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SUMMARY

Canonical correlation analysis (CCA) is a classical and important multivariate technique for
exploring the relationship between two sets of continuous variables. CCA has applications
in many fields, such as genomics and neuroimaging. It can extract meaningful features as
well as use these features for subsequent analysis. Although some sparse CCA methods
have been developed to deal with high-dimensional problems, they are designed specifi-
cally for continuous data and do not consider the integer-valued data from next-generation
sequencing platforms that exhibit very low counts for some important features. We propose
a model-based probabilistic approach for correlation and canonical correlation estimation
for two sparse count data sets. Probabilistic sparse CCA (PSCCA) demonstrates that cor-
relations and canonical correlations estimated at the natural parameter level are more ap-
propriate than traditional estimation methods applied to the raw data. We demonstrate
through simulation studies that PSCCA outperforms other standard correlation approaches
and sparse CCA approaches in estimating the true correlations and canonical correlations
at the natural parameter level. We further apply the PSCCA method to study the associa-
tion of miRNA and mRNA expression data sets from a squamous cell lung cancer study,
finding that PSCCA can uncover a large number of strongly correlated pairs than standard
correlation and other sparse CCA approaches.

Keywords and phrases: Canonical correlation analysis (CCA); Sparse count data; High-
dimension

1 Introduction

Recent advancements in next-generation sequencing (NGS) technology have enabled the measure-
ment of multiple high-dimensional data types in a single study, such as genomics, transcriptomics,
epigenomics, and metabolomics. Integrative analysis of high-dimensional omics data is becoming
increasingly important and popular. It has been shown that combining multiple omics data types can
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improve analysis and lead to biologically more meaningful results for complex diseases (Safo et al.,
2018; Lu et al., 2019).

Sequencing-based omics datasets have three main characteristics that pose modeling challenges:
(1) they are high-dimensional data, with a large number of variables p and small sample size n;
(2) the raw data represent count variables which violate the distributional assumptions for standard
correlation and canonical correlation analysis, which can lead to invalid inference in the presence of
a small sample size; (3) the data are very sparse, with a large proportion of these counts being very
close to zero and having random missing values.

1.1 CCA

Canonical correlation analysis (CCA) is a classical multivariate method proposed by Hotelling
(1936) for exploring the relationship between two sets of variables. Consider two random vec-
tors X∈ Rp, Y∈ Rq . Define

∑
XX = cov(X),

∑
YY = cov(Y), and

∑
XY = cov(X,Y). CCA seeks

vectors a ∈ Rp and b ∈ Rq that solve

argmax
a,b

corr
(
a>X,b>Y

)
subject to aT

∑
XX a=1, bT

∑
YY b=1, then the optimization can be attained by applying the sin-

gular value decomposition (SVD) and replacing
∑−1/2

XX

∑
XY

∑−1/2
YY with their sample estimates∑̂−1/2

XX

∑̂
XY

∑̂−1/2
YY . However, in a high-dimensional setting, when the dimensions p, q � n, the

SVD approach is not applicable because
∑̂

XX and
∑̂

YY are not invertible.

1.2 Related work

Motivated by genomics, neuroimaging and other applications, researchers have been working on
generalizing CCA to accommodate high dimensions, usually called sparse CCA (Witten and Tibshi-
rani, 2009; Avants et al., 2010; Hardoon and Shawe-Taylor, 2011; Gao et al., 2017). These methods
impose sparsity constraints on the canonical directions which effectively can reduce the dimen-
sionality and improve the interpretation of the correlations. Penalized matrix decomposition (PMD)
(Witten and Tibshirani, 2009) is one of the most popular sparse CCA methods, which uses the penal-
ized matrix decomposition to replace

∑̂
XX and

∑̂
YY with identity matrices to avoid singularities.

By doing so, PMD can obtain sparse estimates of the canonical directions by penalization. However,
PMD may perform poorly on data sets when

∑
XX and

∑
YY are far from diagonal. With respect

to genomics data, for example, genes usually have strong correlations among them.
The probabilistic interpretation of CCA was initiated by Bach and Jordan (2006). Later on,

several Bayesian versions of CCA were developed (Archambeau and Bach, 2008; Virtanen et al.,
2011; Klami et al., 2013). One of the key promising features of Bayesian CCA is that it enables
analysis of high-dimensional data in life sciences (Fujiwara et al., 2009; Huopaniemi et al., 2010).
However, these methods assume the data to follow normal distributions. Thus, the aforementioned
Bayesian methods may not work well for non-normally distributed data. PCAN is the first approach
that describes a Bayesian correlation analysis method for count data (Zoh et al., 2016), in which
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the correlations are estimated based on the latent weights from the natural parameters of the data
generating model, rather than the correlations among the counts. In the latent variable model, priors
or strong regularizations are used on the latent weights to induce sparsity (West, 2003).

The rise of big datasets with few signals, such as omics datasets, has spurred the study of sparse
models. From a Bayesian perspective, discrete mixtures (George and McCulloch, 1993) and shrink-
age priors (Tipping, 2001) are the two main sparse estimation methods. In latent variable models,
Bayesian shrinkage priors are popular because of their flexible and interpretable solutions (Carvalho
et al., 2008; Knowles and Ghahramani, 2011; Bhattacharya and Dunson, 2011). The spike-and-slab
prior is a mixture of a point mass at zero and a flat distribution across the space of real values.
The excluded loadings are modeled by the “spike” distribution, whereas the included loadings are
modeled by the “slab” distribution (Carvalho et al., 2008). Structural Bayesian prior is proposed to
encourage both element-wise and column-wise shrinkage and leads to desirable behavior on high-
dimensional data (Zhao et al., 2016). The disadvantages of these models are that the results can be
sensitive to prior choices and it is computationally demanding for posterior inference with a large
number of variables due to a huge model space. Scale mixtures of normal priors have been pro-
posed recently as a computationally efficient alternative to the two component spike-and-slab prior
(Armagan et al., 2013; Bhattacharya et al., 2014).

These types of priors usually assume normal distributions with a mixed variance term and the
mixing variance distribution enables strong shrinkage close to zero. For example, Bayesian canon-
ical correlation analysis (BCCA) (Klami et al., 2013) consists of applying an automatic relevance
determination (ARD) (Neal, 1996) prior for the latent weights which is a normal-gamma prior that
imposes an inverse gamma distribution on the variance term. The horseshoe prior is popular due
to its good performance in simulations and under theoretical study, which has shown comparable
performance to the spike-and-slab prior in a variety of problems where a sparse prior is desirable
(Carvalho et al., 2008, 2010; Polson and Scott, 2011).The horseshoe prior is a scale mixture of
normals, with a product of half-Cauchy priors on the variance. It is given by

θi|λi, τ ∼ N(0, λ2i τ
2),

λi ∼ C+(0, 1), i = 1, . . . , n.

The global hyperparameter τ can shrink all the parameters toward zero, especially if its domain is
restricted to a finite interval, while the heavy-tailed half-Cauchy local priors allow some parameters
to escape. Different levels of sparsity can be accommodated by changing the value of τ : the large
τ will have little shrinkage, while small τ will shrink all the weights to zero. Despite the good
performance, there are two shortcomings for the horseshoe prior. First, how to perform inference
for the global hyperparameter τ which determines the overall sparsity in the parameter vector θ is
not fully answered yet. Second, parameters far from zero will not be regularized at all. Quite a few
researchers have investigated the impact of τ concerning the resulting posterior distribution both
for recovery and for uncertainty quantification, either in a deterministic way or a hierarchical full
Bayes approach (Carvalho et al., 2008; Datta and Ghosh, 2013; Pas et al., 2014, 2017). We take
the second shortcoming as the key strength of this prior and to incorporate it with a latent variable
model to infer the feature sparsity jointly. For an omics data set we assume only important variables
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are strongly identified and the parameters far from zero will not be regularized.

1.3 Our contribution

In this study, we propose a new probabilistic framework of CCA for sparse count data, which we
label a probabilistic sparse canonical correlation analysis (PSCCA). Our work contributes several
important advances. First, we propose to estimate the canonical correlations at the natural parameter
level for data expressed as raw counts, which is lacking in sequencing-based omics analyses. Sec-
ond, we provide a theoretical justification for estimating the correlations and canonical correlations
based on the natural parameters rather than based on the raw data. The former are larger in magni-
tude than the latter, which is very meaningful for CCA. Because CCA is an exploratory analytical
method, larger values of the canonical correlations yield less chance to miss the true correlation
pairs. Third, the horseshoe prior is widely studied in the literature, via both simulation studies and
theoretical research. Nevertheless, we do not see many examples in applications. We formulate
the natural parameters as a latent variable model, and we invoke the horseshoe prior for the latent
weight to model the sparsity. To better extract the sparse signals we assume τ ∼ C+(0, 1) for the
global hyperparameter. As discussed in Piironen and Vehtari (2017), this prior results in sensible
inference only when τ is strongly identified by the data. Our simulation study and real data applica-
tions show that our approach performs better than existing methods. Lastly, our approach is built on
an exponential family and can be easily extended to other formats of data.

The rest of the article is organized as follows. Section 2 contains our model details and inference.
Section 3 discusses the theoretical results and Section 4 describes simulation studies. Section 5
presents the real data application. Finally, Section 6 contains a discussion and future directions of
PSCCA.

2 Method

2.1 Model

Let Fy(·|·) be a distribution function from the natural parameter exponential family. The random
component of a generalized linear model consists of a response vector y ∈ RN which has a condi-
tional distribution in the exponential family. This family has probability density function or mass
function of the form fy(yj , θj) = a(θj)b(yj)exp[yjQ(θj)]. The value of the parameter θj may
vary for j = 1, . . . , N depending on values of the explanatory variables. The term Q(θ) is the
natural parameter; a(·) and b(·) are non-negative functions that distinguish one member of the ex-
ponential family from another. For our case, assume we have two sets of multivariate random
variables, Y (1) ∈ RD1×1, and Y (2) ∈ RD2×1. The observed data samples are expressed as
[Y

(m)
1 , . . . ,Y

(m)
N ] ∈ RDm×N with N observations, where m is 1 or 2. Let y(m)

ij represent the
observed value of the jth individual for the ith feature (variable) in a set of Dm measured features
(variables).

We motivate our formulation in the latent variable interpretation of CCA (Bach and Jordan,
2006) to model the natural parameters and the ideas from PCAN (probabilistic correlation analysis)
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(Zoh et al., 2016) for the correlation estimation from the natural parameters. We assume each indi-
vidual data vector follows conditionally an exponential family distribution and here we consider a
generalized linear model. The generative model forDm coupled natural parameters θ(m)

.j withm=1,
2 and j = 1, . . . , N is

θ
(m)
.j = µ

(m)
θ + W(m)Zj + ε

(m)
.j . (2.1)

The parameter vector µ(m)
θ represents the mean of the natural parameters associated with the

Dm features in the vectors Y (m)
.j ; the matrix W(m) ∈ RDm×d denotes the loading matrix associated

with the latent vector Zj = (Z1j , . . . , Zdj)
T ; and ε(m)

.j is an independently distributed random error
vector.

We write the model as a function of latent variables and the Dm features of the vector θ(m)
.j as

follows

Y
(m)
.j |θ(m)

.j ∼ Poisson
{

exp(θ
(m)
.j )

}
,

ε
(m)
.j ∼ NDm(0Dm×Dm , σ

(m)2

θ IDm×Dm),

Zj ∼ Nd(0, Id×d).

(2.2)

The core generative process is the unobserved shared latent variables Zj , which are transformed
via linear mappings to the observation spaces, and can capture the variation common to both data
sets and allow for dependency between variables in a specific data set.

We impose horseshoe priors on the Dm × d matrix W(m), and we let W (m)
i. denote the ith row

vector ofW (m). Then we assume that

W
(m)
i. |λ

(m)
i , τ (m) ∼ N(0, λ

(m)
i

2
τ (m)2Id×d). (2.3)

We refer to the λ(m)
i as the local shrinkage parameters and to τ (m) as the global shrinkage parame-

ters. Let C+(0, 1) denote the standard half-Cauchy distribution. The half-Cauchy prior for the local
shrinkage parameter λi has shown good performance (Carvalho et al., 2008, 2010). There has been
a vast amount of research on how to choose the prior for the global hyperparameter τ which plays
an important role in the overall sparsity for the parameter matrix W (m). As discussed in section
1.2, we choose the full Bayesian specification for τ . Thus, we assume

λ
(m)
i ∼ C+(0, 1); τ (m) ∼ C+(0, 1). (2.4)

For i = 1, . . . , D1; k = 1, . . . , D2; and j = 1, . . . , N, we construct θ(1).j = (θ
(1)
1j , . . . , θ

(1)
D1j

)T

and θ(2).j = (θ
(2)
1j , . . . , θ

(m)
D2j

)T . The vector (θ
(1)
.j θ

(2)
.j )T has a conditional multivariate normal

distribution with unconditional mean µθ = (µ
(1)
θ1
, . . . , µ

(1)
θD1

, µ
(2)
θ1
, . . . , µ

(2)
θD2

)T and conditional co-
variance matrix

Σ =

 W(1)W(1)T + σ
(1)
θ

2
I1 W(1)W(2)T

W(2)W(1)T W(2)W(2)T + σ
(2)
θ

2
I2

 , (2.5)
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where I1 = ID1×D1 and I2 = ID2×D2 . The conditional correlation between θ(1)ij and θ(2)kj , for any

sample j, can be obtained from

corr(θ(1).j ,θ
(2)
.j )

= diag−1/2
(
W(1)W(1)T + σ

(1)
θ

2
I1
)
W(1)W(2)T diag−1/2

(
W(2)W(2)T + σ

(2)
θ

2
I2
)
.

(2.6)

For the canonical correlations, let C−1/2 denote the square-root decomposition of the pos-

itive definite matrix C−1. Let R =
(
W(1)W(1)T + σ

(1)
θ

2
I1
)−1

W(1)W(2)T
(
W(1)W(2)T +

σ
(2)
θ

2
I2
)−1

W(2)W(1)T , then the nonnull eigenvalues of R correspond to the squared canonical
coefficients for the natural parameters. Inference on the correlations and canonical correlations will

be based on the marginal posterior distribution of W(1), W(2), σ(1)
θ

2
, and σ(2)

θ

2
.

2.2 Identifiability and prior

The latent variable model (Equation 2.1) is identifiable up to orthonormal rotations, for any invertible
G ∈ Rd×d with GTG = Id×d (Muirhead, 1982). Then W∗ = WGT and Z∗ = GZ will produce
the same estimate of the conditional covariance matrix in Equation 2.5 and has an equal likelihood.
Zoh et al. (2016) recommend imposing a lower triangular structure for the d× d upper submatrices
of W(1) and W(2), following the work of (Geweke and Zhou, 1996), and they further require that
the diagonal elements are non-negative to remove the non-identifiability related to the sign. This
approach relies on the choice of d based on the Dm rows of W(m), but we assume the value of d
will be small so that the impact is negligible (Lopes and West, 2004), i.e.,

W
(m)
ik ∼ N(0, λ

(m)
i

2
τ (m)2) if i < k,

W
(m)
ik ∼ N(0, λ

(m)
i

2
τ (m)2)1(W

(m)
kk > 0) if i = k,

(2.7)

where for m = 1, i = 1, . . . , D1, k = 1, . . . , d and for m = 2, i = 1, . . . , D2, k = 1, . . . , d. 1
is an indicator function, 1(W)=1 if W is true and 0 otherwise. We assume conjugate priors for the
remaining parameters in the model as

µ
(m)
θ ∼ ΠDm

i=1Normal(0, k(m)
i ),

σ
(m)
θ

2
∼ Inv-χ2(ν

(m)
θ , s

(m)
θ

2
),

(2.8)

The hyperparameters k(m)
i , s(m)

θ

2
, and ν(m)

θ are determined by the analyst.
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2.3 Inference

The form of the full conditional posterior distribution is proportional to the product of the joint
conditional likelihood for the data matrices Y(1) and Y(2) and the prior distributions

P
(
θ(1),θ(2),W(1),W(2),Z, σ

(1)
θ

2
, σ

(2)
θ

2
|Y(1),Y(2)

)
∝ l
(
Y(1),Y(2)|θ(1),θ(2),W(1),W(2),Z, σ

(1)
θ

2
, σ

(2)
θ

2)
×Πd

i=1

{
(λ

(1)
i τ (1))D1exp

(
− 0.5λ

(1)
i τ (1)W

(1)
i. W

(1)
i.

T )
(λ

(2)
i τ (2))D2exp

(
− 0.5λ

(2)
i τ (2)W

(2)
i. W

(2)
i.

T )
× 1

1 + λ
(1)
i

2

1

1 + τ (1)
2

1

1 + λ
(2)
i

2

1

1 + τ (2)
2

}

×
{

ΠN
j=1exp(−0.5ZT

j Zj)
}

exp
{
− ν(1)θ s

(1)
θ

2
/(2σ

(1)
θ

2
)
}

× σ(1)
θ

−2(1+ν(1)
θ /2)

exp
{
− ν(2)θ s

(2)
θ

2
/(2σ

(2)
θ

2
)
}
σ
(2)
θ

−2(1+ν(2)
θ /2)

.

(2.9)

We update the parameters in a Markov chain Monte Carlo (MCMC). R code implementation ex-
ploits the package Rstan for fast computation, we release our code at https://github.com/lquvatexas/PSCCA.
The details of priors are included in the Appendix.

3 Theoretical Results

Let F (·|·) be a cumulative distribution function from the natural parameter exponential family as we
discussed in the model section. We model

Y
(m)
ij ∼ F (Y |θ(m)

ij ) = Poisson(y|θ(m)
ij ), (3.1)

where m = 1, 2, i = 1, 2, . . . , Dm, j = 1, 2, . . . , N . Let Y (m)
.j = [Y

(m)
1j , Y

(m)
2j , . . . , Y

(m)
Dmj

]T and

θ
(m)
.j = [θ

(m)
1j , θ

(m)
2j , . . . , θ

(m)
Dmj

]T . Then, as in Equations (2.1) and (2.2),

θ.j = µ
(m)
θ +W (m)Zj + ε

(m)
.j ,

whereW (m) ∈ RDm×d, Zj ∼ Nd(0d×d,Id×d) and ε(m)
.j ∼ NDm(0Dm×Dm , σ

(m)2

θ IDm×Dm).

Theorem 1. We define the unconditional variance-covariance of Y (1)
.j and Y (2)

.j as
∑∑∑∗∗

12. Then we
have the correlation coefficients, ρik, i = 1, 2, .., D1 and k = 1, 2, . . . , D1, constructed from

∑∑∑∗∗
12,

satisfy |ρik| < ω, where ω < 1. In addition, the canonical correlation coefficients |ϕi| < ψ, where
ψ < 1. The detailed proof is in Appendix A.
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Corollary 3.1. Correlation coefficients and canonical correlation coefficients calculated from the raw
count data Y (1)

.j and Y (2)
.j will be smaller numerically in magnitude than the correlation coefficients

and canonical correlation coefficients calculated from the natural parameters θ(1).j and θ(2).j .

4 Simulation

4.1 Settings

In this section we conduct simulations to assess the performance of PSCCA in comparison with
several existing methods that have been proposed for probabilistic correlation analysis (PCAN) (Zoh
et al., 2016) , Bayesian CCA (BCCA) (Klami et al., 2013), and sparse CCA (PMD) (Witten and
Tibshirani, 2009), as mentioned in the Introduction. First, we evaluate the performance of PSCCA
on correlation analysis, comparing with PCAN because the PCAN paper already demonstrated that it
outperforms traditional Spearman and Pearson correlation methods. Second, we compare PSCCA’s
performance on the canonical correlation analysis with that of BCCA, PMD, and we modified the
method of PCAN based on Equations (2.5) and (2.6) to render it as an alternative approach for a
probabilistic canonical correlation analysis method, which we named PCAN∗.

To evaluate the methods, let W(1)∗ = (w
(1)∗
1 , . . . ,w

(1)∗
D1

), W(2)∗ = (w
(2)∗
1 , . . . ,w

(2)∗
D2

) be

the true generated loading matrices. For the all methods with estimates Ŵ(1) = (ŵ
(1)
1 , . . . , ŵ

(1)
D1

),

Ŵ(2) = (ŵ
(2)
1 , . . . , ŵ

(2)
D2

), we can calculate the correlations and the canonical correlations accord-
ing to Equations (2.5) and (2.6). Let UD1×D1 be the true matrix and VD2×D2 be the estimated
matrix. Then we construct the Frobenius loss function as

∑
i,j(Uij −Vij)

2, assuming D1 < D2.

Scenario I: Correlation analysis . In the first scenario, we simulated 100 datasets assuming for
each dataset D1 = 10, D2 = 30, and N = 50 subjects. The weight matrices are W(1)

D1×d and

W(2)
D2×d. We consider three correlation matrices for the natural parameters:

(a) the identity correlation matrix assuming the true d = 0 for W(1)
D1×d and W(2)

D2×d.

(b) a correlation matrix obtained assuming d = 5 for W(1)
D1×d and W(2)

D2×d.

(c) a correlation matrix obtained assuming d = 10 for W(1)
D1×d and W(2)

D2×d.

We fit the PSCCA and PCAN to each of these 100 datasets assuming different dimensions of d
to compute the posterior mean correlation matrices.

Scenario II: Canonical correlation analysis. In the second scenario, we simulated 100 datasets,
for each dataset we set N = 100, d = 10 under low, moderate and high dimensions of D(m). We
use three models for the correlation matrices of the the natural parameters θ(m).
Model I (Independent covariances): there is no covariance structure within each of the natural pa-
rameters θ(m).
Model II (Identity covariances):

∑
θ(1)θ(1) = I,

∑
θ(2)θ(2) = I
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Table 1: Summary of the Frobenius loss when estimating the true correlation structure for the natural
parameters from the PCAN and our PSCCA model. Here, d is the value of d assumed for the true
correlation matrix; d∗ represents the value d assumed when fitting the model. Frobenius losses are
calculated between the true correlation matrix at the natural parameter level vs the posterior mean
correlation estimated based on the posterior of W(1), W(2) and the other parameters.

PSCCA PCAN

d d∗ Mean 95%CI Mean 95%CI

0 2 25.21 (24.35, 26.54) 28.57 (28.31, 29.20)

0 5 19.55 (19.20, 20.49) 23.30 (21.85, 24.95)

0 10 14.12 (13.23, 14.83) 21.26 (19.66, 22.17)

5 2 4.25 (4.05, 4.34) 22.51 (21.26, 22.87)

5 5 3.89 (3.60, 4.24) 19.88 (18.72, 20.63)

5 10 4.54 (4.21, 4.91) 20.35 (19.45, 22.44)

10 2 10.31 (9.41, 12.21) 15.55 (14.68, 16.31)

10 5 8.81 (8.26, 9.35) 14.62 (13.34, 15.21)

10 10 7.85 (7.54, 8.06) 13.27 (12.82, 13.51)

Model III (Moderate covariances):
∑
θ(1)θ(1) = 0.5,

∑
θ(2)θ(2) = 0.5

(1) Low dimensions: D1 = D2 = 60, 100, 300

(2) Moderate dimensions: D1 = D2 = 500, 1000, 2000

(3) High dimensions: D1 = D2 = 3000, 4000, 5000

Model I is used in PCAN (Zoh et al., 2016), and similar models of Model II and III have been
used to generate the raw data in Sparse CCA (Gao et al., 2017). We fit PSCCA, PCAN∗, PMD, and
BCCA to the datasets simulated under the above scenario and compute the canonical correlation
matrices for the purpose of comparison.

4.2 Results

We report the Frobenius loss in Table 1 and Stein loss (Appendix Table A1) for each of the estimated
correlation matrices. Stein loss is defined as diag(V−1U) − det(V−1U) −D1 for estimating the
D1 ×D1 matrix V and the D1 ×D1 matrix U.
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Overall, under each of the scenarios for correlation analysis, PSCCA yields a smaller Frobenius
loss and a smaller Stein loss compared to PCAN, and both methods yield much smaller Frobenius
losses compared to Stein losses. We found that under the true d=5, 10, when the assumed d∗ is closer
to the truth, PSCCA and PCAN result in smaller Frobenius losses, and smaller losses are preferred.
However, when d = 0 we observe the opposite situation in that the closest value to the truth when
d∗ = 2 yields the largest Frobenius loss for PSCCA and PCAN.

We also estimate the correlations using other standard correlation estimation methods. Because
we assumed N > D1 + D2, other standard correlation estimate methods are valid. We report the
summary of the Frobenius loss incurred with estimating the true correlation matrices using Pearson
and Spearman approaches based on the raw data in Appendix Table A2. PSCCA resulted in a smaller
Frobenius loss, whereas PCAN and Spearman correlations perform similarly under the true d = 0,
10, which is consistent with the results in PCAN paper (Zoh et al., 2016).

For the canonical correlation analysis comparison, we report the summary of the results com-
pared with PCAN∗, BCCA, and PMD under Models I-III and moderate and high dimensions of Dm

in Table 2.

Low dimensions. The estimator of PSCCA is closer to the truth than the estimates given by
PCAN∗, PMD, and BCCA. It also is worth noting that under Model II, PMD performs similarly
with PSCCA and when D1 = D2 = 60, PMD performs slightly better than PSCCA because we gen-
erated the natural parameters with identity variance matrices. However, under Model I and Model
III, PMD performs poorly. In other scenarios, PSCCA uniformly outperforms the three competitors.
This confirms that methods with no assumptions on the variance matrices have broader applicabil-
ity. Another point worth noting is that BCCA produces the largest standard errors compared to other
methods, which indicates very unstable estimation for count data.

Moderate and High dimensions. PSCCA continues to outperform the competitors when the di-
mensions are moderate and high. PMD still displays similar performance with PSCCA under Model
II. This suggests when the identity variance assumption holds, the performance of PMD can be
improved. When the dimension exceeds 1000 under Model II, however, PMD displays very large
standard errors. Under Model III, PCAN∗ performs nearly as well as PSCCA, which indicates there
exists a moderate level of correlation and the canonical correlation estimated from the natural pa-
rameters is closer to the truth. BCCA still has large standard errors compared to other methods,
which indicates it is not a proper method for sparse count data.
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5 Real Data Analysis

The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov) was initiated in 2006 to de-
velop a publicly accessible infrastructure data on an increasing number of well-characterized cancer
genomes. TCGA finalized tissue collection with matched tumor and normal tissues from 11,000
patients with 33 cancer types and subtypes, including 10 rare types of cancer. TCGA data has been
used to characterize key genomic changes, find novel mutations, define intrinsic tumor types, dis-
cover similarities and differences across cancer types, reveal therapy resistance mechanisms, and
collect tumor evolution evidence (Tomczak et al., 2015).

MicroRNAs (miRNA) are very short non-coding RNAs that regulate gene expression at the post-
transcriptional level. They bind to messenger RNA (mRNA) and inhibit translation or induce mRNA
degradation. There are many studies that demonstrate negative correlations in the expression of
specific miRNA and their corresponding target mRNA, and their interaction in many disease-related
regulatory pathways is well established (Ruike et al., 2008; Wang and Li, 2009; Shah et al., 2011).
In recent years, there have been numerous studies about miRNA and mRNA correlation analysis
on different cancer diseases using TCGA data (Ding et al., 2019; Yu et al., 2019). However, these
correlation analyses all are based on the normalized continuous data, not the raw count data.

In our analysis, we consider the read count NGS expression data from squamous cell lung cancer
(LUSC). We downloaded the LUSC dataset from TCGA data portal. LUSC has 504 samples, and we
processed the tumor miRNA and mRNA data according to TCGAbiolinks (Colaprico et al., 2016).
Each sample contains 1,881 miRNA and 56,537 mRNA. Firstly, we are interested in the correlation
analysis between low-expressed mRNA and a given set of miRNA. We consider N = 100 matched
miRNA and mRNA samples, and we select D1 = 50 miRNA and D2 = 60 mRNA. For miRNA we
choose some reported with high correlations with mRNA in PCAN (Zoh et al., 2016), and among 60
mRNA we choose 30 mRNA with average counts between 1 and 2, and the remaining 30 mRNA are
the significant expressed genes reported by (Shah et al., 2011). We fit the PSCCA model using the
priors in Appendix B under d = 2, 5, 10. We ran two separate MCMC chains for 10,000 iterations,
and monitored them for proper mixing. The first 5,000 iterations were discarded as burn-in and
the inference was based on the 10,000 remaining iterations. We estimate the correlations between
miRNA and mRNA based on the posterior mean values of natural parameters, and we also report
results based on the standard correlation estimation approaches (Spearman and Pearson) applied
to the raw data for comparison. We display, as a heatmap, the posterior mean estimates of each
correlation from PSCCA in Figure 1, and PCAN in Appendix Figure A1.

The correlation results identify very interesting miRNA-mRNA interactions. PSCCA demon-
strated the highest power to select the potentially correct miRNA-mRNA interactions. Our results
show that miR-539 is negatively correlated with genesRPS26P49,KRT18P37, TP63, and CA1.
The gene encoding miR-539 is located on human chromosome 4q32.31, and miR-539 has been re-
ported to be down-regulated in many human cancers, including prostate cancer, nasopharyngeal
carcinoma and thyroid cancer, and miR-539 has been reported to play a tumor suppression role in
many human malignancies (Guo and Gong, 2018). Through TargetScanHuman we confirmed that
TP63 is the target gene of miR-539, and all the methods estimated the correct negative correlation
direction. However, PSCCA has the lowest estimated correlation value -0.3102 between miR-539
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Figure 1: PSCCA heatmap of the posterior mean correlation estimates between the miRNA and
mRNA under d = 10. Red color indicates the positive correlation and blue color indicates the
negative correlation.

and TP63 compared to -0.1054 in PCAN, -0.1149 in Spearman, and -0.1218 in Pearson. Mean-
while, from TargetScanHuman, we noticed that miR-539 also regulates KRT13, CA11 which are
the same protein family of KRT18P37, and CA1, respectively. Thus, our findings might add new
members for the target gene family of miR-539, and provide more clues for miR-539’s regulation
role in lung cancer. Another interesting miRNA is miR-205 which was reported to play a dual role,
depending on the specific tumor type and target genes (Nordby et al., 2017), we found it to be neg-
atively correlated with S1PR1, RPS26P49, SFN , and SLC16A1 in our study. S1PR1 is the
target validated through TargetScanHuman, and the estimated correlation value between S1PR1

and miR-205 in PSCCA is -0.2875 compared to -0.0896 in PCAN, -0.00617 in Spearman, and -
0.01743 in Pearson. The same situation occurred for the mir-338 and TP63 interaction in which all
the methods estimated the correct negative correlation directions, but PSCCA has the most extreme
negative value compared to other three methods. Here, we report a few interesting miRNA and their
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estimated correlation with mRNA in Table 3. From Table 3, we can see that for the same pair of
miRNA-mRNA that our PSCCA can estimate the most extreme correlation values among all the
other methods.

Table 3: Correlation estimates on LUSC data from PSCCA, PCAN, Spearman, and Pearson under
d = 10.

miRNA mRNA PSCCA PCAN Spearman Pearson

hsa-mir-205 RPS26P49 -0.2690 -0.1677 -0.1335 -0.1037

hsa-mir-205 S1PR1 -0.2875 -0.0896 -0.0062 -0.0174

hsa-mir-205 KRT18P37 -0.2742 0.0471 0.0759 -0.0173

hsa-mir-1305 CCBN1 -0.2852 0.0634 -0.1068 -0.0814

hsa-mir-375 AL353801.1 -0.3316 -0.1101 -0.1553 -0.0299

hsa-mir-330 APOC1P1 0.4297 0.0050 0.0271 0.0456

hsa-mir-338 TP63 -0.3017 -0.0137 -0.0385 -0.0166

hsa-mir-338 RGPD6 0.3062 0.1149 0.1469 0.1893

hsa-mir-539 TP63 -0.3102 -0.1054 -0.1149 -0.1218

hsa-mir-539 RSP26P49 -0.2949 -0.0769 -0.0527 -0.0427

hsa-mir-539 CA1 -0.3046 -0.1226 -0.1629 -0.1058

hsa-mir-338 CA1 -0.2267 0.1559 0.1014 -0.0031

Figure 2 (a) and Figure 2 (b) show the Venn diagram depicting the overlap between the pairs
miRNA-mRNA correlation idenfied by PSCCA, PCAN, Spearman and Pearson approaches. Over-
all, there are very few pairs jointly identified by four approaches, PSCCA identified 59 negative
correlation pairs with estimated correlation values less than -0.25, compared to 36 in PCAN, 9 in
Spearman, and 2 in Pearson. For positive correlations, PSCCA identified 319 pairs with estimated
correlation values larger than 0.25, compared to 28 in PCAN, 27 in Pearson, and 21 in Spearman.
These results suggest PSCCA can identify more extreme negative and positive correlation estimates
in sparse count data, and thus have less chance to miss the true correlation pairs for high-dimensional
exploratory analysis. For detailed results please check the Appendix tables A3, A4, A5.

For canonical correlation analysis, we apply PSCCA, PCAN∗, PMD, and BCCA on the same
LUSC dataset as above for sample sizeN = 100, D1 = 50 miRNA, and D2 = 60 mRNA. Here, for
ease of presentation, we focus only on the first two canonical correlations. We fit all the models on
d = 2, 5, 10, that is, the number of canonical vectors to be obtained. For PMD, we use equal tuning
parameters λa1 = λβ1

, in which the tuning parameter is chosen by the function CCA.permute in
the R package PMA. For BCCA, we use the default settings for initial parameter values. Here, we
display the results on the low and moderate dimension dataset in Table 4. PSCCA and PCAN∗ yield
high canonical correlations, while PMD and BCCA do not perform very well, both yielding small
canonical correlations. In addition, under d = 2 PCAN∗ has slightly larger canonical correlation
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Figure 2: Venn diagram summarising the positive correlation greater than 0.25 (a) and negative
correlation less than -0.25 (b) under PSCCA, PCAN, Spearman, and Pearson.

values than PSCCA, which might be because the small d cannot capture the variance about the truth.
To check the reasons for poor performance of PMD and BCCA, we found that the variance matrices
of the two data sets X(1) and Y(2) are distant from identity matrices, which severely violates the
identity variance assumption imposed by PMD. Also, the data are very sparse because we selected
30 out of 60 mRNAs with the average count between 1 and 2 and the remaining 30 mRNAs have
large count values which severely violates the standard normal distribution assumption on the two
data sets made by BCCA. PMD and BCCA still can run on this low-dimensional dataset; how-
ever, when we apply those methods on the miRNA and mRNA data sets with moderate dimensions
(D1 = D2 = 1000), the R program of PMD was shut down directly, while BCCA yields the first
canonical correlation value of 0.4174 which is far less than PSCCA 0.9534 under d = 10. That
again indicates that for high-dimensional sparse count data in genomics, efficient and more accurate
canonical correlation methods are needed.

6 Discussion and Future Work

We proposed a probabilistic approach of correlation and canonical correlation analysis for sparse
count data. PSCCA is a model-based approach to estimate correlations and canonical correlations
at the natural parameter level rather than at the raw data level. Both the simulation study results and
the real data application indicate that PSCCA compares favorably to existing methods.

We provided a theoretical justification to prove that correlation coefficients and canonical cor-
relation coefficients calculated from the raw count data X(1) and Y(2) will be smaller in magnitude
than the correlation coefficients and canonical correlation coefficients calculated from the natural
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Table 4: Canonical correlation results on real data. d is the value of d assumed for the true cor-
relation matrix. We report the 1st and 2nd canonical correlations. Best performer is highlighted in
bold.

d=10 d=5 d=2

D1 = 50, D2 = 60 1st 2nd 1st 2nd 1st 2nd

PSCCA 0.9759 0.9229 0.8732 0.8245 0.7979 0.6791

PCAN∗ 0.8884 0.8528 0.8343 0.7733 0.8188 0.7179

PMD 0.5858 0.5368 0.5858 0.5368 0.5858 0.5147

BCCA 0.2624 0.2550 0.1981 0.1786 0.1608 0.0069

d=10 d=5 d=2

D1 = 1000, D2 = 1000 1st 2nd 1st 2nd 1st 2nd

PSCCA 0.9534 0.9319 0.8643 0.8431 0.8129 0.7351

PCAN∗ 0.9213 0.8834 0.8265 0.8014 0.7834 0.7021

PMD - - - - - -

BCCA 0.4174 0.4054 0.3653 0.3186 0.2112 0.1406

parameters θ and λ in section 3. And this explains why PSCCA achieves more extreme correla-
tion and canonical correlation estimations in real data application. Meanwhile, we demonstrate that
horseshoe prior can handle the sparsity very well and this, probably, is due to the horseshoe prior
not regularizing the parameters far from zero, which is very important in extracting the important
variables that only strongly identified in the NGS data.

As the demand increases for integrative high-dimensional complex data analysis, PSCCA is a
linear method which may not be appropriate for fitting the complicated nonlinear situations. Re-
cently, researchers in computer science and engineering developed deep CCA (Wang et al., 2015) to
extract the nonlinear associations and extended it to multiple views. However, deep CCA benefits
from the expressive power of deep neural networks, which have a black box drawback in that they
are not easy to interpret and understand. PSCCA is a model-based approach which estimates the
dependency within and between two datasets as a joint task, thus, PSCCA is more interpretable by
checking the weight for each feature. One direction for our work is to develop a probabilistic deep
CCA to handle more complex data structures and provide interpretable results.
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Appendix

A Proof of Theorem 1
Let F (·|·) be a cumulative distribution function from the natural parameter exponential family as
we discussed in the model section. We model

Y
(m)
ij ∼ F (Y |θ(m)

ij ) = Poisson(y|θ(m)
ij ), (A.1)

where m = 1, 2, i = 1, 2, . . . , Dm, j = 1, 2, . . . , N . Let Y (m)
.j = [Y

(m)
1j , Y

(m)
2j , . . . , Y

(m)
Dmj

]T and

θ
(m)
.j = [θ

(m)
1j , θ

(m)
2j , . . . , θ

(m)
Dmj

]T . Then, as in Equations (2.1) and (2.2),

θ.j = µ
(m)
θ +W (m)Zj + ε

(m)
.j

whereW (m) ∈ RDm×d, Zj ∼ Nd(0d×d,Id×d) and ε(m)
.j ∼ NDm(0Dm×Dm , σ

(m)2

θ IDm×Dm).

θ.j = µ
(m)
θ +W (m)Zj + ε

(m)
.j

whereW (m) ∈ RDm×d, Zj ∼ Nd(0d×d,Id×d) and ε(m)
.j ∼ NDm(0Dm×Dm , σ

(m)2

θ IDm×Dm).

Then the vector of the natural parameters follows a multivariate normal distribution and its
expectation vector and variance-covariance matrix are

µ = E

θ(1)
θ(2)

 =

µθ(1)

µθ(2)


Σ = V ar

θ(1)
θ(2)

 =

 W 1W 1T + σ
(1)2

θ ID1×D1
W 1W 2T

W 2W 1T W 2W 2T + σ
(2)2

θ ID2×D2


In turn, the exponentiated natural parameters follow a multivariate lognormal distribution. Using
the results described in Skoulakis (2008), we provide expressions for the expectation vector and
variance-covariance matrix of the exponentiated natural parameters. We need additional notation,
however, for this purpose. Let

(a) vecdiag (C) denotes the t× 1 vector of the diagonal elements of the t× t matrix C

(b) 1b×b denote and a× b matrix of unit values

(c) � denote elementwise multiplication of two matrices with the same dimensions

Then

µ∗ =

µ∗θ(1)
µ∗
θ(2)

 = E

exp(θ(1))
exp(θ(2))

 =

exp{µθ(1) + 1
2 vecdiag

(
W 1W 1T + σ

(1)2

θ ID1×D1

)}
exp

{
µθ(2) + 1

2 vecdiag
(
W 2W 2T + σ

(2)2

θ ID2×D2

)}
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Σ =

 Σ∗
θ(1)θ(1)

Σ∗
θ(1)θ(2)

Σ∗
θ(2)θ(1)

Σ∗
θ(2)θ(2)

 = V ar

exp(θ(1))
exp(θ(2))

 = (µ∗µ∗T )�
{
exp(Σ)− 1(D1+D2)×(D1+D2)

}
We now are in position to determine the unconditional expectation vector and unconditional
variance-covariance matrix of the multivariate Poisson distribution of Y (1) and Y (2). The
expectation vector is

µ∗∗ =

µ∗∗
θ(1)

µ∗∗
θ(2)

 = E

Y (1)

Y (2)

 = E

E
Y (1)|θ(1)

Y (2)|θ(2)

 = E

exp(θ(1))
exp(θ(2))

 =

µ∗θ(1)
µ∗
θ(2)


The variance-covariance matrix is

Σ∗∗ =

 Σ∗∗
θ(1)θ(1)

Σ∗∗
θ(1)θ(2)

Σ∗∗
θ(2)θ(1)

Σ∗∗
θ(2)θ(2)

 = V ar

Y (1)

Y (2)


= V ar

E
Y (1)|θ(1)

Y (2)|θ(2)

+ E

V ar
Y (1)|θ(1)

Y (2)|θ(2)


= V ar

exp(θ(1))
exp(θ(2))

+ E

 Diag
{
exp(θ(1))

}
0D1×D1

0D2×D2
Diag

{
exp(θ(2))

}


=

 Σ∗
θ(1)θ(1)

Σ∗
θ(1)θ(2)

Σ∗
θ(2)θ(1)

Σ∗
θ(2)θ(2)

+

 Diag
{
µ∗
θ(1)

}
0D1×D1

0D2×D2
Diag

{
µ∗
θ(2)

}


where Diag() denotes the formation of a diagonal matrix from the vector argument and 0a×b
denotes an a× b matrix of zero values.

Thus, Σ∗∗, the unconditional variance-covariance of Y (1) and Y (2), consists of the sum of a
positive-definite matrix and a diagonal matrix. Although Σ∗∗ itself is a positive-definite matrix, the
addition of the diagonal matrix inflates the diagonal elements of Σ∗∗. This inflation results in an
off-diagonal element of Σ∗∗, say σ∗∗lm, a covariance, not capable of reaching

√
σ∗∗ll σ

∗∗
mm. In other

words, the (l,m) correlation coefficient constructed from Σ∗∗ will be bounded within [−blm, blm],
where blm < 1. Likewise, canonical correlation coefficients constructed fromΣ∗∗will be bounded
above by a number less than 1. Hence, correlation coefficients and canonical correlation
coefficients calculated from the raw count data Y (1) and Y (2). will be smaller numerically in
magnitude than the correlation coefficients and canonical correlation coefficients calculated from
the natural parameters θ(1) and θ(2).
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B Priors Used for Simulation Studies
The priors used for simulation studies:

W
(1)
ij ∼ Normal(0, 1.5) if i < j;W

(1)
ij ∼ Normal(0, 1.5)1(W

(1)
jj > 0) if i = j;

W
(2)
kj ∼ Normal(0, 1.5) if k < j;W

(2)
jj ∼ Normal(0, 1.5)1(W

(2)
jj > 0) if k = j;

µ
(1)
θ = µ

(2)
θ = 1,

σ
(1)
θ = σ

(2)
θ = 0.1;

(B.1)

The priors used for real data analysis PCAN:

W
(1)
ij ∼ Normal(0, τ−1j ) if i < j;W

(1)
ij ∼ Normal(0, τ−1j )1(W

(1)
jj > 0) if i = j;

W
(2)
kj ∼ Normal(0, τ−1j ) if k < j;W

(2)
jj ∼ Normal(0, τ−1j )1(W

(2)
jj > 0) if k = j;

τj ∼ Gamma(2, 1);

µ
(1)
θ ∼ ΠD1

k=1Normal(0, 5),

µ
(2)
θ ∼ ΠD2

i=1Normal(0, 5),

σ
(1)
θ

2
∼ Inv-χ2(10, 0.05),

σ
(2)
θ

2
∼ Inv-χ2(10, 0.05);

(B.2)

The priors used for real data analysis PSCCA:

W
(m)
ij ∼ Normal(W (1)

ij |0, λ
(1)
i

2
τ (m)2) if i < j,

W
(m)
kj ∼ Normal(W (1)

jj |0, λ
(m)
i

2
τ (m)2)1(W

(m)
jj > 0) if k = j,

τ (m) ∼ C+(0, 1),

λ
(m)
i ∼ C+(0, 1),

µ
(1)
θ ∼ ΠD1

k=1Normal(0, 5),

µ
(2)
θ ∼ ΠD2

i=1Normal(0, 5),

σ
(1)
θ

2
∼ Inv-χ2(10, 0.05),

σ
(2)
θ

2
∼ Inv-χ2(10, 0.05);

(B.3)
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C Simulation Results and Real Data Analysis.

Table A1: Summary of the Stein loss when estimating the true correlation structure for the natural
parameters from the SPCCA and our PCAN model. Here, d is the number of latent variables as-
sumed for the true correlation matrix; d∗ represents the value of d assumed when fitting the model.
Stein losses are calculated between the true correlation matrix at the natural parameter level vs the
posterior mean correlation, estimated based on the posterior of W(1), W(2) and the other parame-
ters. The reported numbers are the medians and 95% CI (in parentheses).

PCAN PSCCA

d d∗ Mean 95%CI Mean 95%CI

0 2 60.65 (58.22, 62.88) 56.62 (54.20, 58.33)

0 5 49.06 (46.68, 51.45) 45.52 (30.40, 60.63)

0 10 56.21 (31.33, 81.08) 54.27 (47.49, 61.06)

5 2 68.29 (60.75, 75.77) 14.50 (13.49, 15.51)

5 5 63.56 (57.48, 69.64) 9.098 (8.69, 9.59)

5 10 65.60 (59.35, 71.86) 11.57 (11.91, 11.98)

10 2 52.86 (49.74, 55.96) 46.19 (42.16, 50.20)

10 5 55.22 (51.05, 59.38) 37.49 (35.88, 39.11)

10 10 55.05 (50.79, 59.31) 36.56 (30.63, 42.49)

Table A2: Summary of the Frobenius losses when estimating the true correlation for the natural
parameters from PSCCA, PCAN, Pearson, and Spearman. Here, d is the number of latent variables
assumed for the true correlation matrix; d∗ represents the value of d assumed when fitting the model.
Frobenius losses are calculated between the true correlation matrix at the natural parameter level
vs the posterior mean correlation, estimated based on the posterior of W(1), W(2) and the other
parameters. The reported numbers are the medians and standard errors (in parentheses).

d d∗ PSCCA PCAN Pearson Spearman

0 10 14.12 21.26 17.89 21.50

(1.43) (1.57) (0.71) (1.23)

5 10 4.54 20.35 9.74 10.32

(0.22) (3.14) (0.22) (0.21)

10 10 7.85 13.27 11.47 12.76

(1.08) (3.37) (0.42) (0.33)
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Figure A1: PCAN heatmap of the posterior mean correlation estimates between the miRNA and
mRNA under d = 10. Red color indicates the positive correlation and blue color indicates the
negative correlation.
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Table A3: Posterior mean estimates of mRNA and miRNA pairs correlation (cor) obtained from
the real data analysis using PSCCA (d=10). Here we only report the top 40 pairs with negative
correlations.

mRNA miRNA cor

CA1 hsa.mir.154 -0.390

CA1 hsa.mir.665 -0.353

AL355076.3 hsa.mir.708 -0.338

AL355076.3 hsa.mir.191 -0.332

AL353801.1 hsa.mir.375 -0.331

AL355076.3 hsa.mir.942 -0.329

S1PR1 hsa.mir.944 -0.328

KRT18P37 hsa.mir.151b -0.322

AL355076.3 hsa.mir.455 -0.321

KRT18P37 hsa.mir.539 -0.317

AL355076.3 hsa.mir.151b -0.317

TPX2 hsa.mir.425 -0.314

TPX2 hsa.mir.1254.1 -0.312

TP63 hsa.mir.539 -0.310

TPX2 hsa.mir.191 -0.307

CA1 hsa.mir.539 -0.305

KRT18P37 hsa.mir.1271 -0.302

TP63 hsa.mir.338 -0.302

RN7SL748P hsa.mir.1277 -0.299

CA1 hsa.mir.495 -0.295

mRNA miRNA cor

AL355076.3 hsa.mir.425 -0.2905

RPS26P49 hsa.mir.539 -0.294

AL355076.3 hsa.mir.182 -0.290

KRT18P37 hsa.mir.33b -0.288

AL355076.3 hsa.mir.330 -0.288

S1PR1 hsa.mir.205 -0.287

TP63 hsa.mir.425 -0.286

CCNB1 hsa.mir.1305 -0.286

RPS26P49 hsa.mir.495 -0.284

AC135586.2 hsa.mir.224 -0.284

AL353801.1 hsa.mir.1277 -0.284

AL355076.3 hsa.mir.106a -0.282

KRT18P37 hsa.mir.1254.1 -0.280

RPS26P49 hsa.mir.665 -0.280

CA1 hsa.mir.628 -0.279

SIRPD hsa.mir.196b -0.278

SOX15 hsa.mir.628 -0.276

AL355076.3 hsa.mir.186 -0.275

KRT18P37 hsa.mir.205 -0.274

AC099509.2 hsa.mir.628 -0.273
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Table A4: Posterior mean estimates of mRNA and miRNA pairs correlation (cor) obtained from the
real data analysis using PCAN (d=10). Here we only report the pairs contain estimated correlations
less than -0.25.

mRNA miRNA cor

BMS1P17 hsa.mir.140 -0.437

BMS1P17 hsa.mir.195 -0.393

BMS1P17 hsa.mir.338 -0.384

BMS1P17 hsa.mir.217 -0.381

BMS1P17 hsa.mir.181d -0.370

BMS1P17 hsa.mir.500a -0.368

BMS1P17 hsa.mir.1270 -0.360

BMS1P17 hsa.mir.589 -0.354

BMS1P17 hsa.mir.330 -0.345

BMS1P17 hsa.mir.500b -0.344

BMS1P17 hsa.mir.1226 -0.338

BMS1P17 hsa.mir.1468 -0.303

AC087318.1 hsa.mir.1266 -0.296

SFN hsa.mir.1343 -0.291

BMS1P17 hsa.mir.1343 -0.288

BMS1P17 hsa.mir.1254.1 -0.286

BMS1P17 hsa.mir.93 -0.284

BMS1P17 hsa.mir.199b -0.282

mRNA miRNA cor

SFN hsa.mir.93 -0.281

SFN hsa.mir.181d -0.280

BMS1P17 hsa.mir.191 -0.280

SFN hsa.mir.205 -0.276

SFN hsa.mir.1306 -0.273

BMS1P17 hsa.mir.665 -0.271

SFN hsa.mir.151a -0.269

SFN hsa.mir.579 -0.267

SFN hsa.mir.942 -0.267

SFN hsa.mir.182 -0.264

SFN hsa.mir.500b -0.261

SFN hsa.mir.589 -0.260

SFN hsa.mir.378a -0.260

BMS1P17 hsa.mir.95 -0.259

SFN hsa.mir.1226 -0.259

SFN hsa.mir.500a -0.254

SFN hsa.mir.708 -0.253

BMS1P17 hsa.mir.151a -0.251

Table A5: Posterior mean estimates of mRNA and miRNA pairs correlation (cor) obtained from
the real data analysis using Spearman (d=10) and Pearson (d=10). Here we only report the pairs
contain estimated correlations less than -0.25.

mRNA miRNA cor

AC135586.2 hsa.mir.500a -0.323

RPS26P49 hsa.mir.1468 -0.286

PSG8.AS1 hsa.mir.1254.1 -0.264

AC135586.2 hsa.mir.93 -0.259

RPS26P49 hsa.mir.182 -0.258

CA1 hsa.mir.628 -0.257

CSTA hsa.mir.196b -0.255

BMS1P17 hsa.mir.500a -0.251

AC135586.2 hsa.mir.425 -0.250

PSG8.AS1 (Pearson) hsa.mir.1254.1 -0.294

AC135586.2(Pearson) hsa.mir.500a -0.280
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