithms be used to properly identify a grouping structure in a data set?

2. Can grouping the predictors using the clustering information improve the accuracy and inter-
pretability of the model?

The rest of the article is organized into five sections. In Section 2 we provide a brief overview of
the various regularization techniques and clustering algorithms we used in our study. Sections 3
and 4 investigate the effect of clustering predictors on two real-world genomic data sets, Section 5
provides two scenarios of simulation study, and we conclude with a discussion in Section 6.

2 Methodology

2.1 Logistic regression

In many situations, the response variable of a data set is categorical in nature, and we wish to assign
an observation to one of the response variables given its inputs, a process known as classification.
We seek to model the probability that an observation falls into a given class. It is often the case
where the response belongs to one of two classes coded as G = {0, 1}. In this binary setting, one
popular approach to modeling the probabilities is logistic regression.

Suppose we have n observations and p predictors stored in a data matrix X = {xi,j} for i =

1, . . . , n and j = 1, . . . , p, along with a response vector y = (y1, . . . , yn)′, where yi ∈ {0, 1}.
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If p(xi) = P(Y = 1 | X = xi), where xi = (xi,1, . . . , xi,p)
′ is the ith observation in X, then

the probability is modeled (as the log-odds) by

log

(
p(xi)

1− p(xi)

)
= β0 + xTi β. (2.1)

From this, the estimated response ŷi is 1 if p(xi) ≥ 0.5 and 0 otherwise. The coefficients β0 and
β = (β1, . . . , βp) are estimated from the data by minimizing the negative of log-likelihood function

L(β0,β) =
1

n

n∑
i=1

[
log
(

1 + eβ0+xT
i β
)
− yi

(
β0 + xTi β

)]
. (2.2)

2.2 Basic regularization

In general, a regularized linear model seeks to minimize a penalized version of (2.2) of the form

Q(β0,β) = L(β0,β) + λP (β),

where P (β) is some type of penalty imposed on the coefficient vector β. The tuning parameter
λ ≥ 0 effectively controls the severity of the penalty; as the value of λ increases, more shrinkage is
imposed on the coefficients.

Various regularization methods have been introduced throughout the years using different penalty
functions, with each method shrinking the coefficients in a different way. Ridge regression (Hoerl
and Kennard, 1970) imposes a squared `2 norm on β, and seeks to minimize

Q(β0,β) = L(β0,β) +
λ

2
‖β‖22. (2.3)

The `2 norm causes continuous shrinkage of the estimated coefficients. A major drawback to ridge
regression is that it produces dense models, i.e. models where βj 6= 0 for all j, an undesirable
characteristic for an interpretable model.

An alternative similar to ridge regression is the lasso (Tibshirani, 1996), which minimizes

Q(β0,β) = L(β0,β) + λ‖β‖1. (2.4)

Here, an `1 norm is imposed on β, as opposed to a squared `2 norm. Unlike ridge regression,
the lasso is able to perform variable selection, forcibly setting many estimated coefficients to zero,
producing sparse models. The resulting sparsity of the model often makes the lasso more preferable
than ridge regression in the high-dimensional setting. Unfortunately, the lasso has several caveats
as well; in the high-dimensional setting the lasso will select at most n predictors, and if several
predictors are highly-correlated, the lasso will select only one and force the others to zero.

A generalization to ridge regression and the lasso, which attempts to combine the benefits while
negating the drawbacks, is the elastic net1 Zou and Hastie (2005), which minimizes

Q(β0,β) = L(β0,β) + λ
[
α‖β‖1 +

1− α
2
‖β‖22

]
. (2.5)

1(Zou and Hastie, 2005) call this penalty the naïve elastic net penalty, and suggest that scaling the estimated coefficients
up by a factor of 1 + λ(1− α) improves prediction accuracy. However, in their paper describing the implementation of the
elastic net, Friedman et al. (2010) abandon this distinction.
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This penalty is a linear combination of (2.3) and (2.4), and the mixing parameter α ∈ [0, 1] is used
to determine how much of each type of penalty is imposed on the model; α = 0 corresponds to ridge
regression, while α = 1 gives the lasso.

2.3 The group setting

Much work has been done to develop penalties that exploit pre-determined group structure. Suppose
that the predictors of X are split into K non-overlapping groups, with Sk denoting the size of the
kth group. For k = 1, . . . ,K, let Xk ∈ Rn×Sk denote the data matrix with the predictors in group
k, and let βk = (βk,1, . . . , βk,Sk

) be the sub-vector of β corresponding to the kth group.
The group lasso (“gLasso”) (Yuan and Lin, 2006) imposes an `2 norm on each of the coefficient

sub-vectors; it minimizes

Q(β0,β) = L(β0, β) + λ
K∑
k=1

√
Sk‖βk‖2. (2.6)

The group lasso was later extended to logistic regression by Meier et al. (2008). The `2 penalties
on each of the coefficient sub-vectors creates sparsity among the different groups while performing
ridge shrinkage within each group. As a result, the group lasso unfortunately only induces sparsity
at the group level, and if a group is determined to be significant, all of the group’s predictors will be
nonzero.

Both Yuan and Lin (2006) and Meier et al. (2008) assume that the data is orthonormal within
each group, i.e. XT

kXk = I for all k. This is almost never the case in practice, so one would want to
orthonormalize each Xk before minimizing (2.6). However, as Simon and Tibshirani (2012) show,
this actually changes the penalty to

Q(β0,β) = L(β0, β) + λ

K∑
k=1

√
Sk‖Xkβk‖2. (2.7)

This alternative penalty is theoretically and computationally superior (Breheny and Huang, 2015) to
(2.6), so for the rest of this paper we refer to (2.7) when speaking about the group lasso.

There are several methods used in practice to induce sparsity both within and among groups,
a feature known as bi-variate selection. One method is to combine the lasso and the group lasso
penalties as a linear combination, similar to the elastic net; the resulting penalty is known as the the
sparse group lasso Simon et al. (2013), and minimizes

Q(β0,β) = L(β0,β) + λ
[
α‖β‖1 + (1− α)

K∑
k=1

√
Sk‖βk‖2

]
. (2.8)

With this penalty, sparsity is induced at the group level, and elastic net-type shrinkage is imposed
within each group. Unfortunately, unlike the group lasso, there is no way to orthonormalize each
group without corrupting the within-group sparsity effect, making any implementation of the sparse
group lasso difficult compared to other penalties.
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An alternative method for performing bi-variate selection is the composite minimax concave
penalty2 (“cMCP”) (Breheny and Huang, 2009), which minimizes

Q(β0,β) = L(β0,β) +

K∑
k=1

fλ,Γk

(
Sk∑
s=1

fλ,γ(|βk,s|)

)
. (2.9)

Here fλ,γ(·) is the minimax concave penalty (Zhang, 2007), given by

fλ,γ(φ) =

λφ−
φ2

2γ , if φ ≤ γλ,
1
2γλ

2, if φ > γλ.

(2.10)

The intuition behind (2.10) is to counter the aggressive shrinkage that the lasso imposes on large
coefficients. The parameter γ > 0 controls the “range” of this counter, and the penalty becomes
the lasso as γ → ∞. We can see that (2.9) is effectively applying the penalty twice, once to induce
sparsity within each group and then again to induce sparsity among the groups. The outer parameter
is set to Γk = 1

2Skγλ, while the inner penalty γ is the same throughout.

2.4 Regularization based on principal components

Let X = UDVT be the singular value decomposition of the data matrix, and let m = rank(X)′.
The principal axes, or right singular vectors, are given by the columns of V ∈ Rp×m, and d =

(d1, . . . , dm) are the singular values such that d1 ≥ . . . ≥ dm > 0. D ∈ Rm×m is a diagonal matrix
whose diagonal entries are the elements of d.

Principal components lasso (“pcLasso”) (Tay et al., 2018) minimizes

Q(β0,β) = L(β0,β) + λ‖β‖1 +
θ

2
βT
(
VDd21−d2jV

T
)
β, (2.11)

where λ and θ are two separate tuning parameters. The diagonal matrix Dd21−d2j ∈ Rm×m has
diagonal inputs that are functions of the singular values of X, and is given by

Dd21−d2j = diag(d2
1 − d2

1, d
2
1 − d2

2, . . . , d
2
1 − d2

m). (2.12)

This “pcLasso penalty” has the result of imposing less shrinkage in the direction of the leading
principal axis and more severe shrinkage in the directions of subsequent principal axes. In other
words, β is biased in the direction of the leading principal axis. The presence of the `1 norm allows
pcLasso to simultaneously perform feature selection.

pcLasso can also be modified to exploit group structure. Let Xk = UkDkV
T
k be the singular

value decomposition for the kth group matrix, and let mk = rank(Xk). Then the columns of Vk

and dk = (dk,1, . . . , dk,mk
) are the principal axes and singular values of Xk, respectively. In this

2Breheny and Huang (2009) originally denote cMCP as the group MCP. To avoid confusion, Huang et al. (2012) recom-
mend denoting (2.9) as the composite MCP.
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setting, pcLasso seeks to minimize

Q(β0,β) = L(β0,β) + λ‖β‖1 +
θ

2

K∑
k=1

√
Skβ

T
k

(
VkDd2k,1−d

2
k,j

VT
k

)
βk. (2.13)

Similar to (2.12), the matrix Dd2k,1−d
2
k,j
∈ Rmk×mk is given by

Dd2k,1−d
2
k,j

= diag(d2
k,1 − d2

k,1, d
2
k,1 − d2

k,2, . . . , d
2
k,1 − d2

k,mk
). (2.14)

We now see that pcLasso biases each coefficient sub-vector βk in the direction of that group’s
leading principal axis, all while producing sparse models. Unlike the group lasso and cMCP, pcLasso
does not require each group matrix Xk to be orthonormal.

2.5 Clustering methods

In general, a clustering algorithm seeks to partition the predictors of a data set into different sub-
groups based on some dissimilarity measure; ideally, the dissimilarity will be low for predictors
within the same cluster and high for predictors in separate clusters. Various clustering algorithms
and dissimilarity measures exist that seek to achieve this goal, so for this report we only focus on
two simple algorithms.

K-means clustering (MacQueen et al., 1967) clusters the predictors into K non-overlapping
groups based on their Euclidean distance in the observation space. Let Ck be the set of all predictors
that belong to group k, for k = 1, . . . ,K, and let Sk denote the number of predictors in group k.
K-means clustering seeks to minimize the total within-cluster variation, given by

WK =

K∑
k=1

∑
j∈Ck

‖xj − x̄k‖22, (2.15)

where xj is the jth predictor and x̄k = 1
Sk

∑
j∈Ck

xj is the kth group centroid.
One drawback of K-means clustering is that the number of clusters K must be supplied before

WK can be minimized. Given that we have no information about the group structure beforehand,
we desire some type of measurement to determine the optimal number of clusters. The GAP statistic
(Tibshirani et al., 2001), defined as

Gap(m) = E [log(Wm)]− log(Wm), (2.16)

attempts to choose an optimal K from the rate that WK decreases. Given a maximum amount of
clusters M , the gap statistic is estimated using B Monte Carlo random samples; the optimal number
of clusters K is chosen when Gap(K) ≥ Gap(K + 1)− δ(K + 1), where

δ(m) = sdm

√
1 +

1

B

and sdm is the standard deviation of the B estimated Wm’s.
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Another appealing clustering algorithm is hierarchical clustering, which groups the predictors
into nested clusters. While Euclidean distance could be used as the choice of dissimilarity, we chose
to use correlation instead to investigate how this choice effects the resulting group structure. Unlike
K-means clustering, there is no criteria that could be used to choose the optimal number of clusters.
Fortunately, given that the clusters are nested, they can be represented in a dendrogram where the
number of clusters can be chosen by the user.

3 Colon Data Set

The colon data set, originally introduced by Alon et al. (1999), contains the gene expressions of
2,000 genes for 62 different tissue samples, i.e. n = 62 and p = 2, 000. Of the 62 tissue samples,
40 of the samples tested positive for colon cancer, while 22 tested negative.

3.1 Clustering information

Figure 1 shows the clustering information for the colon data set. The top-left panel measures the gap
statistics for m = 1, . . . , 20, and chooses K = 9 as the optimal number of clusters using K-means
clustering. The top-right panel plots the predictors against the first two columns of Z = VD (where
VDUT = XT is the SVD of the transposed data matrix, so the columns of Z are the principal
components of XT ), along with the labeled groups that each predictor belongs to.

The bottom panel displays the corresponding dendrogram using correlation as the dissimilarity
measure for hierarchical clustering. We decided that K = 7 was a reasonable cut-off for this
dendrogram.

3.2 Results

For all of the following methods, we randomly split the data set into a training set and a test set,
both with 31 observations each. Each model was fit on the training set, and its performance was
measured on the test set. Models that have additional parameters besides λ were fit using a grid of
values of said parameter (e.g. α for the elastic net), and the model with the lowest deviance was
chosen.

We first fit the following regularized models on the colon data set without any grouping structure:

1. The lasso: was fit using glmnet version 2.0.16.

2. The elastic net: was fit for α = 0.95, 0.8, 0.6, 0.4, 0.2, 0.05, using glmnet version 2.0.16.

3. pcLasso: was fit for rat3 = 0.95, 0.9, 0.75, 0.5, 0.25, 0.1, using pcLasso version 1.1.

Next, we fit the following models on the colon data set using the grouping structure obtained from
K-means clustering:

3As opposed to testing over a grid of values for θ, Tay et al. (2018) suggest specifying a value of rat instead. More
details can be found in their paper.
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Figure 1: Clustering information for the colon data set.

1. gLasso: was fit using grpreg version 3.2.1.

2. sgLasso: was fit for α = 0.95, 0.8, 0.6, 0.4, 0.2, 0.05, using SGL version 1.2.

3. cMCP: was fit for γ = 30, using grpreg version 3.2.1.

4. pcLasso: was fit for rat = 0.95, 0.9, 0.75, 0.5, 0.25, 0.1, using pcLasso version 1.1.
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The clusGap function from cluster version 2.1.0 was used to calculate the gap statistic, and
the groups were clustered using the kmeans function. Finally, the process above was repeated using
the grouping structure from hierarchical clustering, which was obtained using the hclust function.

The results from the various models are presented in Table 1. Included in the table are the values
of the optimized parameters, the cross-validation deviance, the number of missclassifications on the
test set, the number of nonzero coefficients in the final model (including the intercept β0), the number
of significant groups in the final model (if a single group contained a nonzero coefficient, then it is
considered significant), and the area under the curve (AUC) measurements. The corresponding ROC
curves for each model have been printed in Figure 2.
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Figure 2: The ROC curves for the colon data set.

We can see that pcLasso using hierarchical clustering performs the best in terms of missclas-
sifications, having only incorrectly predicting 3 of the 31 test observations. When looking at the
missclassifications for all of the models, we can see that the lasso, the elastic net, and pcLasso
without clustering all perform about the same.

With K-means clustering, gLasso missclassifies 12 of the 31 test observations, which is worse
than a null model (the test set had 11 observations that tested negative for cancer and 20 that tested
positive). sgLasso performs slightly worse, and cMCP and pcLasso perform about the same as
the non-clustered models. Looking at the number of significant groups, we can see that pcLasso
does not perform bi-variate selection at all, since all nine groups are represented in the final model.
This, along with the poor performance of gLasso and sgLasso, indicate that the grouping structure
obtained using K-means clustering is not sufficient.

A similar situation occurs with hierarchical clustering. This time we see that sgLasso missclas-
sifies the most test observations, and gLasso also performs worse than the non-grouped models.
Interestingly, the trained cMCP model using hierarchical clustering is identical in size to the model
using K-means clustering. Finally, pcLasso here both missclassifies the least amount of test obser-
vations and has the least number of significant coefficients. There are six significant coefficients
(keep in mind the table includes the intercept term) as well as six non-zero coefficients, so again
pcLasso does not induce shrinkage at the group level. It is worth noting that pcLasso using hierar-
chical clustering also has less significant coefficients than all of the non-clustered models,
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Table 1: The performance of various models on the colon data set.

No Clustering K-means Clustering Hierarchical Clustering

– K = 9 K = 7

Lasso Elastic Net pcLasso gLasso sgLasso cMCP pcLasso gLasso sgLasso cMCP pcLasso

Parameters
λ = 0.0642 λ = 0.0853 λ = 8.75 λ = 0.00562 λ = 0.0215 λ = 0.0838 λ = 35.32 λ = 0.0621 λ = 0.0194 λ = 0.0813 λ = 163.94

– α = 0.95 rat = 0.95 – α = 0.4 γ = 30 rat = 0.25 – α = 0.05 γ = 30 rat = 0.95

Deviance 0.938 0.945 0.561 0.490 0.853 1.01 0.525 0.987 0.863 0.995 0.548

Misclass. 6/31 6/31 5/31 12/31 7/31 6/31 5/31 8/31 11/31 6/31 3/31

Sig. Coef. 16 19 30 49 29 11 30 20 461 11 7

Sig. Groups – – – 3 2 4 9 1 1 4 6

AUC 0.936 0.945 0.850 0.695 0.745 0.932 0.891 0.623 0.814 0.932 0.818
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so it is both more accurate and more interpretable.

4 Leukemia Data Set

The leukemia data set, from Golub et al. (1999), contains the gene expressions of 7,128 genes for 72
different patients (n = 72 and p = 7, 128). The response is the type of leukemia each patient has;
47 were diagnosed with acute lymphoblastic leukemia (ALL) while 25 were diagnosed with acute
myeloid leukemia (AML).

4.1 Clustering information
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Figure 3: Clustering information for the leukemia data set.
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The clustering information for the leukemia data set has been printed in Figure 3. The gap
statistics for m = 1, . . . , 20 have been printed in the top left panel, and K = 19 is chosen as the
optimal number of clusters. The top right panels plots the predictors against the first two principal
components of the observation space, with each group labeled. Finally, the bottom panel shows the
leukemia dendrogram; we chose K = 5 at the optimal number of clusters.

4.2 Results
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Figure 4: The ROC curves for the leukemia data set.

The same general set up for the colon data set was applied to the leukemia data set; the results
have been printed in Table 2 and the ROC curves have been printed in Figure 4. As with the colon
data set, it seems that the clustering algorithms are unable to identify a sufficient grouping structure.

For the non-clustered models, both the elastic net and pcLasso perform the same in terms of
missclassifications. However, the elastic net has a markedly lower deviance, less significant coeffi-
cients, and a higher AUC, making it a decisively better model in this situation.

Both gLasso and sgLasso perform extremely poorly for both K-means and hierarchical cluster-
ing; in fact, gLasso actually fits a null model in both cases. cMCP again fits models with similar
sizes in both cases, and while the missclassification rate is much better than gLasso and sgLasso, it
still performs worse than the non-clustered models. As with the colon data set, clustered pcLasso
is the overall winner, having only missclassified two of the 36 test observations in both cases. In
addition, we see that pcLasso does not induce shrinkage at the group level. And while both models
perform the same in prediction accuracy, pcLasso using hierarchical clustering has a slightly lower
deviance, significantly less significant predictors, and a slightly higher AUC, so it can be considered
the best model for all of the clustered predictors.

Unlike the colon data set, however, there is some type of trade-off that one would have to con-
sider when choosing an overall best model. While pcLasso with hierarchical clustering has the
lowest number of missclassifcations, it has 45 significant predictors. On the other hand, the lasso
and the elastic net have 13 and 27, respectively, so even though their missclassification rates are
slightly higher, they are more interpretable models. It is entirely reasonable for one to choose a
model with one additional incorrect prediction if it is easier to interpret and explain.
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Table 2: The performance of various models on the leukemia data set.

No Clustering K-means Clustering Hierarchical Clustering

– K = 19 K = 5

Lasso Elastic Net pcLasso gLasso sgLasso cMCP pcLasso gLasso sgLasso cMCP pcLasso

Parameters
λ = 0.00407 λ = 0.00509 λ = 0.00548 λ = 0.0779 λ = 0.0457 λ = 0.111 λ = 0.00548 λ = 0.0779 λ = 0.0236 λ = 0.111 λ = 0.00548

– α = 0.8 rat = 0.95 – α = 0.95 γ = 30 rat = 0.9 – α = 0.4 γ = 30 rat = 0.95

Deviance 0.241 0.0834 0.465 1.240 0.730 0.671 0.442 1.240 0.731 0.671 0.439

Misclass. 5/36 3/36 3/36 14/36 13/36 6/36 2/36 14/36 14/36 6/36 2/36

Sig. Coef. 14 28 41 1 6 6 76 1 772 7 46

Sig. Groups – – – 0 1 2 19 0 1 2 5

AUC 0.987 1.000 0.977 0.500 0.994 0.964 0.994 0.500 0.990 0.968 1.000
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5 Simulation

To assess the performance of different regularization methods for both no-clustering and clustering
methods we have simulated data for n = 100 subjects and n.sim = 30 simulation runs were per-
formed for the convenience of computation time. Keeping the fact in mind that we have predictors
in real data analysis, we simulated P = 50 predictors from multivariate normal distributions with
two different scenario (presented in the subsequent subsections). We have simulated the random
coefficients for respective predictors from the continuous grid -3 and +3 of the uniform distribution.
As performance metrics, we have observed deviance, misclassification rate, number of significant
coefficients, and AUC across different clustering methods and respective regularization methods un-
der each clustering method. In hierarchical clustering, we cut the tree at the height of 1.5 which
is aligned with colon dataset and leukemia dataset. Since, we have performed 30 simulation runs,
each of the performance metrics was averaged out but we have rounded misclassifcation rate to its
nearest whole number to avoid confusion in understanding.

5.1 Scenario 1

In this case, we have simulated the predictors from aNP (0, I), meaning that the data is not clustered.
Using the logistic probability expression, p =

(
1 + e−Xβ)−1

, we have simulated the success and
failure probabilities. Using these probabilities, we have simulated the 100 random Bernoulli trials
of successes and failures. Simulation results are presented in Table 3.

Table 3: The performance of various models on the non-clustered simulated dataset

No Clustering K-means Clustering Hierarchical Clustering

– K = 1 K = 2

Lasso Elastic Net pcLasso gLasso sgLasso cMCP pcLasso gLasso sgLasso cMCP pcLasso

Deviance 1.8924 1.3266 0.7983 1.9004 1.3259 0.8017 0.6922 1.5691 1.1257 0.7655 0.5267

Misclass. 5/100 5/100 4/100 10/100 8/100 7/100 4/100 9/100 11/100 6/100 4/100

Sig. Coef. 20 26 33 35 31 17 26 32 39 29 11

AUC 0.9567 0.9258 0.8239 0.6289 0.8658 0.9763 0.8029 0.7923 0.8547 0.9871 0.8892

5.2 Scenario 2

In this case, we have simulated the first 50 observations of predictors from a NP
(
− 31p, I

)
and an-

other 50 observations of predictors from NP
(
31p, I

)
, meaning that the data is now clustered, which

distinguish this scenario from scenario 1. Like as before, Using the logistic probability expression,
p =

(
1 + e−Xβ)−1

, we have simulated the success and failure probabilities. Using these probabili-
ties, we have simulated the 100 random Bernoulli trials of successes and failures. Simulation results
are presented in Table 4.
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Table 4: The performance of various models on the clustered simulated dataset

No Clustering K-means Clustering Hierarchical Clustering

– K = 2 K = 3

Lasso Elastic Net pcLasso gLasso sgLasso cMCP pcLasso gLasso sgLasso cMCP pcLasso

Deviance 1.2357 0.9231 0.5677 1.0592 0.7981 0.6252 0.4669 1.0029 0.7887 0.5923 0.4169

Misclass. 7/100 7/100 5/100 12/100 10/100 8/100 7/100 11/100 10/100 7/100 6/100

Sig. Coef. 23 28 32 38 32 20 28 36 44 32 12

AUC 0.9723 0.9515 0.8970 0.7257 0.9012 0.9899 0.7789 0.8023 0.8455 0.9918 0.8720

6 Discussion
With both data sets, we saw that the group lasso and the sparse group lasso performed very poorly
relative to the other methods, especially for the leukemia data set. In addition, pcLasso did not
perform bi-variate selection. Both of these facts are indications that both K-means clustering and
hierarchical clustering were ineffective in properly identifying a grouping structure that was relevant
to the response. However, we also observed that pcLasso with clustered predictors had a slighlty
lower number of missclassifications than the non-clustered models, showing that even though the
groups were not relevant to the response, the models can potentially become more accurate and
interpretable.

From the results presented in Table 3 and Table 4 for non-clustered and clustered simulated data,
respectively, it has been observed that no clustering,K-means clustering, and hierarchical clustering
patterns of data were correctly identified by the methods. It has also been observed that pcLasso
method of regularization perform best across the different clustering methods while leaving cMCP
behind as close competitor in all the categories of observed performance metrics such as deviance,
misclassification error rate, number of significant coefficients, and AUC.

There are several avenues that one could follow for further research:

• Looking at the top right panels of Figures 1 and 3, we can see that the clusters are not well-
separated at all. Despite this, the gap statistic split the predictors into a rather large number
of clusters, especially for the leukemia data set, which may be a result of the large number of
predictors. Perhaps another measure to determine the optimal number of clusters can be used.
It is also worth mentioning that the computation time when using the clusGap function was
on the magnitude of hours, making it non-practical for larger data sets.

• The two clustering algorithms used were chosen because of their simplicity and reputation,
but one could argue that their poor performance is entirely expected. Much work has been
done in the field of unsupervised learning, and one could use a different clustering algorithm
to generate the group structure.

• There are many more grouped regularization models that can be employed that perform bi-
variate selection, such as the group exponential lasso (“GEL”) (Breheny, 2015) or the group
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bridge (Huang et al., 2009), that can be efficiently implemented using the grpreg package.
Each of these methods have their own interesting properties, and one could investigate if their
use can improve over the non-clustered models.
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