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Adherence Patterns”

A Performance Measures in Simulations

This section contains the statistical properties used to evaluate each effect estimator as part of this simulation.
These statistical properties have been calculated for each estimator. Each property includes a brief description as
well as the formula for the estimate and the standard error for the estimate (if applicable).

For this section let ̂𝜃𝑖 denote the estimated treatment effect for iteration 𝑖 of the simulation, where 𝑖 ∈ 1, ..., 𝑛𝑠𝑖𝑚.
The true treatment effect is denoted 𝜃, and the average of the estimated treatment effect across all iterations is ̄𝜃.
Additionally, let 𝑝𝑖 denote the p-value associated with the coefficient for the treatment effect at iteration 𝑖, and

̂𝜃ℎ𝑖𝑔ℎ,𝑖, ̂𝜃𝑙𝑜𝑤,𝑖 denote the upper and lower 95% confidence intervals for the estimated treatment effect for iteration
𝑖. Finally, let V̂ar( ̂𝜃𝑖) be the estimated variance associated with the effect estimate ̂𝜃𝑖. In these definitions we also
use I to denote the indicator function. The indicator function returns a value of 1 if the input condition is true,
and 0 otherwise.

Convergence: this denotes what proportion of iterations of the simulation yielded valid treatment effect estimates.
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Bias: quantifies how far each treatment effect estimates is from the true treatment effect.
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Coverage Probability: quantifies what proportion of confidence intervals include the true treatment effect. If an
estimate is unbiased, the coverage probability should be equal to the confidence level for the calculated intervals.
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Bias-Adjusted Coverage Probability: quantifies what proportion of confidence intervals include the average
estimated treatment effect. The coverage probability should be equal to the confidence level for the calculated
intervals, regardless of whether the estimator is unbiased.
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Empirical Standard Error (EmpSE): quantifies the standard error between the treatment effect estimates and
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the average estimated treatment effect across iterations.
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Average Model Standard Error (ModSE): averages the standard error estimated for each treatment effect
estimate.
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Mean Squared Error (MSE): quantifies the bias and variance of a given treatment effect simultaneously.
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Power or Type I Error (Power): quantifies what proportion of iterations yielded a statistically significant
treatment effect estimate for a given significance level 𝛼.
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Confidence Interval Length: calculates the average confidence interval length for an estimator across all itera-
tions of the simulation.
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B Cumulative survival type estimates

All cumulative survival type estimates calculated the log(OR) estimate of the treatment effect as:

log (1 − 𝑆1(𝐾)
1 − 𝑆0(𝐾)) .

Where 𝑆𝑧(𝐾) is the cumulative survival among arm 𝑧 at time point 𝐾, which is defined as:

𝑆𝑧(𝐾) =
𝐾

∏
𝑡=0

𝑛𝑡𝑧 − ∑𝑛𝑡𝑧
𝑖=1 𝑦𝑡,𝑖

𝑛𝑡𝑧
.
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C Simulation Settings

Appendix Table C.1: Table of parameters used in the simulations. Settings that varied two parameters explored different combinations of the parameters
simultaneously. The parameters in this table correspond to the data generation mechanism (DGM) as defined in equations (2.1)-(2.5): 𝛽 parameters are
from equations (2.1)-(2.2), 𝛼 parameters are from equations (2.3)-(2.4), 𝜃 parameters are from equation (2.5).

Section Setting Parameters Varied Range of Parameter Values Considered
Aim 1: Structure
of DGM

Diagram 1 (i) Vary 𝜃2 𝜃2 ∈ { -1.3, -1, -0.7, -0.3, 0, 0.3, 0.7, 1, 1.3}

Diagram 1 (ii) Fix: 𝛽12 = 𝛽13 = 𝛽24 = 𝛽25 = 𝛽26 = 0,
then vary 𝜃2 𝜃2 ∈ { -1.3, -1, -0.7, -0.3, 0, 0.3, 0.7, 1, 1.3}

Diagram 2 (i) Fix: 𝛼41 = 𝛼40 = 0,
then vary 𝜃2 𝜃2 ∈ { -1.3, -1, -0.7, -0.3, 0, 0.3, 0.7, 1, 1.3}

Diagram 2 (ii) Fix: 𝛼41 = 𝛼40 = 0,
𝛽12 = 𝛽13 = 𝛽24 = 𝛽25 = 𝛽26 = 0,
then vary 𝜃2 𝜃2 ∈ { -1.3, -1, -0.7, -0.3, 0, 0.3, 0.7, 1, 1.3}

Diagram 3 (i) Fix: 𝛼41 = 𝛼40 = 0,
𝛽1−1 = 𝛽2−1 = 0,
then vary 𝜃2 𝜃2 ∈ { -1.3, -1, -0.7, -0.3, 0, 0.3, 0.7, 1, 1.3}

Diagram 3 (ii) Fix: 𝛼41 = 𝛼40 = 0,
𝛽1−1 = 𝛽2−1 = 0,
𝛽12 = 𝛽13 = 𝛽24 = 𝛽25 = 𝛽26 = 0,
then vary 𝜃2 𝜃2 ∈ { -1.3, -1, -0.7, -0.3, 0, 0.3, 0.7, 1, 1.3, 1.5}

Diagram 4 (i) Fix: 𝛼41 = 𝛼40 = 0,
𝛽1−1 = 𝛽2−1 = 0, 𝜃1 = 0,
then vary 𝜃2 𝜃2 ∈ { -1.3, -1, -0.7, -0.3, 0, 0.3, 0.7, 1, 1.3}

Diagram 4 (ii) Fix: 𝛼41 = 𝛼40 = 0,
𝛽1−1 = 𝛽2−1 = 0, 𝜃1 = 0,
𝛽12 = 𝛽13 = 𝛽24 = 𝛽25 = 𝛽26 = 0,
then vary 𝜃2 𝜃2 ∈ { -1.3, -1, -0.7, -0.3, 0, 0.3, 0.7, 1, 1.3, 1.5}

Aim 2:
Non-Adherence

Non-differential Vary 𝛼01, 𝛼00 to fix proportion of protocol deviation and event rate
via grid search:
Adherence rates in both arms
∈ {0%, 20%, 40%, 60%, 80%}

Differential Vary 𝛼01, 𝛼00 For each adherence rates in treated arm
∈ {0%, 20%, 40%, 60%, 80%},
adherence rates in control arm
∈ {0%, 20%, 40%, 60%, 80%}

Measurement Schedule, For each 𝑚 𝑚 ∈ { 1, 6, 12, 18, 24 },

3



Section Setting Parameters Varied Range of Parameter Values Considered
different combinations of 𝐴 and 𝐿 Vary 𝛼01 and 𝛼00 adherence rates in both arms

∈ {0%, 20%, 40%, 60%, 80%}
Additional
Simulations

Varying Treatment Effect and
Trial Size

For each 𝑛, 𝑛 ∈ {200, 1000, 2000}

vary 𝜃2 𝜃2 ∈ { -1.3, -1, -0.7, -0.5, -0.3, 0, 0.3, 0.5, 0.7, 1, 1.3 }
Event Rate Vary 𝜃0 𝜃0 ∈ {-19, -17.9, -17.3, -16, -16.8,-15, -14.6, -14.2,

-13.8,-13.4, -12.8, -12.3, -11.8, -11.3, -10.8 }
Effect of Time On 𝑌 Vary 𝜃5 𝜃5 ∈ { 0, 0.01, 0.02, 0.03, 0.04, 0.05,0.075, 0.1 }
Measurement Schedule, For each 𝑚,
different combinations of 𝐴 and 𝐿 Vary 𝑚 𝑚 ∈ { 1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 }
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D Simulation Results

Appendix Figure D.1: A) Bias plotted against increasing treatment effect for two naive effect estimates: intention-to-treat and naive per-protocol. B)
Five versions of per-protocol estimates (when B is measured, used during estimation). C) Two versions of per protocol estimates are presented (when B
is not measured, not used during estimation). Different lines corresponds to different data generating mechanisms. A log(OR) of 0 corresponds to a null
treatment effect. Abbreviations: ITT: intention to treat; Naive PP: Naive per-protocol; B Adj. PP: Baseline adjusted per-protocol; L Adj. PP: post-baseline
prognostic factor adjusted-per-protocol; B+L Adj. PP: baseline and post-baseline prognostic factor adjusted-per-protocol; sIPW PP: stabilized inverse
probability weighted per-protocol.
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Appendix Figure D.2: A) 95 percent coverage probability (upper panel) and mean squared error (lower panel) plotted against increasing treatment effect
for two versions of per-protocol estimates (when B is measured). B) Same estimates are presented (when B is not measured or adjusted). Different lines
corresponds to different data generating mechanisms. A log(OR) of 0 correspond to a null treatment effect. Abbreviations: B Adj. PP: Baseline adjusted
per-protocol; L Adj. PP: post-baseline prognostic factor adjusted-per-protocol; sIPW PP: stabilized inverse probability weighted per-protocol.
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Appendix Figure D.3: Bias (plot A) and average model standard error (plot B) against non-adherence rates for
each effect estimate. Non-adherence rates in both arms are the same in these simulations. We only considered
situations where treatment received 𝐴 impacts future post-baseline prognostic factors 𝐿. Abbreviations: B Adj. PP:
Baseline adjusted per-protocol; B+L Adj. PP: baseline and post-baseline prognostic factor adjusted-per-protocol;
uIPW PP: unstabilized inverse probability weighted per-protocol; sIPW PP: stabilized inverse probability weighted
per-protocol.

Appendix Figure D.4: Bias (plot A) and average model standard error (plot B) against non-adherence rates in
the control arm for each effect estimate. Non-adherence rates in both arms can be different in these simulations.
Data was generated based on Diagram (i) data generating process. B Adj. PP: Baseline adjusted per-protocol;
B+L Adj. PP: baseline and post-baseline prognostic factor adjusted-per-protocol; uIPW PP: unstabilized inverse
probability weighted per-protocol; sIPW PP: stabilized inverse probability weighted per-protocol.
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Appendix Figure D.5: Bias observed in each estimation method across 1,000 iterations of the simulation as the rate
of non-adherence varies between 10 percent and 90 percent with equal non-adherence rates in each arm. Colour
denotes the time between measurements for the sparse adherence and time-varying covariates. Both time-varying
covariates and adherence were sparse during the follow-up period and were imputed using LOCF. B Adj. PP:
Baseline adjusted per-protocol; sIPW PP: stabilized inverse probability weighted per-protocol.
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E Additional Simulation Settings and Results

Checking the validity of simulation algorithm

Varying Treatment Effect and Trial Size

Appendix Figure E.1: A) Bias plotted against treatment effect for each effect estimate where the colour corresponds
to the trial size in terms of number of participants per arm. B) Power or proportion of times the treatment effect
was found to be statistically significant plotted against the treatment effect for each effect estimate where the colour
corresponds to the trial size. Note that for both figures a log(OR) effect of treatment of 0 correspond to a null
treatment effect.

For our base scenario Diagram 1 (i), Figure E.1 A illustrates the bias observed for each estimation method as the
treatment effect varies. In this scenario, as a result to changing treatment effect, event rates varied between 5%
(associated with 𝜃2 = -1.3) and 15% (associated with 𝜃2 = 1.3), with adherence rates fixed at ∼ 25%. As expected,
stabilized IPW and baseline adjusted per-protocol estimates are approximately unbiased for all assessed treatment
effects, with some observed bias when the trial size is small (e.g., 𝑛 = 200 participants per arm). Figure E.1 B
illustrates the power observed as the treatment effect changes, with a U-shaped pattern for all effect estimates. For
the naive per-protocol estimate we see the U-shape is not centred at the null treatment effect indicating undesirable
performance.

Considering the precision of the effect estimates, the empirical standard error and model standard error results can
be seen in Figure E.2. For all effect estimates, the empirical standard error decreases as the 𝑙𝑜𝑔(𝑂𝑅) treatment
effect increases. This is likely due to strong positive treatment effects leading to increases in the event rate, allowing
greater precision when estimating. Empirical standard error also decreases as the trial size increases, for all effect
estimates. For all effect estimates presented, the empirical standard error and the model standard error align well
for all treatment effects, if the trial size is 𝑛 = 1, 000 or larger. This indicates that our models accurately estimate
the standard error of the treatment effect.
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Appendix Figure E.2: Empirical standard error and model standard error (columns) for each effect estimate (rows)
plotted against the 𝑙𝑜𝑔(𝑂𝑅) effect of treatment, for various trial sizes (colour).

A final key statistical property to assess is the performance of the confidence intervals using coverage probability.
The results for coverage probability and unbiased coverage probability as the treatment effect varies for different
trial sizes can be seen in Figure E.3. Coverage probability is the proportion of confidence intervals that include the
true treatment effect. For a traditional 95% confidence interval, the coverage probability should equal 95%. Under
or over-coverage may be attributed to bias or incorrect interval width. To remove the effect of bias, Morris et al.
(Morris et al., 2019) proposed unbiased coverage probability as a metric to assess the accuracy of the confidence
interval length and thus standard error. The ITT and naive per-protocol estimate largely suffer from under-
coverage, due to bias. The ITT effect has appropriate coverage probability for a null treatment effect (when it is
also unbiased), and both the ITT and naive per-protocol estimate have unbiased coverage probability approximately
equal to 95% for all treatment effects assessed. For the stabilized IPW and baseline adjusted per-protocol estimates
we see coverage and unbiased coverage probabilities approximately equal to 95% for all treatment effects and trial
sizes.
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Appendix Figure E.3: Coverage probability and unbiased coverage probability (columns) for each effect estimate
(rows) plotted against the 𝑙𝑜𝑔(𝑂𝑅) effect of treatment, for various trial sizes (colour).

Event Rate

Model-based estimates For this set of simulations, the event rates were varied between 0.1% and 75% among
all participants. Figure E.4 plot A illustrates the bias observed as the event rate varies. Notably, we see that the
stabilized IPW estimate as well as the baseline adjusted per-protocol estimate are unbiased for event rates between
approximately 1% and 75%. The ITT estimate and the naive per-protocol estimate are biased for all event rates.
We see that the estimates that are largely unbiased (stabilized IPW and baseline adjusted per-protocol estimate)
have greater bias for small event rates (< 1%). In this scenario, adherence rates varied between 20% and 30%. The
variability in bias between iterations and the average model standard error (see Figure E.4 plot B) also increases
with small event rates (< 1%) for all estimation methods.
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Appendix Figure E.4: Bias (plot A) and average model standard error (plot B) observed in each estimation method
across 1,000 iterations of the simulation as the event rate varies between 0.001 and 0.75.

Cumulative survival methods The cumulative survival method was also used to calculate the ITT, naive
per-protocol, and unstabilized IPW per-protocol effect estimates as the event rate varied. In Appendix E, Figure
E.5 illustrates the bias and convergence rates for the cumulative survival estimates. We see the biases observed
for the cumulative survival ITT and naive per-protocol estimates are similar to the model-based ITT and naive
per-protocol estimates at approximately 0.5 and 0.7 respectively. For the cumulative survival unstabilized IPW
per-protocol estimate we see greater bias than with the model-based stabilized IPW per-protocol estimate. For
these simple estimates, low event rates did not increase the variability of the effect estimates, but rather decreased
the proportion of iterations that converged. With the event rate below 1%, as few as 30% of iterations produced
valid effect estimates.

Appendix Figure E.5: Bias (plot A) and convergence rate (plot B) observed in each of the cumulative survival type
estimates across 1,000 iterations of the simulation as the event rate varies between 0.001 and 0.75.
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The Effect of Time on the Outcome

The impact of the impact of time on the outcome for these estimates was assessed for linear effects, with the effect
of time varying from having no impact on the outcome to having a moderate to strong impact on the outcome.
The bias (plot A) and average model standard error (plot B) for these simulations are presented in Figure E.6.
For this simulation, time was set to have no effect on the outcome when the event rate was approximately 3%.
The effect of time on the outcome was then increased until a total event rate of approximately 58% was observed,
corresponding to a 55% increase in the event rate. In this scenario, adherence rates varied between ∼ 20% and
∼ 30%. The stabilized IPW and baseline adjusted per-protocol estimates were unbiased for all effects of time
assessed. In contrast, the ITT and naive per-protocol estimates were biased for all effects of time assessed, where
time having a strong impact on the outcome led to the most biased effect estimates. When time had a strong
impact on the outcome, more events were observed, resulting in lower average model standard error for all effect
estimates.

Appendix Figure E.6: Bias (plot A) and average model standard error (plot B) against the increase in event rate
due to the effect of time on the outcome.

Sparse Follow-Up Measurements

Figure E.8 illustrates power for each estimate, for both missing data handling methods as the effect of treatment
is varied. In this scenario, we had adherence rates fixed at ∼ 25% and event rates fixed at ∼ 20%. No substantial
difference was observed in power depending on which variables were sparse during follow-up, so this plot presents the
findings for when both adherence and time-varying covariates were sparse. Complete-case (CC) analysis consistently
has less power than LOCF imputation. The difference in power between CC and LOCF analyses is most pronounced
for strong non-zero treatment effects for the ITT, stabilized IPW, and baseline adjusted per-protocol estimates.
The ITT, stabilized IPW, and baseline adjusted per-protocol estimates all achieve the desired power of 0.05 for
null treatment effects regardless of missing data method. The baseline adjusted per-protocol estimate combined
with LOCF achieves 100% power sooner than the stabilized IPW per-protocol estimate combined with LOCF
(|𝑙𝑜𝑔(𝑂𝑅)| = 0.7 compared to |𝑙𝑜𝑔(𝑂𝑅)| = 1).
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Appendix Figure E.7: Average model standard error observed in each estimation method as the measurement
schedule during the follow-up period varies from monthly measures (𝑚 = 1) to measures every 2 years (𝑚 = 24).
Columns correspond to whether the adherence (𝐴), time-varying covariates (𝐿1 and 𝐿2), or both (𝐴, 𝐿1 and 𝐿2)
were sparse during the follow-up period. Rows correspond to the 4 main estimation methods. Colour denotes
whether the analysis was based on CC or LOCF imputation. Note that in this Figure some error bars have been
truncated to due to outliers.
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Appendix Figure E.8: Power observed in each estimation method across 1,000 iterations of the simulation as the
treatment effect varied. Colour denotes whether the analysis was based on CC or LOCF imputation. Note that
no difference was observed depending on whether the adherence (𝐴), time-varying covariates (𝐿1 and 𝐿2), or both
(𝐴, 𝐿1 and 𝐿2) were sparse during the follow-up period. This Figure corresponds to when both adherence and
time-varying covariates were subject to sparse measurement during the follow-up period

Differential Non-Adherence Rates with Unmeasured Variable

Appendix Figure E.9: Bias (plot A) and average model standard error (plot B) against non-adherence rates in
the control arm for each effect estimate when treatment arm non-adherence rates can be different than that of the
control arm and the baseline prognostic factor B is unmeasured. The data was generated from the process outlined
in Diagram (i).
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F Details about the Case Study

Measurement process

The first four visits were for screening and identifying eight prognostic risk strata. A total of 3, 550 eligible
participants were randomized at the fifth visit and followed for a minimum of seven years. Visits six and seven
occurred at two weeks intervals. All subsequent visits occurred at two months intervals. More than fifty types of
forms were used for data collection, including outcome ascertainment, treatment assignment, screening, follow-up
visit, hospitalization, and event record. However, not all forms were filled in each visit, and participants could have
missed the occasional visit. Covariate and adherence values were carried forward from the most recent visit for up
to five visits (Wanis et al., 2020). Participants were censored if they missed six consecutive visits.

Adherence

Participants received four packets per day of cholestyramine or a placebo at the fifth visit (considered as the baseline
of the trial), which was increased to six packets per day after the sixth visit. Participants returned their unused
medication packets and received a new supply of medication at each visit. A static treatment regime was considered,
and all patients would be expected to continue the study medication. Since cholestyramine and placebo had no
major side-effects, the static treatment strategies assumption was reasonable. Medication adherence was measured
using counts of unused medication packets, where we defined satisfactory adherence as ≥ 80%. In other words,
taking < 80% medication at a particular visit was considered as deviating from the protocol, i.e., nonadherent at
that visit. For participants who were adherent in a particular visit, we censored them at the first visit they become
non-adherent. The overall nonadherence rate was then quantified by calculating the proportion of participants who
became nonadherent by their last observation.

Appendix Table F.1: Estimated effect of cholestyramine treatment on coronary heart disease
death or non-fatal myocardial infarction.

Method Weights Coef. (log(OR)) OR
Mean Min-Max Estimate SE Estimate 95% CI

ITT -0.16 0.13 0.85 0.66-1.09
Naïve PP -0.22 0.29 0.80 0.45-1.41
B Adj. PP -0.25 0.29 0.78 0.45-1.37
L Adj. PP 0.18 0.33 1.20 0.63-2.28
uIPW PP 1.34 1.00-172.49 -0.79 0.50 0.46 0.17-1.21
uIPW PP (5% truncated) 1.16 1.00-1.44 -0.27 0.29 0.76 0.43-1.34
sIPW PP 1.01 0.16-10.52 -0.31 0.29 0.74 0.42-1.29

OR: odds ratio; CI: confidence interval; SE: robust standard error; ITT: intention to treat;
Naive PP: naive per-protocol; B Adj. PP: baseline adjusted per-protocol; L Adj. PP:
time-varying covariates adjusted per-protocol; uIPW PP: unstabilized inverse probability
weighted per-protocol; sIPW PP: stabilized inverse probability weighted per-protocol.

Covariates

Baseline Covariates (𝐵)

The baseline covariates include baseline risk strata, age at randomization, physical activity level at work at baseline,
educational status, and race. Baseline risk strata were created using the combination of three binary prognostic
variables: i) positive or negative ECG test, ii) LDL cholesterol greater than 215 mg/dl, and iii) a multiple logistic
risk function estimated using the covariates age, number of cigarettes smoked, and diastolic blood pressure at
pre-randomization visits one and two. Baseline measurements of physical activity were categorized into five groups
based on levels of activities.
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Time-varying covariates (𝐿)

The time-varying covariates were systolic blood pressure, diastolic blood pressure, total serum cholesterol, LDL
cholesterol, HDL cholesterol, triglyceride, cigarettes smoked per day, physical activity outside of work, body mass
index (grams/sq.cm), nausea, vomiting, diarrhea, calories, protein, total fat, total carbohydrates, angina, GXT,
ischemia, total number of aspirin-cmpd tablets past week, P/S ratio, sodium, phosphorus, potassium, thyroxine,
iron, total bilirubin, direct bilirubin, alkaline phosphatase, creatinine, fasting glucose, albumin, calcium, white
blood cell count, vascular events, non-fatal/non myocardial infarction coronary events, vascular events history,
and non-fatal/non myocardial infarction coronary events history. We considered these baseline and time-varying
covariates from the previous studies (The Lipid Research Clinics Program, 1979; Lipid Research Clinics Program,
1984; Wanis et al., 2020). Time-varying measurements of physical activity were categorized into five groups based
on levels of activities, blood pressure measurements were taken using the standard sphygmomanometer, and lipid
data measurement were recorded using bloodwork. We considered flexible functions for cholesterol, LDL, HDL, and
triglyceride since these four covariates were frequently measured variables in the trial. We considered restricted
cubic splines with knots at the 5th, 35th, 65th, and 95th percentiles of the covariates as was done in previous
research (Wanis et al., 2020). In other words, since blood lipids were frequently measured variables in the trial,
our adherence or outcome models were adjusted for flexible functions of these covariates in the past six visits.

G Adjusting for Baseline Covariates in Pragmatic Trials

For RCTs, there remains much debate regarding whether baseline covariates should be adjusted in the analysis,
as baseline confounding is supposed to be handled by design (Austin et al., 2010). Some argue that adjusting for
known prognostic factors in an RCT has methodological advantages, i.e., bias reduction and increased precision
(Ciolino et al., 2019; Kahan et al., 2014). However, the CONSORT statement on RCT advises against identifying
such adjustment variables via empirical exploration (e.g., statistical significance) of the same data (Moher et al.,
2010). In the context of pragmatic trials with more flexible designs, however, the existence of confounding may be
more relevant. There are pragmatic trials where adjustment of baseline characteristics was necessary to correct for
baseline imbalances (Rossouw et al., 2002; Holme et al., 2018; Carroll et al., 2018). A recent guideline draft also
proposed adjusting for prognostic factors that meet a pre-specified threshold for imbalance and suggested to use
IPW approaches for adjustment to preserve the marginal interpretations of the estimates (Murray et al., 2019).

H Future Works

In this study, adherence was measured as a binary factor. While it is common to dichotomize adherence (Murray
and Hernán, 2016, 2018), it has been shown to introduce bias in effect estimation (Shrier et al., 2018). Additional
work could compare similar effect estimates using partial adherence and more complex patterns of adherence over
a trial (Wanis et al., 2020; Sanders, 2019).

Our work was limited to estimating OR rather than risk difference. In practice, both OR and RD are regularly
reported means to quantify a treatment effect, each with their own merits (Toh et al., 2010). In our simulation
work, calculation of the RD was difficult, requiring experimenting with various starting values during model fitting.
OR estimation did not require such considerations but suffers from known limitations (Pang et al., 2013).

In this work, we showed results associated with baseline covariate generated from beta distribution. A future
study could also consider studying the impact of choosing different distributions for the generation of the baseline
variable(s). Future studies could consider the impact of model-misspecification, and whether double robust or
flexible versions of the estimates can address the problem (Zhong et al., 2022). When the complexity of the data
generating process increases, investigation of possibly introducing collider bias while adjusting covariates could be
of future interest.

Sparse values are problematic in data analysis, but common when working with healthcare data. In pragmatic
trials where researchers aim to utilize non-intrusive forms of follow-up, existing electronic health records and
administrative databases may be the source of key follow-up information (Blaschke et al., 2012; Loudon et al.,
2015; Thorpe et al., 2009; Ford and Norrie, 2016). However, few countries have a single comprehensive data source

17



for all forms of health data, requiring follow-up information to be derived by linking data from multiple sources
leading to sparse values during follow-up (Blaschke et al., 2012; Ford and Norrie, 2016).

Future work for this active research area, would also benefit from exploring a greater range of treatment effects,
such as where both the most recent treatment received as well as the cumulative dose received are able to affect
outcomes (Young et al., 2019). Additional directions for future works include comparisons to additional estimation
techniques such as g-estimation, the parametric g-computation, and instrumental variable methods (Hernán et al.,
2013; Hernán and Robins, 2017).
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