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SUMMARY

The random forest can reduce the variance of regression predictors through bagging while
leaving the bias mostly unchanged. In general, the bias is not negligible and consequently
bias correction is necessary. The default bias correction method implemented in the R
package randomForest often works poorly. Several approaches have been developed
which in general outperform the R default. However, little work has been done to com-
prehensively evaluate the performance of these methods and thus guide users to select an
appropriate method for bias correction. This paper fills this gap by providing an informa-
tive ranking of these bias correction methods based on an extensive numerical study. We
further offered practical suggestions on the application of the winner of these methods and
suggested a visualization technique to help users decide when bias correction is needed.
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1 Introduction

Random forest is one of the most popular and successful ensemble methods in machine learning
used for classification and regression. In this paper we apply random forest to regression problems;
i.e., to relate a quantitative response variable Y to covariates or features X . A random forest av-
erages predictions from many regression trees where each tree is built upon a bootstrap sample or
a subsample of the original data with a randomized tree building scheme. The accuracy of ran-
dom forests has been shown to be competitive among many supervised machine learning methods
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(Breiman, 2001b; Uddin et al., 2019; Biau et al., 2008). Intuitively, random forests attain good ac-
curacy through averaging many large trees. A large tree tends to have low bias but high variance.
Averaging can reduce the variance, so random forests have potential for achieving both low bias and
variance simultaneously.

However, very often the bias of a random forest is non-negligible even if it is built on large trees.
This is because a random forest is essentially a k-nearest neighbor method where the estimation
at the target point is the average of the response values of its nearest neighbors under a certain
distance metric (Lin and Jeon, 2006). Therefore those extreme regression function values tend to
be estimated with a negative bias near the upper extreme and positive bias near the lower extreme.
Wager and Athey (2018) provided a bound on the magnitude of the bias and Biau et al. (2008)
showed the decreasing rate of the bias under certain assumptions about the tree-growing mechanism
and the data distribution. But in practical settings with limited sample sizes, the bias often remains
an important component of the statistical risk and consequently, bias correction is necessary.

Multiple random forest bias correction approaches have been developed and they can be clas-
sified into two major categories. The first category uses a univariate smoothing approach. This
method computes the corrected prediction directly through fitting a univariate function between the
observed response y and the random forest prediction ŷ on the training data and then projecting the
same relationship to the corrected and uncorrected prediction of the target point. The default cor-
rection method in the R package randomForest (Liaw and Matthew, 2002) fits a linear function
between y and ŷ. The linear model does not perform well when the true relationship between them
is nonlinear. Zhang and Lu (2012) experimented with fitting a more flexible smooth spline model.
A distinct feature of the univariate smoothing method is that it only utilizes the response variable
without explicitly using the covariates information.

The second category models the bias explicitly. It is similar in spirit to the ‘boosting’ idea (Fre-
und and Schapire, 1996; Friedman, 2001) as it tries to improve the estimators through correcting
the errors from the previous model. Breiman (2001a) first proposed using a random forest to model
the bias and then subtracting the estimated bias from the prediction. This approach was also inves-
tigated by Zhang and Lu (2012), Xu (2013) and Ghosal and Hooker (2021) respectively. Ghosal
and Hooker (2021) named this method ‘boosted forest’ and we will refer to approaches based on
this general idea as boosted forest in this paper. Lu and Hardin (2021) proposed a conditional bias
approach which weighted the training data points by their closeness to the target data point. Hooker
and Mentch (2018) used a traditional residual bootstrap technique for bias correction developed by
Efron and Tibshirani (1993) where the bias could be assessed as the difference between an estimator
and the average of the bootstrapped estimators.

The aforementioned bias correction methods have been partially compared. Zhang and Lu
(2012) compared one variant of the univariate smoothing method and one-step boosted forest and
concluded they performed similarly well. Ghosal and Hooker (2021) compared boosted forest to the
residual bootstrap method and concluded boosted forest performed better in general. Lu and Hardin
(2021) compared their conditional bias method to boosted forest and concluded its performance was
comparable to that of boosted forest.

In summary, these partial comparisons have identified univariate smoothing, boosted forest and
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the conditional bias method as competitive candidates for bias correction. It is more desirable to
offer a more informative ranking of these methods for the benefit of the user. Therefore in this pa-
per, we further evaluate and compare these competitive methods through neutral and comprehensive
comparisons. In evaluating the univariate smoothing method, we also added quadratic and cubic
functions to examine if a higher-degree polynomial model improved over the linear model. In eval-
uating the boosted forest method, we also implemented the bias correction iteratively and studied
its performance with different iteration cycles. Through extensive numerical studies, we were able
to identify boosted forest as a general winner in many settings. This finding is valuable to users
who need to choose among different methods for bias correction. We further explored an easy-to-
use stopping rule to help determine the optimal number of iterations in iterative boosted forest. In
addition, we suggested a visualization technique which compares the predicted versus the observed
response with the 45o reference line to help users decide when bias correction is needed.

In Section 2, we will introduce the bias correction methods we will evaluate, including two
versions of the univariate smoothing methods we have proposed. In Section 3 and 4, we will compare
these methods through simulations and real data examples. We conclude the paper in Section 5
with a focus on offering user guidance on how to identify the need for bias correction and how to
implement bias correction when the need arises.

2 Methods

2.1 Bias correction is necessary

In the regression setting, a common goal is to use the estimated regression function to predict a
future response. The average mean-squared prediction error is the sum of the noise variance, the
predictor bias and predictor variance or MSPE=error variance + (squared) predictor bias + predictor
variance. We usually have no control over the inherent error variance. Random forest can reduce the
variance of the predictor through averaging but has little effect on the bias, and thus the bias often
remains an important component in the prediction error and needs to be corrected.

First we will demonstrate the existence of bias through a simulation study. We simulate n = 500

data points with covariates xi = (xi1, xi2, xi3, xi4) where each independent xip ∼ Uniform(0, 1)

for i = 1, . . . , n; p = 1, . . . , 4. Generate yi = f(xi)+ εi where f(x) = 3x1+x2
2+sin(x3)−

√
x4

and εi ∼ N(0, σ2). We choose σ = 0.5. We will compare the out-of-bag (OOB) prediction ŷi
produced by the R package randomForest to the true regression function value f(xi).

OOB predictions are produced through bootstrapping samples in building a random forest. For
different variants of random forests, each tree is built on a bootstrap or subsample of the original
data with some random tree-building mechanism. In this paper we adopt the most popular variant
developed by Breiman (2001b). It uses a bootstrap sample of the training data and random selection
of features at each split to build each tree. Suppose we have a training set T = (T1, . . . , Tn) of size
n. A bootstrap sample is generated by sampling n cases independently from T with replacement. In
a bootstrap sample, we call those left-out observations out-of-bag (OOB) observations. On average,
a training observation is OOB in about 37% of the trees in a random forest. The OOB prediction of
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a training case Ti is the average of predictions produced by those trees that do not contain this case.
Let B(Ti) denote the set of trees that do not contain Ti and ŷji denote the predicted response of Ti
by the jth tree. Then the OOB prediction of Ti is

ŷi =

∑
j∈B(Ti)

ŷji

| B(Ti) |
,

where | B(Ti) | is the number of elements inB(Ti). OOB predictions are made on the training cases
but they act like predictions made on the test data. They are integral to many random forest bias cor-
rection methods. The R package randomForest produces OOB predictions of each observation
in the training data.

Figure 1: Comparisons of the OOB predictions to the true function values.

In Figure 1, we plot the OOB prediction versus the true function value f(x). The points above
(below) the 45o line indicate the true function values are estimated with a positive (negative) bias.
It is obvious that the high values of the true function are under-estimated and the low values are
over-estimated. We experimented with various true functions, sample sizes and error variances and
observed a similar pattern. We observed for a fixed error variance, the bias tended to be smaller with
a bigger sample size; but the magnitude of the bias did not exhibit a clear positive relationship with
the size of the error variance.

The bias issue is common with real data sets as well. We illustrate the presence of bias with
the Boston housing data which is arguably the most commonly used benchmark data in machine
learning. We randomly chose 1/3 of the data as test data. As shown in Figure 2, random forest
performed well for most of the test data, with significant bias presented for a few data points at the
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Figure 2: Comparisons of the random forest predictions to observed test data for the Boston housing
data.

upper right corner. Although random forest prediction often works well, it could be further improved
with bias correction.

2.2 Bias correction methods

In this section, we will introduce the methods we implement and compare in the numerical studies.
We use the uncorrected results as a baseline for comparison.

2.2.1 Univariate smoothing methods

The univariate smoothing methods we explore include the default correction method in randomForest
and a few variants. The default correction method estimates the corrected response directly as below:

• Let b0 and b1 denote the estimated intercept and slope, respectively, obtained by fitting a
simple linear regression of the observed training response yi on its out-of-bag prediction ŷi:

yi = b0 + b1ŷi, i = 1, . . . n.

• For a test case with covariates x0, let ŷ0 be the predicted response from the random forest.
Then the bias-corrected prediction is ŷC0 = b0 + b1ŷ0.

This method assumes a linear relationship between yi and ŷi and assumes the same linear re-
lationship can be extended to the test case. To model the relationship more flexibly, we also fit a
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quadratic, cubic, and smooth spline function between yi and ŷi and project the estimated relation-
ship to the test case. We used smooth.spline function in the R package splines for fitting the
spline function. This univariate smoothing method does not use the features directly. Xu (2013)
showed that the bias of random forest predictions could vary non-linearly across different feature
regions. Therefore univariate smoothing may be insufficient and additionally it may be necessary to
incorporate covariates information in bias correction.

2.2.2 Boosted forest

This method was first proposed by Breiman (2001a). It uses a random forest to model the bias
explicitly and then subtracts the estimated bias b̂ from the original predictor ŷ to form the bias-
corrected predictor ŷC : ŷC = ŷ − b̂.

The bias is estimated from bi = ŷi−yi, which is just the negative of the residual ri = yi−ŷi, i =
1, . . . n. Note the residual used here is the difference between the observed responses yi and its
OOB prediction ŷi. Ordinary residuals on a training set from regressions do not work as they have a
tendency to be too small. Breiman (2001a) argued these OOB residuals represent the ‘true residuals’
and provide an unbiased estimate of the bias term. The method follows the steps as below:

• A new random forest built on training data (ri, xi)
n
i=1 or (bi, xi)ni=1 is used to estimate ri (or

bi).

• The OOB predictions of the training data are bias-corrected as

ŷCi = ŷi − b̂i or ŷCi = ŷi + r̂i, i = 1, . . . n.

• For a test case T0 with features x0, obtain its prediction ŷ0 and r̂0 (or b̂0) from the original
and the new random forest respectively and update its corrected prediction as

ŷC0 = ŷ0 − b̂0 = ŷ0 + r̂0

This process can be repeated iteratively; i.e., obtain new residuals from the bias-corrected predictors,
use another random forest to estimate the new residuals and then add the estimated new residuals to
the bias-corrected predictor to further update the predictor, and so on. For the random forests built in
different stages, the input values x are kept the same while the response values are the successively
updated residuals.

We change the notations slightly to summarize the iterations:

• Let y(j)i denote the response value of case Ti in the jth random forest, with y(1)i being the
initial response value.

• At the jth stage, let ŷ(j)i be the OOB prediction of case Ti produced by the jth random forest
and set y(j+1)

i = y
(j)
i − ŷ

(j)
i . Note this formula produces the successive residuals.
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• For a test case T0 with features x0, obtain the prediction ŷ(j)0 from the jth random forest,
j = 1, 2, . . . , J and get the corrected prediction of case T0 as

ŷC0 =

J∑
j=1

ŷ
(j)
0 .

Boosted forest is in spirit similar to the ‘gradient boosting’ idea with the difference that the
base learner is a random forest rather than a single tree. Another major difference is that boosted
forest does not use a tuning parameter which shrinks the contribution of each base learner to control
overfitting. Therefore it is important to stop the iteration at a proper stage to avoid overfitting.
In working with real data, we suggest monitoring the average MSPE on the test data over sufficient
rounds of data splits and stopping iteration when the average MSPE starts to increase. Our numerical
studies in Section 4 showed that this simple-to-use stopping rule did not lead to insufficient number
of iterations. Our studies also showed two iterations were sufficient in most settings.

2.2.3 Conditional bias correction

This method was developed by Lu and Hardin (2021) which also uses a random forest to model the
bias term explicitly. It estimates the bias of a test case T0 with features x0 as a weighted average of
the OOB biases ŷi − yi of the training observations:

b̂0(x0) =

n∑
i=1

vi(x0)(ŷi − yi).

The weight vi(x0) assigned to a training case Ti = (xi, yi) depends on how close it is to the test
case T0. In fact, vi(x0) is proportional to a quantity which measures how many times the training
observation Ti is OOB and would fall in the same terminal nodes as T0 among all the trees in the
random forest. Specifically, the weight is computed as

vi(x0) =

∑J
j=1 I(Ti 6∈ D∗n,jandxi ∈ Rs(x0,θj))∑n

l=1

∑J
j=1 I(Tl 6∈ D∗n,jandxl ∈ Rs(x0,θj))

,

where I is the indicator function, D∗n,j denotes the bootstrap sample in tree j, s(x0, θj) denotes the
terminal node containing x0 in tree j and Rs(x0,θj) denotes the corresponding subspace. That is, a
training case closer to the target case will receive a higher weight.

Let ŷ0 be the prediction of the test case T0 and bias-corrected prediction at x0 is obtained as:

ŷC0 = ŷ0 − b̂0(x0).

Recall a random forest is essentially a k-nearest neighbor method. In the boosted forest ap-
proach, when a random forest is used to estimate the biases, it also assigns different weights to the
OOB biases of the training cases. Therefore this conditional bias method is essentially similar to
one-step boosted forest.



122 Chen et al.

3 Simulation Analysis
In this section, we investigate the finite sample performance of the aforementioned bias-corrected
methods through in-depth simulation studies. With synthetic data we can compute the bias as the
true regression function is known. All computations were performed in R. The conditional bias
method was implemented using the R package forestError (Lu and Hardin, 2021).

3.1 Study I

In the first study, we generated data based on a benchmark function in machine learning studies,
given in Friedman (1991):

Function 1: f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5,

where xi ∼ Uniform(0, 1); i = 1, 2, . . . , 5. The response was then generated from the normal
distribution; i.e., yi ∼ N(f(xi), σ

2) with σ ∈ {1, 2, 4}.
We computed the MSPE and the bias on the test data as comparison metrics. To compute MSPE,

at each replication, we randomly generated a training data set of size n and a test data set of size nt.
We fit the training data by each method and used the fitted model to obtain predicted response of the
test data ŷi. The MSPE on the test data was computed as

MSPE =
1

nt

nt∑
i=1

(yi − ŷi)2.

We replicated this process 1000 times and reported the mean and the standard deviation of these
1000 MSPEs.

To compute the bias, we randomly generated the test data set of size nt and held it fixed. At each
replication k, we generated a training data set of size n. We obtained the predicted response on the
test data; i.e., ŷk = (ŷ1, . . . , ŷnt)k by each method. Then we replicated the process 1000 times and
averaged the 1000 prediction vectors ŷk’s to obtain the averaged predictions ỹ = (ỹ1, . . . , ỹnt

). The
squared bias was obtained as

bias2 =
1

nt

nt∑
i=1

(
ỹi − f(xi)

)2
.

Table 1 provides a summary of the simulation results. The comparison was conducted across the
methods including uncorrected (Un), default (De), quadratic (Qu), cubic (Cu) and spline smooth-
ing(Sp), Breiman’s boosted forest (Bf) with additional k iterations (Bf (k)), and conditional bias
(Cond). At lower noise levels, i.e., σ = 1 or 2, when the noise variance did not dominate the MSPE,
the bias correction methods were effective in reducing the bias with boosted forest achieved the
smallest MSPE. The change in MSPE and bias showed the reduction in MSPE was mainly due to
the reduction in bias. However, at a high noise level, i.e., σ = 4, the noise variance σ2 = 16 domi-
nated the MSPE (21.90 for uncorrected). Though the bias correction methods could still significantly
reduce the bias, they also significantly increased the variance, leading to an overall negligible im-
provement in MSPE. This demonstrated the debiasing methods were not effective for very noisy
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Table 1: Comparison results for Function 1 with training data size n = 200 or 2000 , test data size
nt = 2000 and number of replications K = 1000. This summary includes the average mean square
prediction error (MSPE), the standard deviation of 1000 MSPEs (SD), and the squared bias (bias2).
The minimum MSPE is in boldface.

Un De Qu Cu Sp Bf Bf(1) Bf(2) Bf(3) Cond

σ = 1 MSPE 6.44 3.92 3.79 3.81 3.83 3.39 2.95 3.13 3.13 3.92

n=200 (SD) (0.42) (0.41) (0.34) (0.34) (0.46) (0.29) (0.23) (0.26) (0.33) (0.34)

bias2 4.76 1.44 1.43 1.42 1.43 1.46 1.46 0.74 0.53 2.01

σ = 2 MSPE 9.42 7.11 7.15 7.19 7.20 6.78 6.78 6.87 7.71 7.20

n=200 (SD) (0.71) (0.5) (0.51) (0.51) (0.57) (0.46) (0.46) (0.44) (0.54) (0.52)

bias2 4.36 1.53 1.52 1.53 1.52 1.38 1.39 0.77 0.57 1.96

σ = 4 MSPE 21.90 20.58 20.67 20.82 20.81 20.85 20.85 22.94 26.45 20.58

n=200 (SD) (1.03) (0.91) (0.93) (0.98) (1.09) (0.90) (0.90) (1.14) (1.63) (0.90)

bias2 4.39 1.75 1.73 1.79 1.75 1.22 1.22 0.64 0.45 1.90

σ = 1 MSPE 3.22 2.27 2.28 2.28 2.27 1.78 1.78 1.60 1.63 2.01

n=2000 (SD) (0.23) (0.19) (0.18) (0.18) (0.18) (0.13) (0.13) (0.12) (0.11) (0.16)

bias2 1.80 0.88 0.87 0.88 0.88 0.35 0.35 0.12 0.05 0.64

data. Finally, we observed the increased training sample size (n = 2000 at σ = 1) led to a smaller
bias and MSPE for each method.

3.2 Study II

The second simulation study focused on one more benchmark function (Function 2) in machine
learning (Friedman, 1991) and three other regression functions of our choice (Function 3 to 5). We
choose one linear, one polynomial and one non-linear function to cover a wide variety of functions.

Function 2: f(x) =0.1 exp(4x1) + 4/[1 + exp(−20x2 + 10)] + 3x2 + 2x4 + x5 + 0

10∑
i=6

xi,

Function 3: f(x) =10(0.878x1 + 0.642x2 + 0.766x3 + 0.666x4 + 0.933x5) + 0

10∑
i=6

xi,

Function 4: f(x) =10x1 + 0.5x22 + 15x2 − 25
√
x3 + 0.05x4 + 0x5,

Function 5: f(x) =10 cos(πx1x3) + 10x23 + 10(x1 + x4).

The data were generated with the same generating process described in simulation study I with
σ = 1. The coefficients in Function 3 were generated independently from uniform(0.5, 1). Note
in Functions 2, 3 and 4, we included both signal variables and noise variables with 0 coefficients.
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Table 2 summarizes the results. The results showed all the bias correction methods outperformed
the uncorrected random forest with the best result produced by boosted forest at no iteration for
Function 2 and at 2 iterations for the other functions. The results also confirmed the reduction in
MSPE was mainly achieved through reduction in bias.

Our simulation results with multiple other functions also identified boosted forest as a general
winner.

Table 2: Comparison results for Function 2 to 5 with training data size n = 200, test data size
nt = 2000, and the number of replications K = 1000. This summary includes the average mean
square prediction error (MSPE), the standard deviation of 1000 MSPEs (SD), and the squared bias
(bias2). The minimum MSPE is in boldface.

Function Un De Qu Cu Sp Bf Bf(1) Bf(2) Bf(3) Cond

MSPE 2.01 1.50 1.49 1.50 1.52 1.41 1.41 1.47 1.65 1.49

2 (SD) (0.21) (0.12) (0.12) (0.15) (0.12) (0.12) (0.12) (0.11) (0.14) (0.13)

bias2 0.79 0.15 0.14 0.13 0.14 0.11 0.11 0.02 0.01 0.21

MSPE 8.68 4.12 4.15 4.18 4.19 3.49 3.49 2.40 2.46 5.04

3 (SD) (0.78) (0.58) (0.59) (0.59) (0.61) (0.40) (0.41) (0.21) (0.17) (0.61)

bias2 6.50 0.78 0.76 0.74 0.75 1.34 1.34 0.18 0.06 2.56

MSPE 8.83 4.15 4.12 4.14 4.17 3.06 3.07 2.59 2.96 3.76

4 (SD) (1.18) (0.67) (0.67) (0.68) (0.73) (0.46) (0.46) (0.27) (0.29) (0.65)

bias2 7.51 1.30 1.25 1.22 1.23 1.01 1.00 0.22 0.21 1.80

MSE 2.79 2.20 2.20 2.15 2.12 1.68 1.68 1.61 1.80 1.67

5 (SD) (0.18) (0.19) (0.19) (0.18) (0.19) (0.10) (0.10) (0.07) (0.08) (0.11)

bias2 1.45 0.77 0.76 0.67 0.67 0.29 0.30 0.08 0.04 0.37

4 Data Application

We applied the bias-correction methods to the benchmark data sets in machine learning studies
available at the UCI Machine Learning Repository. Information about these data sets is available in
Table 3.

At each replication, we randomly selected 1/3 of the data as test data, and computed the MSPE
on the test data by each method. The average MSPE from 1000 replications are reported in Table 4
with the standard deviation given in parentheses.

The results showed that boosted forest distinctly outperformed the other bias correction methods
except for a few noisy data sets: abalone, wine-red, wine-white and skillcraft 1 data. As an illustra-
tion, Figure 3 compared the uncorrected results to the optimal univariate smoothing method and the
optimal boosted forest method for the yacht hydrodynamics and concrete strength data set, showing
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Table 3: Data set summary

Number Data set No. of Observations No. of Predictors

1 Auto MPG 398 7

2 Concrete Compressive Strength 1030 8

3 Abalone 4177 8

4 Winequality-red 1599 12

5 Winequality-white 4898 12

6 Servo 167 5

7 Yacht Hydrodynamics 308 6

8 Forest Fires 517 12

9 Skillcraft1 3395 18

10 Boston 506 13

11 Computer Hardware 209 7

12 Energy Efficiency(Heating) 768 8

13 Energy Efficiency(Cooling) 768 8

an obvious advantage of boosted forest. We found that with iterative boosted forest, typically two
iterations were sufficient. This finding was consistent with the results in the simulation study.

In Section 2.2.2, we suggest an easy-to-use rule to choose the number of iterations for boosted
forest: stop iterations when the average MSPE starts to increase. Will this rule lead to too early
stopping? To answer this question, we tracked the average MSPE for up to 6 iterations for all
the data sets used in this paper. The universal U shaped curves of test error versus the number of
iterations as shown in Figure 5 indicate our rule does not risk insufficient number of iterations in
general.
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Figure 3: Comparison of the uncorrected results to the best performance of univariate smoothing
and boost forest for the yacht hydrodynamics and concrete strength data set.
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Figure 4: Comparison of the uncorrected results to the best performance of univariate smoothing
and boost forest for the abalone data set.

We found bias correction was not effective for very noisy data including the abalone, wine and
skillcraft1 data. Checking the correlations between the response and the feature variables in these
data sets revealed weak correlations for all features. This implied it was challenging to obtain
reliable predictions using the given features for any method. Figure 4 demonstrates the difficulty of
bias corrections with the noisy abalone data set.

Both our simulation and real data results demonstrated boosted forest outperformed univariate
smoothing in general. We conjecture the following factors contribute to the advantage of boosted
forest:

1. Univariate smoothing only uses the response variable without explicitly using the covariates
information. When the bias varies across different regions of the covariates, it is beneficial to also
incorporate the covariates to estimate the bias as boosted forest does.

2. It is more stable to use a random forest to estimate the bias compared to using a univariate
regression function.

3. Boosted forest can further reduce the bias with more iteration cycles when the need arises.
Breiman (2001a) has heuristically shown that under the assumption that the correlation between the
true function and its estimator is bigger than 0.5(1 + ε) for ε > 0, the bias after k iterations will
decrease to zero as k →∞.
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each curve indicates the test error for uncorrected random forest. Test errors for some data sets are
rescaled for visual comparison.



Debias Random Forest Regression Predictors 129

Ta
bl

e
4:

C
om

pa
ri

so
n

re
su

lts
on

re
al

da
ta

se
ts

.T
hi

s
su

m
m

ar
y

in
cl

ud
es

th
e

av
er

ag
e

m
ea

n
sq

ua
re

pr
ed

ic
tio

n
er

ro
r(

M
SP

E
)a

nd
th

e
st

an
da

rd
de

vi
at

io
n

of
10

00
M

SP
E

s
(S

D
).

T
he

m
in

in
um

M
SP

E
is

in
bo

ld
fa

ce
.T

he
sy

m
bo

l‘
-’

in
di

ca
te

s
no

fu
rt

he
ri

te
ra

tio
n

is
ne

ed
ed

.

U
n

D
e

Q
u

C
u

Sp
B

f
B

f(
1)

B
f(

2)
B

f(
3)

C
on

d

A
ut

o
M

SP
E

8.
10

8.
02

8.
00

8.
02

8.
27

7.
41

7.
41

9.
65

7.
65

(S
D

)
(1

.6
2)

(1
.5

9)
(1

.6
1)

(1
.6

2)
(1

.8
3)

(1
.4

6)
(1

.5
9)

(1
.9

3)
(1

.4
7)

C
on

cr
et

e
M

SP
E

33
.1

6
27

.7
4

27
.8

27
.3

7
27

.5
3

19
.5

2
22

.1
9

31
.8

1
23

.2
2

(S
D

)
(3

.8
0)

(3
.5

5)
(3

.5
7)

(3
.5

9)
(3

.6
1)

(3
.1

6)
(3

.5
2)

(4
.7

8)
(3

.1
9)

A
ba

lo
ne

M
SP

E
4.

61
4.

60
4.

60
4.

60
4.

61
4.

85
5.

33
6.

01
4.

67

(S
D

)
(0

.2
3)

(0
.2

3)
(0

.2
3)

(0
.2

3)
(0

.2
4)

(0
.2

3)
(0

.2
5)

(0
.2

7)
(0

.2
3)

W
in

e-
R

ed
M

SP
E

0.
35

0.
35

0.
33

0.
33

0.
35

0.
35

0.
41

0.
54

0.
34

(S
D

)
(0

.0
2)

(0
.0

2)
(0

.0
2)

(0
.0

2)
(0

.0
2)

(0
.0

2)
(0

.0
3)

(0
.0

3)
(0

.0
2)

W
in

e-
W

hi
te

M
SP

E
0.

39
0.

38
0.

38
0.

38
0.

38
0.

37
0.

43
0.

57
0.

37

(S
D

)
(0

.0
2)

(0
.0

2)
(0

.0
2)

(0
.0

2)
(0

.0
2)

(0
.0

2)
(0

.0
2)

(0
.0

2)
(0

.0
2)

Se
rv

o
M

SP
E

0.
75

0.
54

0.
45

0.
44

0.
67

0.
44

0.
35

0.
34

0.
35

0.
52

(S
D

)
(0

.2
8)

(0
.2

0)
(0

.2
5)

(0
.2

3)
(0

.6
5)

(0
.2

2)
(0

.2
1)

(0
.2

0)
(0

.2
0)

(0
.1

9)

Y
ac

ht
M

SP
E

12
.8

9
5.

75
5.

36
4.

52
4.

08
1.

69
1.

55
2.

19
3.

46

(S
D

)
(4

.6
5)

(1
.5

8)
(1

.4
5)

(1
.6

3)
(1

.6
2)

(0
.9

9)
(0

.6
9)

(0
.8

1)
(2

.2
4)

Fi
re

s
M

SP
E

44
26

41
89

42
15

42
57

46
53

41
47

55
02

41
51

(S
D

)
(3

49
9)

(3
65

8)
(3

63
8)

(3
61

6)
(3

40
4)

(3
51

7)
(3

15
3)

34
53

Sk
ill

s
M

SP
E

0.
94

0.
94

0.
94

0.
94

0.
94

0.
94

1.
05

1.
10

1.
11

(S
D

)
(0

.0
4)

(0
.0

4)
(0

.0
4)

(0
.0

4)
(0

.0
4)

(0
.0

4)
(0

.0
4)

(0
.0

4)
(0

.0
3)

B
os

to
n

M
SP

E
11

.8
1

11
.1

2
11

.0
5

11
.0

9
11

.3
8

9.
75

10
.5

8
12

.5
7

16
.2

6
9.

99

(S
D

)
(3

.5
7)

(3
.5

1)
(3

.5
6)

(3
.5

8)
(3

.6
7)

(2
.7

9)
(3

.1
8)

(4
.2

2)
(6

.2
0)

(3
.0

9)

H
ar

dw
ar

e
M

SP
E

33
79

26
92

39
88

18
73

5
19

99
2

17
40

20
27

24
06

(S
D

)
(3

53
1)

(3
05

4)
(5

69
5)

(9
08

5)
(1

28
67

)
(2

46
3)

(2
26

1)
(3

11
2)

H
ea

tin
g

M
SP

E
1.

22
1.

22
1.

20
1.

10
0.

67
0.

27
0.

22
0.

24
0.

31
0.

68

(S
D

)
(0

.3
0)

(0
.3

0)
(0

.2
9)

(0
.2

9)
(0

.2
5)

(0
.1

0)
(0

.0
9)

(0
.1

0)
(0

.1
8)

(0
.1

9)

C
oo

lin
g

M
SP

E
3.

48
3.

46
3.

46
3.

42
3.

78
2.

51
2.

00
1.

65
1.

46
3.

14

(S
D

)
(0

.3
6)

(0
.3

6)
(0

.3
6)

(0
.3

6)
(0

.6
3)

(0
.3

4)
(0

.3
6)

(0
.3

6)
(0

.3
7)

(0
.3

4)



130 Chen et al.

5 Conclusions

The research on debiasing random forest predictors has not been very active. The purpose of this
paper is to aid users in properly selecting and implementing a random forest bias correction method
when the need arises. To this end, we conducted a comprehensive comparison of the bias-correction
methods that were identified as winners in previous studies. These methods essentially fall into
two categories: univariate smoothing and boosted forest. Univariate smoothing computes the cor-
rected prediction directly by fitting a linear or a more flexible function between the observed and
predicted response. Boosted forest uses a random forest to estimate the bias first and then subtracts
the estimated bias from the predictor to form the corrected predictor. Though some previous studies
showed these two types of methods had comparable performance, we conjectured boosted forest
would perform better due to the factors we listed in Section 4. Our empirical studies produced re-
sults consistent with our conjecture. Being able to identify a general winner is valuable for practical
purposes.

With boosted forest as the identified winner, we further explored its performance with iterations
as this method was not widely studied before. We suggest a simple stopping rule to determine the
optimal number of iterations. Our numerical studies showed that this easy-to-use rule did not lead to
an insufficient number of iterations. Except for one data set, our studies showed two iterations were
sufficient in general.

As a user guide we also suggest using visualizations to determine if bias correction is needed.
A plot of the OOB predictions or the predicted test data versus the observed response with the 45o

reference line serves well to indicate whether serious bias exists. Plotting the bias-corrected response
versus the observed response also helps examine whether bias correction is effective.
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