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SUMMARY

In this paper, we discuss the problem of predicting intervals for future order statistics and
k-record values based on observed concomitants of order statistics and observed concomi-
tants of k-record values arising from a Morgenstern family of distributions. The coverage
probabilities obtained are accurate and independent of the parent distribution. A real data
set is also considered to exemplify the proposed methodologies developed in this paper.
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1 Introduction

Let {(X;,Y;),i = 1,2,...n} be n independent and identically distributed (iid) bivariate random
sample of observations arising from an absolutely continuous bivariate population with cumulative
distribution function (cdf) F'(x,y) and joint probability density function (pdf) f(x,y). Let Fx(x)
and Fy (y) be the marginal cdfs of X and Y, and let fx (x) and fy (y) be the corresponding marginal
pdfs of X and Y respectively. By arranging the X; values in non-decreasing order of magnitude as
X < Xo,, < --- < X,,.., the order statistics of the X variate will be obtained. Then the Y-
variate associated with the rth order statistic X,..,, is called the concomitant of X,..,, and it is denoted
by Y}, The term concomitant of order statistic was first introduced by David (1973).
Concomitants of order statistics have found wide range of applications in the field of engineer-
ing, inference and prediction problems and double sampling plans. There are numerous studies
available in the literature that deal with concomitants of order statistics. David et al. (1977) derived
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the distribution of the rank of Y[,.,,;. The asymptotic behaviours of the rank of Y., were exten-
sively discussed by David and Galambos (1974). Balasubramanian and Beg (1997, 1998) discussed
the concomitant for Morgenstern type bivariate exponential distributions and Gumbel’s bivariate
exponential distributions, respectively and provided its recurrence relations for single and product
moments. David and Nagaraja(1998) made a significant use of concomitants of order statistics in
selection procedures when k(< n) individuals are chosen on the basis of X values. Then the cor-
responding Y values represent the performance on an associated characteristic. The cdf and pdf of
the concomitant of rth order statistic Y[,..,,) are respectively given by (see, David, 1981)

Fy,.., (y) = / Fy\x (ylx) fran (z) de (1.1)
and .
P (W) = /fwx (y|z) frn (2) d, (1.2)

where Fy|x and fy|x are respectively denote the conditional cdf and pdf of Y given X and f,..,, ()
is the density function of X,..,, which is given by (see, Arnold et al., 1992 )

1

B @) 1= Px(@) 7 fx(@), oo <z <o, (1)

fron (*T) =
where B (-, -) denotes the complete beta function.

Let {X,,,n > 1} be a sequence of iid random variables with an absolutely continuous cdf Fx ()
and pdf fx (z). If an observation X; exceeds all of its previous observations, that is, X; > X for
every ¢ < j, then it is referred to as an upper record value. Thus X is the first upper record value
by definition. Similarly, the lower record values can be defined. Many authors have studied the
record values of iid random variables as well as their features in the literature. Arnold et al.(1998),
Ahsanullah(1995) and the literature contained therein can be used to have a more in-depth look in
this topic.

One of the challenges in dealing with problems involving inference with record data is that the
expected waiting time for consecutive records after the first may be infinite. Such an issue does not
arise if we use the k-records proposed by Dziubdziela and Kopocinski (1976). We use a formal
definition of k-record values given by Arnold et al. (1998).

For a fixed positive integer k, the upper k-record times 7,,(x) and the upper k-record values Uy, ()
are defined as follows. Define 7y (y) = k and Uy () = X1.x. Then forn > 1,

Ty = min {75 > 1y Xi > Xe e b

where X,.,,, denotes the rth order statistic in a sample of size m. Then the sequence of upper
k-records {Uyky,n > 1} is defined as

Un(k) = X'rn(k)karl:'rn(k) .
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The cdf of the nth upper k-record value U, k) forn > 1, is given by

n—1 n %
Fupy(@) =1 [Fx(@]* Y LR @Iy - (14)

7!
i=1

where F' = 1 — F. The pdf corresponds to the cdf (1.4) is given by

L(n)

where I'(-) denotes the complete gamma function. The sequence of lower k-record values can be
defined in a similar manner.

Let {(X;,Y;),7 > 1} be a sequence of iid bivariate random variables arising from a bivariate
population with absolutely continuous cdf F(x,y) and joint pdf f(z,y). Let {U,(),n > 1} be
the sequence of upper k-record values extracted from the X values. Then the Y -variable associated
with the X -value which is quantified as the nth upper k-record value is called the concomitant of nth
upper k-record value and is denoted by Up,(x))- An analogous definition deals with the concomitant
of nth lower k-record value.

The cdf of the concomitant of nth upper k-record value Uy, gy is defined as given below (see,
Houchens, 1984).

= k—1

Ty () = [- IOgFX(l”)]n_l [Fx(z)]

fx(x), —oo<x< o0, (1.5)

F[n(k)](y):[ Fy\x (Ylz) faw)(z)dz. (1.6)

The pdf corresponds to the cdf (I.6) is obtained as
(oo}
o) = [ Frix ulo) fugey (), .7
—o0

where f,,(x) is defined in .

In the area of modelling statistical data, families of distributions with members in a wide range
of forms have aroused substantial interest. One standard method for solving modelling issues is
choosing a family of distributions and selecting a member that best fits the observations. The most
crucial factor in a modelling challenge is that the chosen family should be adaptable and including
a wide range of models that can reflect any data scenario. In modelling bivariate data, when the
prior information is in the form of marginal distributions, it is of advantage to consider families
of bivariate distributions with specified marginals. Morgenstern families of distributions (MFD) is
characterized by the specified marginal distribution functions F'x (x) and Fy (y) of random variables
X and Y respectively and a parameter . A bivariate random variable (X,Y") whose distribution
belongs to MFD if its cdf is given by (see, Kotz et al., 2000).

F(z,y)=Fx (@) Fy (y) 1+ a(1-Fx (2))1-Fy (y)], -1<a<l. (18
The pdf corresponds to the cdf (I.8) is given by

fzy) = fx (@) fy ()1 +a(l-2Fx (z) (1 -2Fy (y))], -1<a<1 (1.9)



58 Muraleedharan and Chacko

The estimation of parameters of Morgenstern type bivariate exponential distribution using concomi-
tants of order statistics is extensively discussed by Chacko and Thomas (2011). Bairamov and
Bekci(1999) looked at the concomitants for bivariate Farlie-Gumbel-Morgenstern type bivariate uni-
form distribution with uniform marginals by introducing additional parameters and found a recur-
rence relation between moments and moment generating function of concomitants order statistics.

In statistical inference, predicting future events based on current knowledge is a fundamental
problem. It can be expressed in a variety of ways and various settings. There are two different sorts
of prediction problems. The one sample prediction problem is that the event to be predicted comes
from the same sequence of events, whereas the two sample prediction problem is when the event to
be predicted comes from a different independent sequence of events.

There is a considerable amount of literature on the statistical prediction of future events. Sev-
eral authors have considered prediction problems involving record values and order statistics. Hsieh
(1997) developed the explicit expression for the prediction intervals for future Weibull order statis-
tics. AL-Hussaini and Ahmad (2003) obtained the Bayesian prediction bounds for future record
values from a general class of distributions. Prediction of distribution-free confidence intervals
based on record values, order statistics and progressively type-II censored sample are extensively
discussed by Ahmadi and Balakrishnan (2005, 2008, 2010), Ahmadi et al. (2010) and Guilbaud
(2004), respectively. However, to the best of our knowledge, the prediction of any future observa-
tions based on the observed sequence of concomitants of order statistics or concomitants of k-record
values is not yet seen done in the available literature. Hence in this paper, based on the observed con-
comitants of order statistics and concomitants of k-record values arising from MFD with cdf given
in (1.6), we obtain the two sample prediction intervals and the corresponding coverage probabilities
for order statistics and k-record values from a future sample.

An explicit expression for the cdf and pdf of concomitants of order statistics and concomitants
of k- record values is essential for finding the coverage probability of the prediction interval based
on concomitants of order statistics and concomitants of k- record values. But the majority of well-
known bivariate models, such as bivariate normal distribution, bivariate Pareto distribution, the pdfs
and cdfs of concomitants of order statistics and concomitants of k- record values cannot be found
explicitly. Suppose we have observed n concomitants of order statistics or concomitants of k-record
values arising from MFD. Based on these data, we wish to construct the two sample prediction
intervals for order statistics and k-record values from a future sample. Then the results developed in
this paper can be used to find the prediction intervals and the corresponding prediction coefficients
of order statistics and k-record values from a future sample.

The rest of this paper is structured as follows. In Section 2, we obtain the prediction intervals of
future order statistics based on the observed sequence of concomitants of order statistics. In Section
3, we discuss the interval prediction of future order statistics based on the observed concomitants
of k-record values. In Section 4, we obtain the interval prediction of future k-record values based
on the observed concomitants of order statistics. The interval prediction of future record values
based on the observed concomitants of k-record values are considered in Section 5. In Section 6,
a real data set is used to exemplify the proposed methods developed in this paper and finally, some
concluding remarks are made in Section 7.
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2 Prediction Interval of Future Order Statistics Based on Con-
comitants of Order Statistics

In this section, we find the prediction intervals for future order statistics and derive the corresponding
coverage probabilities based on the observed sequence of concomitants of order statistics arising
from MFD. The cdf and pdf of the concomitant of rth order statistic Y., arising from MFD are
respectively given by (see, Scaria and Nair, 1999)

n—2r+1

Fy,.., (y) = Fy(y) {1 +a <n+1) [1— FY(y)]} (2.1)

and ) )
n—2r—+
o ) =) {14 o (P25 ) -2l @)
n+1

Let (X;,Y;),i=1,2,... be a sequence of bivariate random sample of observations arising from a
bivariate population with cdf F(x,y). Let {T,,,n > 1} be a sequence of observed concomitants of
order statistics or concomitants of k-record values arising from (X;,Y;),i = 1,2,.... Suppose we

are interested in obtaining an interval of the form (75, T},), for 1 < m < n, such that
n(m,n) =PI, <T<T,)=1-n.

Then we refer to the interval (75, T},) as a 100 (1 — ) % prediction interval for the future observa-
tion 7.

We can choose m and n so that 7 (m,n) surpasses 7o if the desired confidence level 7 are
supplied. Because 7 (m, n) is a step function, the confidence coefficient may not equal 7y but may
be set to a value somewhat higher than 7y. Furthermore, the choice of m and n is not unique. We
would like to generate a prediction interval as short as possible among all prediction intervals with
the same level for a given confidence level of 7). First, notice that the two-sided prediction intervals
exist for a given 7, if and only if, for large m,

P(Ty <T <T,) > no.

The following theorem establishes the prediction intervals and the corresponding coverage probabil-
ities of order statistics from a future sample based on the observed concomitants of order statistics.

Theorem 2.1. Let {Y[r:n], r=1,2,... ,n} be n observed concomitants of order statistics arising
from a MFD with cdf given in (I.8). Let Fy be the marginal cdf of Y and let Y7.,,, < Y., < -+ <
Y,..m be the order statistics of a future random sample of size m arising from the same cdf Fy-.
Then (Y[S:n] , Y[m}), for 1 < s <t < n,is a prediction interval for the rth order statistic Y;..,,,, for
1 < r < m, with the corresponding prediction coefficient, being free of Fy and is given by

L If Ygn) < Yup) and 0 < @ < 1, then (Y[sm],Y[tm]) is a prediction interval with the corre-
sponding prediction coefficient given by

2ar (t—8)(m—r+1)

m (s, t,r;a,m,n) = m+1)(m+1)(m+2)

2.3)
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2. If Yisp) < Yign) and =1 < a < 0, then (Y], Yjs:n)) is a prediction interval with the
corresponding prediction coefficient given by

2ar (s —t)(m—r+1)

(n+1)(m+1)(m+2)

2.4)

N2 (s, t,m50,m,m) =
Proof. First we consider the case when Y[,.,j < Y[s.,). Then for any fixed real number v and
1 < s <t < n, then we have

P (Yv[s:n] < ’U) =P (Y’[s:n] <, Y’[t:n] < 'U) +P ()/[s'n] <, )/[t:n] > U)
= P (Yiem) <) + P (Yorn) <0 < Vign)) -

Hence
P (}/[s:n] <v< Yr[t:n]) =P (}/[s:n] < U) -P (Y—[t:n] < ”U) . (2.5)
Using (2.1)), (2.3) can be expressed as
20 (t — )
P (Vam) <0 < Vi) = WFY () [1 = Fy (v)].- (2.6)

Now for s < t, and using the conditioning arguments, we can write

oo

P (Yv[s:n] < Yr:m < Yv[t:n]) = / P (Yv[s:n] < Yvr:m < Yv[t:n]|Yr:m = ’U) fr:m (U) dv
= / P (}/isn] <v< Yit:n]) frim (”U) dv
20 (t — ) T
= —" F 1— I .
[ B )= By )] o () o

_ 2ar(t—s)(m—r+1)
C(n+1)(m+1)(m+2)

2.7)

Thus for 0 < o < 1 and Y., < Y[s.p,) , We have

2ar (t—s)(m—r+1)
(n+1)(m+1)(m+2)

m (S,t,T;Oé,Tﬂ,TL) =P (}/[5n] <Y< Yv[‘sn]) =

By a similar arguments, the result follows for the case when —1 < o < 0 and Y};.,,) < ¥[s.,,). Hence
the proof. O

We have evaluated the coverage probabilities 7; (s, ¢, r; a, m,n) for different values of s — ¢,
r and « for n = 20,30 and m = 15,25. The values are presented in Table 1. It can be observed
that coverage probabilities improve with the increase of . When —1 < a < 0, we can write
M2 (s, t, 73, myn) = n1 (s,t,7; —a, m,n) , hence one can use Table 1 for evaluating .
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Remark 2.1. When the parameters are presented in the coverage probabilities of the prediction
intervals of future event, Escobar and Meeker (1999), suggests different calibration methods for
computing the probabilities of the prediction intervals. In this approach, maximum likelihood esti-
mate (MLE) for « can be used to predict a future independent observation from the observed data.
They have discussed in detail about the problem of prediction in case of log-location-scale distribu-
tions such as Weibull or lognormal distributions. Cox (1975) suggested a large sample approximate
method based on MLEs, that can be used to calibrate or correct a naive prediction coefficient. Ac-
cording to this approach, to calibrate the prediction coefficient by evaluating the value 1 — 7. such

that
1—nc=P(T1ngT2|@):P(E%C <ST<b u a)

where fp is the MLE of the pth quantile of 7.

3 Prediction Interval of Future Order Statistics Based on Con-
comitants of k-Record Values

In this section, we find the prediction intervals for future order statistics and obtain the corresponding
coverage probabilities based on the observed sequence of concomitants of k-record values.

By Chacko and Mary (2013), the cdf of nth concomitant of upper k-record value Uj,,(x)) arising
from MFD is given by

k n
Foon ) = Frt) {1+ [1 =2 (35 ) | 1Fvi - 11} G
The pdf corresponds to the cdf is obtained as
k n
finaey () = fr(y) {1 +a [1 -2 <1+k> ] [2Fy (y) — 1]} : (3.2)

The cdf and pdf of the concomitant of nth lower k-record value Ly, ), arising from MFD are
respectively given by

Fry W) = Fy (y) {1 +a [2 <Hk_k)" - 1] [Fy(y) — 1}} (3.3)

" o) = v {1402 <1f_k) ~1] Fvin -1} G4

The following theorem provides the interval prediction and exact expression for the coverage proba-
bilities of future order statistics based on the observed sequence of concomitants of upper k- record
values.

Theorem 3.1. Let {U[n(k)],n > 1} be a sequence of observed concomitants of upper k-record
values arising from a MFD with cdf given in (I.8). Let Y., < Y5, < --+ < Yy be the order
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Table 1: Values of 1y (s, t,r; a, m,n) for some selected values of t — s,7,n, m and «.

n|mj|r |t—s @
0.30 0.50 0.75 0.90 0.95 1.00
6 0.04034 0.06723 0.10084 0.12101 0.12773  0.13445
8 0.05378 0.08964 0.13445 0.16134 0.17031 0.17927
3 10 0.06723  0.11204 0.16807 0.20168 0.21289 0.22410
12 0.08067 0.13445 0.20168 0.24202 0.25546 0.26891
15 0.10084 0.16807 0.25210 0.30252 0.31933 0.33614
20 | 15 18 0.12101  0.20168 0.30252 0.36303 0.38319 0.40336
6 0.03025 0.05042 0.07563 0.09076 0.09580 0.10084
8 0.04034  0.06723 0.10084 0.12101  0.12773  0.13445
12 10 0.05042 0.08403 0.12605 0.15126 0.15966 0.16807
12 0.06050 0.10084 0.15126 0.18151 0.19160 0.20168
15 0.07563  0.12605 0.18908 0.22689 0.23950 0.25210
18 0.09076 0.15126 0.22689 0.27227 0.28739  0.30252
6 0.02779 0.04632 0.06948 0.08337 0.08801 0.09264
8 0.03706 0.06176 0.09264 0.11117 0.11734 0.12352
10 0.04632 0.07720 0.11580 0.13896 0.14668 0.15440
12 12 0.05558 0.09264 0.13896 0.16675 0.17601 0.18528
15 0.06948 0.11580 0.17370 0.20844 0.22002 0.23160
18 0.08337 0.13896 0.20844 0.25012 0.26402 0.27792
20 0.09264 0.15440 0.23160 0.27792 0.29336 0.30880
25 0.11580 0.19300 0.28950 0.34739 0.36669 0.38599
6 0.02730  0.04549 0.06824 0.08189 0.08644 0.09098
8 0.03639  0.06066 0.09098 0.10918 0.11525 0.12131
10 0.04549 0.07582 0.11373 0.13648 0.14406 0.15164
30 | 25 | 15 12 0.05459 0.09098 0.13648 0.16377 0.17287 0.18197
15 0.06824 0.11373  0.17060 0.20471 0.21609 0.22746
18 0.08189 0.13648 0.20471 0.24566 0.25931 0.27295
20 0.09098 0.15164 0.22746  0.27295 0.28812 0.30328
25 0.11373  0.18955 0.28433 0.34119 0.36015 0.37910
6 0.01985 0.03309 0.04963 0.05955 0.06286 0.06617
8 0.02647 0.04411 0.06617 0.07940 0.08382 0.08823
10 0.03309 0.05514 0.08271 0.09926 0.10477 0.11028
20 12 0.03970 0.06617 0.09926 0.11911 0.12572 0.13234
15 0.04963 0.08271 0.12407 0.14888 0.15715 0.16543
18 0.05955 0.09926 0.14888 0.17866 0.18859 0.19851
20 0.06617 0.11028 0.16543 0.19851 0.20954  0.22057
25 0.08271 0.13785 0.20678 0.24814 0.26192 0.27571
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statistics from a future random sample of size m arising from the same cdf Fy. Then for 1 < s < ¢,
the prediction interval for the rth future order statistic Y..,,,, for 1 < r < m, and the corresponding
prediction coefficient, being free of Fy-, are given below.

1. If U[s(k:)] < U[t(k)] and 0 < a < 1, then the prediction interval is (U[s(k)]7U[t(k)]) with
corresponding prediction coefficient

N3(k) (s, t,r;a,m) = 2 { (1f_k)é — (1 f_ k)t} (;(Tlg(%—F—:)Q) 3.5

2. If Upry < Upsry) and —1 < o < 0, then the prediction interval is (Upyx)j, Ujs(ry)) With
corresponding prediction coefficient

oo =2o{ (5) - (53) et 0

Proof. For any fixed real number v, suppose Ups(xy) < Upry) for 1 < s < tand 0 < o < 1, then
we have

P (Us(ry) <) = P (Upsry) < 0, Uiy < 0) + P (Upsy) < 0, Uiy 2 )
= P (U <v) + P (Ugsiy) < v < Upiry) -

Hence
P (Uysgoy < v < Upaey) = P (Usso) < ) = P (Upewy < 0) - (3.7)

Using (3.1, (3.7) can be expressed as

P (Vs < v < Upiay) = 201 { (1 f_ k) - (1 f k) }Fy W) [Fy (v) =1, (38)

Now for s < ¢, and using the conditioning arguments, we can write

o0

P (Upsiy) < Yeum < Upry) = / P (Uisey) < Yeim < Upoy[Yeim = v) fy (v) dv

— 00

oo

/ P (Risky) < v < Rypry)) from (v) do

—0o0

% { (1_’;{) - (1@)} 7 Fy (o) [Fy (v) = 1] fram (v)

o{ (i) - () by
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Thus for 0 < o« < 1 and U[s(k:)] < U[t(k)] , we have
M3(k) (s, t,m30m) = P (Us(y) <Y < Upay)
_o Eo\° E N\l rm—r+1)
Y1tk 1+k) ((m+1)(m+2)
By a similar arguments, the result follows for the case when —1 < a < 0 and Upry < Uls(r))-
Hence the proof. O

We have evaluated the coverage probabilities 73, (s,t,7;cc,m) under m = 20, k = 1,2, 3 and
a = 0.5,0.75,0.9,0.95 for r = 5,8,10 and 15. The values are presented in Table 2. It can be
observed that coverage probabilities improve with the increase of o and k. When —1 < «a < 0,
we can write 74 (s,1,7; a, m) = N3k (s,t,7; —a, m), hence one can use Table 2 for evaluating
Nacky (8,1, 75 0,m).

Now we consider the following theorem which establishes the prediction intervals and corre-
sponding prediction coefficients of order statistics from a future sample based on the observed se-
quence of concomitants of lower k-record values.

Theorem 3.2. Let {L[n(k)],n > 1} be a sequence of observed concomitants of lower k-record
values arising from a MFD with cdf given in @ Let Yi.,, < Y5, < --- < Y,,.. be the
order statistics from a future random sample of size m arising from the same cdf Fy. Then for
1 < s < t, the prediction interval for future rth order statistics Y,..,,, for 1 < r < m, and the
corresponding prediction coefficient, being free of Fy-, are given below

L If Ligk)) < Ljgx) and —1 < « < 0 then the prediction interval is (L[S(k)]7L[t(k)]) with
corresponding prediction coefficient

N5(k) (s, t,r;a,m) = 2 { (&)t — (1 _]f_ k)b} (;(Tlg(%—F—:)Q) (3.9

2. If L[t(k)] < L[s(k)] and 0 < « < 1 and then the prediction interval is (L[t(k)]vL[s(k)]) with
corresponding prediction coefficient

. B E\° E O\l rim—r+1)
Tlﬁ(k)(s,t,r,a,m)—2@{<1+k) — (1+k) }(m+1)(m+2). (3.10)

Proof. The proof of the theorem directly follows from Theorem 3.1 and thus omitted. O

Remark 3.1. In the light of Theorem 3.1 and Theorem 3.2, we can observe the following two
identities.

1. M5 (k) (87 t7 ra, m) = Ta(k) (57 ta T Q, m) .

2. N6 (k) (Sa t,r;a, m) = "M3(k) (S, t,r;qQ, m) :

Thus one can evaluate 75 (s, t,7; «, m) and (1) (s, t,7; &, m) by using Table 2.
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4 Prediction Interval of Future k-Record Values Based on Con-
comitants of Order Statistics

In this section, we find the prediction intervals for the future k-record values and derive the corre-
sponding coverage probabilities based on the observed sequence of concomitants of order statistics.
The following theorem establishes the interval prediction and the corresponding prediction coeffi-
cient of rth future (upper or lower) k-record values.

Theorem 4.1. Let {Y[i:n],i =1,2,... ,n} be n observed concomitants of order statistics arising
from a MFD with cdf given in (I.8). Then for 1 < s < ¢t < n, the prediction interval for rth future
k-record value R, ) and the corresponding prediction coefficient, being free of Fy, are given below.

LLIfO0 < a < 1and Yy, < Y, , then (Y[S:H],Y[m]) is a prediction interval with the
corresponding prediction coefficient given by

20 (t — E\" E O\
N7y (8,8, 750,m) = ?n(+ 1;) [(k—H) _<k+2> ] 4.1)

2. If =1 < a < 0 and Yj.,) < Yy, then (Y[tm},Y[sm]) is a prediction interval with the
corresponding prediction coefficient given by

Mgy (5,1, 75 0, m) = 2?71(1_1;) Kkil) _ <k_’i2>] , (4.2)

Proof. Let R, be the rth future upper k-record value with pdf given in @
First we consider the case when Y/.,,) < YJ;.,,. Then for any fixed real numbervand 1 < s <t <mn,

2a (t — s)

P (Y S0 < Vi) = NCESIE

Fy (v)[1 = Fy (v)]. 4.3)

Now for s < ¢, and using the conditioning arguments, we can write

o0

P (}/[Szn] < Rr(k) < Yv[t:n]) = / P (}/[s:n] < Rr(k) < Yv[tn]|Rr(k) _ U) fY (’U) do
= / P (Y'[s:n] S v S Yv[t:n]) f?(k) (1)) dv
20 (t — 8) b
T (nt1) / Fy (0) [1 = Fy (0)] fri) (v) do. 4.4)
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By using (1.5)) in (4.4)), we obtain the following

2ak™ (t — s)
I'(r)(n+1)

x / [—log (1 — Fy ()] [1 - By (0)]* By (v)fy (v)dv  (4.5)

— 00

P(}/[s:n] < Rr(k) < Yv[t:n]) =

Taking — log (1 — Fy (v)) = w and evaluating the integral of (4.5]), we finally arrive at
g g g g y

20 (t — ) E o\ E\"
By a similar arguments, the result follows for the case when Y};.,,) < ¥[,.,) and —1 < v < 0. Hence
the proof. O

We have evaluated the coverage probabilities 77z, (s,t,7;,n) under n = 10, 12, various val-
ues of &, t — s and r. The values are presented in Table 3. It can be observed that coverage proba-
bilities improve with the increase of a and k. Notice that when —1 < o < 0, ng() (8, ¢,7;,n) =
N7(k) (8,1, 73 —a, n). Thus one can use Table 3 for evaluating 1g(y) (s, t,7; @, n).

5 Prediction Interval of Future Record Values Based on the Con-
comitants of k-Record Values

In this section, we find the prediction intervals for the future record values and obtain the correspond-
ing coverage probabilities based on the observed sequence of concomitants of k- record values. The
following theorem establishes the interval prediction and the corresponding coverage probabilities
of upper record values from a future sample based on the observed sequence of concomitants of
upper k-record values. One can observe that the same results follow the interval prediction and
the corresponding coverage probabilities of lower record values from a future sample based on the
observed sequence of concomitants of lower k-record values.
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Theorem 5.1. Let {U[n(k)],n > 1} be a sequence of observed concomitants of upper k-record
values arising from a MFD with cdf given in . Then for 1 < s < ¢, the prediction interval for
rth future upper record value U,. and the corresponding prediction coefficient, being free of Fy-, are
given below

L If 0 < a < 1and Uy < Upry» then the prediction interval is (U[s(k)], U[t(k)]) and the
corresponding prediction coefficient is given by
1 1
——— . 5.1
(z-7) @

() - ()

2. If =1 < a < 0and Uy < Ups(x)) then the prediction interval is (U[t(k)], U[s(k)]) and the
corresponding prediction coefficient is given by
1 1
———. 52
(2’" 37’) (5-2)

(7h) - ()

Proof. For any fixed real number v, suppose Ujg(x)) < Upy(xy) for 1 < s < ¢, we have obtained

P (Upsey < v < Upeiy) = 204{(1_].;,{) - (1ik> }FY (W) [Fy (v)=1. (53

Now for s < ¢, and using the conditioning arguments, we can write

N9(k) (Sa t,r; O[) =2«

Moek) (8,75 0) = 2

oo

P (Us(ry) < Ur < Upiy) = / P (Uisiryy < Ur < Upy|Ur = 0) fy (v) dv

— 00

(o}

/ P (Upstoy < v < Upeey) fr (v) dv
(1;) - (1@) 7 Fy (0)[1 - Fy ()] f, (v) dv
(i) () | 6 5)

Thus for U[s(k)] < U[t(k)] and 0 < a < 1, we have
1 1
or R

k/’ s B k’ t
1+k 1+k
By a similar argument, the result follows for the case when —1 < o < 0 and Uy < Upsry)-

Hence the proof.

=2«

No(k) (8,1, 7;a) = 200
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We have evaluated the coverage probabilities 79(x) (s,,7; ) under different combinations of
(s,t), various values of o and r for k = 1,2,3. The values are presented in Table 4. It can
be observed that coverage probabilities improve with the increase of « and k. Notice that when
—1 < a < 0, now (s,t,750) = Ny (s,t,7; —a). Thus one can use Table 4 for evaluating

o(k) (37 t,r; OZ)

Table 4: Values of 191 (s,t,7; ) for some selected values of s,¢,7 and o

k=1 k=2 k=3
o (s,t) (s,t) (s,t)
14 (L5 (L6 | (L4 1,5 (16 | (L4 (L5  (1,6)

0.60 0.07292  0.07813 0.08073 | 0.07819 0.08916 0.09648 | 0.07227 0.08545 0.09534
0.75 0.09115 0.09766 0.10091 | 0.09774 0.11145 0.12060 | 0.09033 0.10681 0.11917
0.90 0.10938 0.11719 0.12109 | 0.11728 0.13374 0.14472 | 0.10840 0.12817 0.14301
0.95 0.11545 0.12370 0.12782 | 0.12380 0.14118 0.15276 | 0.11442 0.13529 0.15095
1.00 0.12153  0.13021  0.13455 | 0.13032 0.14861 0.16080 | 0.12045 0.14242 0.15890

6 Illustration Using Real Data

We consider a bivariate data set given in Platt et al. (1969) relating to 396 conifer (Pinus Palustris)
trees. Chen et al. (2004) reproduced the data set as the first component X for a bivariate observation
represents the diameter in centimeters of the conifer tree at breast height and the second component
Y represents height in feet of the tree. Clearly X can be measured easily but it is somewhat difficult
to measure Y. Also observations, such as girth (function of diameter) or height follows normal
distribution. It is well known that logistic distribution is having more or less similar properties of
a normal distribution(see, Malik, 1985) and hence it is known as an alternative model to normal
distribution. We assume that (X, Y") follows Morgenstern type bivariate logistic distribution. By
using the estimator of « given in Chacko and Thomas (2009), we take the estimator of o as & = 1.
We have drawn a simple random sample of size 20 from the 396 conifer trees. Then the concomitants
of order statistics arising from the sample are obtained as given below.

T 1 2 3 4 5 6 7 8 9 10

Yoy 5 3 3 5 8 14 15 20 22 17
roo 11 12 13 14 15 16 17 18 19 20
Yiew 33 21 31 30 34 32 58 33 49 67

The concomitants of upper k-record values (k = 1,2, 3) extracted from the data set are obtained
as given below. Based on the observed concomitants of order statistics and by using Table 1, we
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n 1 2 3 4 5 6 7 8 9 10 11

Unay 28 119 192 223 131 244 - - - - .
Uy 28 26 43 119 192 222 223 208 131 - -
U 28 26 43 203 162 119 192 222 223 223 228

obtain the prediction intervals of future order statistics with prediction coefficient at least 30% are
presented in the following.

n T (S,t) (}/—[szn]ayv[t:n]) m (s,t,r;a,m, ’I’L)

8  (4,19) (5,49) 0.33614
IS g (1,19 (5,49) 0.40336
12 (1,19) (5,49) 0.30252

Based on the observed concomitant upper k-record values and by using Table 2, the predic-
tion intervals of future order statistics with prediction coefficient at least 30% are presented in the
following.

k m r (S,t) (U[s(k)]yU[t<k)]) N3(k) (s,t,r;a,m)

2 20 10 (1,8 (28,208) 0.3000
320 10 (2,10) (26,223) 0.33033

On the basis of the coverage probability, it can be observed that the predictive intervals are
improved with the increase of k.

7 Conclusion

In this paper, we developed distribution-free prediction intervals for the future order statistics and k-
record values from an X sequence based on observed concomitants of order statistics and based on
the observed concomitants of k-record values as Y sequence. These interval coverage probabilities
obtained are accurate and independent of the parent distribution function. It can be observed that
the coverage probabilities corresponds to order statistics improve with the increase of « and that of
k-record values improve with the increase of « and k.
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