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SUMMARY

We discuss the construction of optimal allocation schemes for the linear mixed model with
clustered outcomes or repeated measurements often encountered in longitudinal studies.
We consider both treatment and covariate effects in the mixed model, where latent pro-
cesses are used to describe random cluster or subject effects. A goal of optimal design
schemes is to determine proportions of sample units allocated to each treatment for a given
total sample size. We develop the optimal designs in a general setting using both D- and A-
optimal design criteria. Specifically, we propose a two-stage design approach to deal with
unknown parameters in the linear mixed model, where the variances of the random effects
across the treatment groups are considered different. We study the empirical properties of
the proposed designs using Monte Carlo simulations. An application is also provided using
actual clinical data from a longitudinal study.

Keywords and phrases: Longitudinal data; Mixed model; Optimal design of experiments;
Random effects; Two-stage design

1 Introduction
The choice of an optimal design is an important issue in many clinical experiments. A common
goal of the design of experiment is to develop a predictive model as precisely as possible, while
optimizing the cost associated with measuring the outcomes. Optimal designs for generalized linear
and nonlinear regression models have been considered by many authors in recent years (e.g., Chaud-
huri and Mykland, 1993; Wiens, 1994; Sinha and Wiens, 2002; Sinha, 2013; Xu and Sinha, 2020).
Recently, Hore, Dewanji, and Chatterjee (2014) discussed design problems for ANCOVA models,
where optimal allocation of two treatment groups was considered for given covariates, but with no
random effects in the model.

In a case-control clinical study, subjects may be measured repeatedly over a fixed period of time.
Repeated outcomes from a given subject are correlated by nature. Latent random effects in a mixed

? Corresponding author
c© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.



102 Xu and Sinha

model setting are often used to describe the correlations among the repeated outcomes in the longi-
tudinal experiment. The random effects variance components in the mixed model can vary across
different treatment groups. In this paper, we present an optimal design strategy that can accommo-
date the correlations among repeated observations and also can account for unequal random effects
variance components for different treatment groups, so that efficient estimates of the model param-
eters can be attained for reliable predictions. We formulate our problem of interest using a similar
ANCOVA framework, but in a mixed model setting, where random effects are used to describe the
correlation structure among clustered data or repeated measurements. In particular, we consider a
set of design problems and extend the previous work by: (i) developing an optimal design scheme
with heteroscedastic random effects in the ANCOVA model; (ii) presenting the optimal allocation
theory for longitudinal experiments; and (iii) addressing the problem of missing observations due to
drop-outs in follow-up times.

The rest of the paper is organized as follows. Section 2 introduces the model and notation
for analyzing longitudinal continuous data in the framework of the linear mixed model. Section
3 reviews the maximum likelihood method for estimating the regression parameters and variance
components. Sections 4 presents the proposed optimal design criteria for the linear mixed model.
Section 5 investigates the performance of the proposed design based on a simulation study. Section
6 presents an application using actual clinical data from a longitudinal study. Section 7 provides
some concluding remarks.

2 Model and Notation
Suppose there are k treatments in a longitudinal study, where the ith treatment (i = 1, . . . , k) is given
to the jth individual (j = 1, . . . , ni), with each individual being observed at a possible varied set of
Tij time points (t = 1, . . . , Tij). Consider a linear mixed model for the longitudinal response yijt,
given by

yijt = zTj α+ xTijtβ + uij + εijt, (2.1)

where xijt represents a p×1 vector of covariates observed with the response yijt, β = (β1, . . . , βp)
T

a vector of fixed covariate effects, zj = (z1j , . . . , zk,j)
T a vector of k treatment indicators, α =

(α1, . . . , αk)T a vector of corresponding fixed treatment effects, and uij a random interaction effect
between the ith treatment and jth individual that is assumed to follow an independent normal distri-
bution with mean 0 and unequal variance σ2

i . The random error term εijt is assumed to follow an
independent normal distribution with mean 0 and a common variance σ2

ε , independent of the random
effects uij .

Model (2.1) can be written in a matrix form as

yij = Zijα+ Xijβ + 1ijuij + εij , (2.2)

where yij = (yij1, . . . , yijTij
)T , 1ij is a Tij × 1 vector of 1’s, Xij and Zij are Tij × p and Tij × k

design matrices with their tth rows being equal to xTijt and zTj , respectively, and the vector of random
errors εij = (εij1, . . . , εijTij

)T . Note that in the variance components literature, this model is also
called a linear model with nested error structure (Christenson, 1996; Wang and Ma, 2002).
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From (2.2), the marginal distribution of yij is multivariate normal with the mean vector

µij = E(yij) = Zijα+ Xijβ,

and variance-covariance matrix

Var(yij) = σ2
εI + σ2

i 1ij1
T
ij = σ2

ε

(
I + di1ij1

T
ij

)
= σ2

εVij ,

where Vij = I + di1ij1
T
ij and di = σ2

i /σ
2
ε .

Our goal is to adopt an optimal design strategy that can select the number of subjects ni assigned
to the ith treatment. The optimal choice may depend on the values of unequal variances σ2

i of the
random interaction effects uij . Another goal may be to choose both the design points xijt and
sample sizes ni using an optimal strategy. We can adopt a sequential D-optimal design, as the
Fisher information involves the model parameters that are not known a priori.

We define the partition matrix Wij = (Zij |Xij) and the partition vector θT =
(
αT |βT

)
. Then

the marginal distribution of yij is given by

yij ∼ N
(
Wijθ, σ

2
εVij

)
.

By the Gauss-Markov Theorem, the BLUE of θ may be obtained as

θ̂ =

 k∑
i=1

ni∑
j=1

WT
ijV

−1
ij Wij

−1
k∑
i=1

ni∑
j=1

WT
ijV

−1
ij yij , (2.3)

which is also the MLE and generalized least squares (GLS) estimator of θ, provided that the inverse
(
∑k
i=1

∑ni

j=1 WT
ijV

−1
ij Wij)

−1 exists. We note that (2.3) depends on possible unknown variance
components di. In the next section, we discuss the likelihood method for estimating the variance
components.

3 The ML Estimation
Recall the linear mixed model (2). The total number of observations from all n =

∑k
i=1 ni experi-

mental units is given by N =
∑k
i=1Ni =

∑k
i=1

∑ni

j=1 Tij , where Ni =
∑ni

j=1 Tij denotes the total
number of observations from the ith treatment (i = 1, . . . , k).

The log-likelihood function (without the constant term) is given by

l(θ, σ2
ε , di) = −1

2

N lnσ2
ε +

k∑
i=1

ni∑
j=1

ln |Vij |+
∑k
i=1

∑ni

j=1 (yij −Wijθ)
T

V−1
ij (yij −Wijθ)

σ2
ε

 .
(3.1)

Taking the derivative with respect to σ2
ε , the log-likelihood can be maximized at

σ̂2
ε =

1

N

k∑
i=1

ni∑
j=1

(yij −Wijθ)
T

V−1
ij (yij −Wijθ) . (3.2)
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Now, consider the variance-profile log-likelihood function (Lindstrom and Bates, 1988) obtained
by substituting (3.2) into (3.1), i.e., by replacing σ2

ε with σ̂2
ε . The MLEs of (θ, di) can be obtained

by maximizing the profile log-likelihood (without the constant term)

l (θ, di) = −1

2

N ln


k∑
i=1

ni∑
j=1

(yij −Wijθ)
T

V−1
ij (yij −Wijθ)

+

k∑
i=1

ni∑
j=1

ln |Vij |

 .
(3.3)

Let eij = yij−Wij θ̂ = yij−Wij{(
∑k
i=1

∑ni

j=1 WT
ijV

−1
ij Wij)

−1
∑k
i=1

∑ni

j=1 WT
ijV

−1
ij yij}.

As the information on di is only contained within the ith treatment observations, we may maxi-
mize the “partial” likelihood function for the ith treatment observations. The “partial” profile log-
likelihood function of each di (without constant terms) is given by

l (di) = −1

2

N ln


k∑
i=1

ni∑
j=1

eTij
(
I + di1ij1

T
ij

)−1
eij

+

ni∑
j=1

ln
∣∣I + di1ij1

T
ij

∣∣ . (3.4)

Since ∣∣I + di1ij1
T
ij

∣∣ = 1 + Tijdi and(
I + dTi 1ij1

T
ij

)−1
= I− di

1 + Tijdi
1ij1

T
ij ,

the log-likelihood (7) can be rewritten as

l (di) = −1

2

N ln


k∑
i=1

ni∑
j=1

eTij

(
I− di

1 + Tijdi
1ij1

T
ij

)
eij

+

ni∑
j=1

ln (1 + Tijdi)

 . (3.5)

This leads to a simplified estimator for (2.3) similar to the approach utilized in Demidenko
(2004):

θ̂ =

 k∑
i=1

ni∑
j=1

(
WT

ijWij −
T 2
ijdi

1 + Tijdi
w̄ijw̄

T
ij

)−1  k∑
i=1

ni∑
j=1

(
WT

ijyij −
T 2
ijdi

1 + Tijdi
w̄ij ȳij

) ,
(3.6)

where

w̄ij =
1

Tij

Tij∑
t=1

wijt and ȳij =
1

Tij

Tij∑
t=1

yijt.

Additionally, we have

σ̂2
ε =

1

N

k∑
i=1

ni∑
j=1

(yij −Wijθ)
T

(
I− di

1 + Tijdi
1ij1

T
ij

)
(yij −Wijθ) , (3.7)
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and

eij = yij−Wij

 k∑
i=1

ni∑
j=1

(
WT

ijWij −
T 2
ijdi

1 + Tijdi
w̄ijw̄

T
ij

)−1
k∑
i=1

ni∑
j=1

(
WT

ijyij −
T 2
ijdi

1 + Tijdi
w̄ij ȳ

T
ij

)
.

Let

S = S (θ) =

k∑
i=1

ni∑
j=1

‖yij −Wijθ‖2 ,

hij =
1

Tij
eTij1ij =

1

Tij

Tij∑
t=1

(
yijt −wT

ijtθ
)

= ȳij − θT w̄ij .

Then (3.5) becomes

l (di) = −1

2

N ln

S −
k∑
i=1

ni∑
j=1

T 2
ijdi

1 + Tijdi
h2ij

+

ni∑
j=1

ln (1 + Tijdi)

 . (3.8)

3.1 Iterative solutions

In the previous section, we presented the likelihood function and its maximization in a general
setting. For longitudinal studies or repeated measurement designs, the number of observations for
each individual are often fixed, i.e., Tij = T . Even with a less restricted condition for which the
number of observations per individual stays the same within a treatment group, numerical iterative
procedures may be adopted for estimating the variance components.

Let Ti denote the number of observations from each of the ni individuals within the ith treatment
group. Then (3.8) becomes

l (di) = −1

2

[
N ln

{
S −

k∑
i=1

T 2
i di

1 + Tidi
Ai

}
+ ni ln (1 + Tidi)

]
, (3.9)

where

Ai =

ni∑
j=1

h2ij .

Denote

∆ =

k∑
i=1

T 2
i di

1 + Tidi
Ai.

Then taking the partial derivative of l (di) in (12) with respect to di and equating it to zero gives an
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iterative equation for di in the form

d
(r+1)
i =

NAi
ni(S −∆(r))

− 1

Ti

=
N
∑ni

j=1

(
ȳij − θT w̄ij

)2
ni

[∑k
i=1

∑ni

j=1 ‖yij −Wijθ‖2 −
∑k
i=1

T 2
i d

(r)
i

1+Tid
(r)
i

Ai

] − 1

Ti
, (3.10)

for r = 0, 1, 2, . . .. We discuss the choice of initial values for di in Section 4.1.

4 Optimal Designs
From (2.3), we can have the variance-covariance matrix of the ML estimator θ̂ in the form

Var(θ̂) = σ2
ε

 k∑
i=1

ni∑
j=1

WT
ijV

−1
ij Wij

−1

.

Often we are interested in the differences between treatment effects in the ANCOVA framework.
Here we aim to estimate β and αi − αi−1, for i = 2, . . . , k. Let

C =


−1 1

−1 1

... ...

−1 1


(k−1)×(k)

,

B =

 C 0

0 Ip


(p+k−1)×(p+k)

.

Then

Var(Bθ̂) = σ2
εB

 k∑
i=1

ni∑
j=1

WT
ijV

−1
ij Wij

−1

BT .

In this paper, we consider D-optimal and A-optimal designs, which can be attained by minimiz-
ing the determinant and trace of Var(Bθ̂), respectively. The loss functions are given by

LD =

∣∣∣∣∣∣∣B
 k∑
i=1

ni∑
j=1

(
WT

ijWij −
T 2
ijdi

1 + Tijdi
w̄ijw̄

T
ij

)−1

BT

∣∣∣∣∣∣∣ ,
LA = tr

B

 k∑
i=1

ni∑
j=1

(
WT

ijWij −
T 2
ijdi

1 + Tijdi
w̄ijw̄

T
ij

)−1

BT

 .
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It is also sensible to optimally select the ni by minimizing

LD1
=

∣∣∣∣∣∣∣B1

 k∑
i=1

ni∑
j=1

(
WT

ijWij −
T 2
ijdi

1 + Tijdi
w̄ijw̄

T
ij

)−1

BT
1

∣∣∣∣∣∣∣ ,
or

LA1
= tr

B1

 k∑
i=1

ni∑
j=1

(
WT

ijWij −
T 2
ijdi

1 + Tijdi
w̄ijw̄

T
ij

)−1

BT
1

 ,

where

B1 =
(

C 0

)
(k−1)×(p+k)

,

and optimally select xijt by minimizing

LD2
=

∣∣∣∣∣∣∣B2

 k∑
i=1

ni∑
j=1

(
WT

ijWij −
T 2
ijdi

1 + Tijdi
w̄ijw̄

T
ij

)−1

BT
2

∣∣∣∣∣∣∣ ,
or

LA2
= tr

B2

 k∑
i=1

ni∑
j=1

(
WT

ijWij −
T 2
ijdi

1 + Tijdi
w̄ijw̄

T
ij

)−1

BT
2

 ,

where

B2 =
(

0 Ip

)
p×(p+k)

.

4.1 A proposed two-stage design

For simplicity, we consider the specific case Tij = T for all (i, j) to describe our two-stage design
process. Let 1 be a T × 1 vector of 1’s. Suppose we have n experimental units available. The
proposed design involves the following steps:

Step 1. Consider an initial balanced design of n0 units (subjects) randomly assigned to k

treatments with an equal number of n∗ = (n0/k) units per treatment. Initial values of xij (i =

1, . . . , k; j = 1, . . . , n∗) are selected uniformly from a design space and remain the same for T time
points in the longitudinal setting.

Step 2. Observe longitudinal response yijt (t = 1, . . . , T ) at T time points for each (i, j)th unit.
Then obtain initial estimates of the model parameters as follows.

Let ȳ = [1/(n0T )]
∑k
i=1

∑n∗

j=1

∑T
t=1 yijt be the overall mean of all observations. Consider
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elements of the initial V
(0)
i obtained from

σ2(0)
ε =

1

n0T

k∑
i=1

n∗∑
j=1

T∑
t=1

(yijt − ȳ)2,

σ
2(0)
i =

1

n∗T

n∗∑
j=1

T∑
t=1

(yijt − ȳi)2 − σ2(0)
ε ,

d
(0)
i =

σ
2(0)
i

σ
2(0)
ε

.

These lead to

V
(0)
i = I + d

(0)
i 11T ,

V
(0)−1
i = I− d

(0)
i

1 + Td
(0)
i

11T .

Then obtain initial estimates of θ and ∆ as

θ(0) =

 k∑
i=1

n∗∑
j=1

WT
ijV

(0)−1
i Wij

−1
k∑
i=1

n∗∑
j=1

WT
ijV

(0)−1
i yij , (4.1)

∆(0) =

k∑
i=1

 T 2d
(0)
i

1 + Td
(0)
i

n∗∑
j=1

(
ȳij − θ(0)T w̄ij

)2 . (4.2)

Step 3: Update estimate of di by d(r)i for r = 1 using the iterative equation (3.10).
Step 4: Update estimates of θ and ∆ by the iterative equations

θ(r) =

[
k∑
i=1

n∗∑
j=1

WT
ij

(
I − d

(r)
i

1 + Td
(r)
i

11T
)

Wij

]−1
k∑
i=1

n∗∑
j=1

WT
ij

(
I − d

(r)
i

1 + Td
(r)
i

11T
)

yij ,(4.3)

∆(r) =

k∑
i=1

[
T 2d

(r)
i

1 + Td
(r)
i

n∗∑
j=1

(
ȳij − θ(r)T w̄ij

)2]
, (4.4)

for r = 1. Iterate between Steps 3 and 4 using r = 2, 3, . . . to obtain desirable “first stage estimates”
θ̂ and d̂i’s from the initial design.

Step 5: Conduct the second stage of the design (optimal design stage) with the first stage es-
timates. Denote mi = ni − n∗, with fixed xij as specified in Step 1. Optimally choose m∗

i with∑k
i=1m

∗
i = n− n0 by minimizing LD1

or LA1
.

5 Simulation Study
Here we investigate the performance of the proposed design using a simulation study. Consider
a longitudinal experiment with only two treatment groups (treatment vs. placebo) and a single
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baseline covariate x. The response yit from the ith subject at the tth time point is described by the
linear mixed model

yit = α0 + α1zi + β1xi + β2t+ ui + εit, (5.1)

for i = 1, . . . , n, and t = 1, 2, . . . , T , where zi is a binary indicator of the treatment group, xi
represents the value of a baseline covariate from N(1, 1), ui are assumed independent N(0, (1 −
zi)σ

2
0 + ziσ

2
1), and εi are assumed independent N(0, σ2

ε ). Also, ui and εit are assumed independent
of each other. Consider only T = 3 time points.

We assume that initially there are n0 subjects under study, with an equal number of n01 =

(n0/2) subjects in the control group and n02 = (n0/2) subjects in the treatment group. Consider
assigning n1 new subjects to the control group and n2 new subjects to the treatment group, so that
n = (n01 + n02) + (n1 + n2). Our goal is to find an optimal allocation of n1 and n2 subjects
by (i) maximizing the determinant of the Fisher information or by (ii) minimizing the trace of the
variance-covariance matrix of θ̂ = (α̂0, α̂1, β̂1, β̂2)T . For the estimation of the model parameters
and optimal allocation of sample sizes, we follow the algorithm described earlier in Section 4.

Figure 1 exhibits plots for three representative data sets, where the determinants of the Fisher
information are shown for different values of the sample size n1. The regression parameters in
model (18) were fixed at α0 = 2, α1 = 1, β1 = 0.5, and β2 = 0.5, and the error variance was fixed
at σε = 2. Three combinations of the random effects variances were chosen as (σ0, σ1) = (2, 2)

(left panel), (σ0, σ1) = (2, 1) (middle panel), and (σ0, σ1) = (1, 2) (right panel). Initially, a total
of n0 = 50 subjects were considered in the experiment. Then the optimal design strategy was used
to choose n1 + n2 = 100 new subjects with n1 subjects for the control group and n2 subjects for
the treatment group. It appears from the plots in Figure 1 that the optimal value of n1 depends on
the values of the treatment variances (σ0, σ1). Typically, when σ0 = σ1, the optimum allocation
chooses roughly equal values of n1 and n2. But when the variances are unequal, the optimal n1 for
the control group appears to be inversely related to the variance component σ0 for the control group,
i.e., n1 is higher when σ0 is smaller (σ0 < σ1).

We ran a set of simulations based on 1000 replicates of data sets, where each data set was
generated using the linear mixed model (18), with the regression parameters fixed at α0 = 2, α1 =

1, β1 = 0.5, β2 = 0.5, and the error variance at σε = 1. Figure 2 displays histograms of the
optimum allocations n1 for 1000 replicates of data sets and for three combinations of random effects
variances: (σ0, σ1) = (2, 2) (left panel), (σ0, σ1) = (3, 1) (middle panel), and (σ0, σ1) = (1, 3)

(right panel). As before, we chose the initial number of subjects as n0 = 50. Optimal design
strategy was used to choose n1 + n2 = 100 new subjects with n1 subjects for the control group
and n2 for the treatment group. It is clear from the plots that when the variances are equal, i.e.,
(σ0, σ1) = (2, 2), the average value of n1 is roughly 50, indicating an equal allocation of n1 and
n2 in average. On the other hand, when the variances are unequal, the optimal allocations generally
choose different values of n1 and n2. For example, the average optimal value of n1 is roughly 30
when (σ0, σ1) = (3, 1), whereas average n1 is roughly 70 when (σ0, σ1) = (1, 3).

In the aforementioned simulation study, we also investigated the gain in efficiency from the
proposed optimal allocation, as compared to the naive equal allocation (n1 = n2). The efficiencies
were calculated as the ratio of the determinants of the Fisher information under the optimal and
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Figure 1: Plots of sample size n1 against determinant of the Fisher information for three representa-
tive data sets. Regression parameters in (18): α0 = 2, α1 = 1, β1 = 0.5, β2 = 0.5; error variance:
σε = 2. Random effects variances: (σ0, σ1) = (2, 2) (left panel); (σ0, σ1) = (2, 1) (middle);
(σ0, σ1) = (1, 2) (right).

 

Figure 2: Histogram plots of optimum values of n1 for 1000 replicates of data sets. Regression
parameters in (18): α0 = 2, α1 = 1, β1 = 0.5, β2 = 0.5; error variance: σε = 1. Random effects
variances: (left panel) (σ0, σ1) = (2, 2) (left panel); (σ0, σ1) = (3, 1) (middle); (σ0, σ1) = (1, 3)
(right).
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Figure 3: Efficiencies of optimum allocations for 1000 replicates of data sets. Efficiencies are calcu-
lated as the ratio of the determinants of the Fisher information under optimal and equal allocations.
Regression parameters in (18): α0 = 2, α1 = 1, β1 = 0.5, β2 = 0.5; error variance: σε = 1. Ran-
dom effects variances: (σ0, σ1) = (2, 2) (left panel); (σ0, σ1) = (3, 1) (middle); (σ0, σ1) = (1, 3)
(right).

equal allocations. Figure 3 presents histograms of the efficiencies of optimum allocations for 1000
replicates of data sets as considered earlier, for three combinations of random effects variances:
(σ0, σ1) = (2, 2) (left panel), (σ0, σ1) = (3, 1) (middle panel), and (σ0, σ1) = (1, 3) (right panel).
As before, the proposed optimal design strategy was used to choose n1 + n2 = 100 new subjects
with n1 subjects for the control group and n2 for the treatment group. It is clear from the plots that
when the treatment variances are different, on average, the optimum allocation provides roughly
40% gain in efficiency as compared to the equal allocation.

6 Application: PANSS Data

Here we present an application of the proposed optimal design strategy using some actual clinical
data obtained from a longitudinal trial of drug therapies for schizophrenia, initially studied by Diggle
(1998). This randomized clinical trial compares different drug regimes in the treatment of chronic
schizophrenia. The study was based on 523 patients who were randomly allocated to placebo and
five active agents (treatments). The primary response was a measure of psychiatric disorder de-
termined by the total score on the Positive and Negative Symptom Rating Scale (PANSS). We use
a subset of the data available at the link: https://www.lancaster.ac.uk/staff/diggle/APTS-data-sets,
which contains longitudinal measurements from 150 patients randomized among three treatment
groups (placebo and two active agents) each of size 50, where patients were measured at weeks
0 (baseline), 1, 2, 4, 6, and 8. The longitudinal data contain a number of missing values due to
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Table 1: Linear mixed model fit to PANSS data. The initial data contain n = 150 patients measured
at six follow-up times 0, 1, 2, 4, 6, and 8 (in weeks).

Parameter Estimate SE z-value

α0 95.0389 2.4038 39.5376

α1 –8.5368 2.9878 –2.8572

β –1.1378 0.2120 –5.3677

σ2
ε 176.7771 10.8221 16.3348

σ2
0 228.4355 55.8720 4.0886

σ2
1 291.2141 47.4575 6.1363

dropouts. We assume that these values are missing at random (MAR). Under the MAR mecha-
nism, the likelihood approach does not require any missing data model when estimating the model
parameters.

We use a linear mixed effects model to fit the initial data as

yit = α0 + α1zi + βTimeit + ui + εit, (6.1)

for i = 1, . . . , 150, and t = 1, . . . , 6, where the binary predictor zi takes the value 0 for the placebo
group and 1 for the treatment (both active agents) group, follow-up time Timeit takes the values 0, 1,
2, 4, 6, and 8 (in weeks), random effects ui are assumed independent N(0, (1− zi)σ2

0 + ziσ
2
1), and

random errors εit are assumed independent N(0, σ2
ε ). The random effects ui and random errors εit

are also assumed mutually independent. We fit model (19) using the classical maximum likelihood
(ML) method. Table 1 presents ML estimates, their standard errors and corresponding z-values
for the regression parameters and variance components. The estimates of the variance components
(σ2

0 , σ
2
1) appear to be different for the placebo and treatment groups.

Now consider augmenting the data by allocating 100 new patients between the placebo and
treatment groups, so that there are n1 new patients in the placebo group and n2 = 100 − n1 new
patients in the treatment group. Figure 4 shows an optimal value of n1 = 75, as determined by the
Fisher information shown in the left panel.

For illustrative purposes, we also studied the optimal allocation using a subset of the original
data with 60 patients and treating those as initial data. Based on these “initial data”, we recalculated
the ML estimates of the model parameters, and then allocated 100 new patients between the placebo
and treatment groups using the same optimal strategy considered earlier. For this subset of initial
data, an optimal value of n1 is obtained at n1 = 54, as shown in the right panel of Figure 4. This
demonstrates that the optimal allocation can depend on the behaviour of the initial data and their
model fit.
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Figure 4: Analysis of PANSS data. The left panel shows the determinant of the Fisher information
against sample size n1 for an initial data set of n0 = 150 patients. An optimal allocation of 100
new patients chooses n1 = 75 patients for the control group and n2 = 25 patients for the treatment
group. The right panel shows results for an initial subset of n0 = 60 patients in which the optimal
allocation of 100 new subjects chooses n1 = 54 patients for the control group and n2 = 46 patients
for the treatment group.

7 Conclusions

We have proposed and explored the construction of optimal allocation schemes for longitudinal
studies in the framework of the linear mixed model for clustered data. We have shown that one can
achieve considerable gain in efficiency by choosing the sample size for different treatment groups
based on the proposed optimal schemes. Although the method is developed in the setting of a
longitudinal study, it can also be used in other types of clustered data analysis, where the random
cluster effects variances may be linked to demographic variables or some biomarkers.

The proposed optimal allocation schemes may also be extended to nonlinear mixed effects mod-
els for clustered data, where the response is still continuous, but the response variable is associated
with available covariates and biomarkers by a known nonlinear function. Work remains to be done
in this direction.
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