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SUMMARY

Inverse Probability (of Adherence) Weighted per-protocol (IPW-PP) estimators are get-
ting popular in addressing medication non-adherence while analyzing pragmatic trial
data. However, their finite sample properties under different data generating mechanisms
(DGMs) have not been investigated comprehensively. In the current work, we investigated
the finite sample performances of such estimators in the context of a pragmatic random-
ized controlled trial. We compared the performances of IPW-PP estimators with commonly
used naive and baseline-adjusted per-protocol estimators, under different DGMs emulating
pragmatic trials, comparing two sustained treatment strategies, possibly with a non-null
effect. DGMs include (i) different roles of a baseline variable; whether future time-varying
prognostic factors are impacted by past adherence; and whether the baseline variable is
measured, (ii) whether adherence patterns observed in two arms are differential, and when
we have access to measurements of adherence and confounders that are recorded infre-
quently (sparsely). When baseline confounders are adjusted, we generally obtain unbiased
estimates, but if some necessary variables are not measured, the IPW-PP estimator may
still be preferable. High non-adherence patterns might negatively impact IPW-PP effect
estimators, particularly when DGMs include confounding that may be influenced by previ-
ous adherence history. We used the above estimators to analyze a case study from the Lipid
Research Clinics Coronary Primary Prevention Trial data in the presence of non-adherence.
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1 Introduction

Treatment effect estimation in pragmatic trials

Clinical trials are conducted to obtain regulatory approval for a new drug or medical device. Com-
mon features of clinical trials include restrictive eligibility criteria, delivery of treatment by clini-
cians who are experts in the area, and stringent monitoring and follow-up. The pragmatic trial, on
the other hand, aims to demonstrate the effectiveness of a treatment strategy in a broader range of pa-
tient groups under realistic clinical care scenarios (Schwartz and Lellouch, 1967; Zwarenstein et al.,
2008). These scenarios may include mimicking settings encountered in regular clinical practice:
comparing the effectiveness of a new treatment with that of an active comparator (e.g., usual care),
unblinded treatment assignment, allowing patients to deviate from the protocol (e.g., non-adherence
to the assigned medication), inclusion of heterogeneous subjects, prioritizing patient-centric out-
comes and adequate follow-up times (Gamerman et al., 2019). Particularly for diseases that require
sustained treatment strategies, pragmatic trials can inform and guide healthcare professionals, pa-
tients, and other stakeholders about the implication of taking that treatment in everyday practice.

Inadequacy of intention-to-treat analysis, and proposed alternatives

Intention-to-treat (ITT) analysis, usually done in clinical trials, compares the risk of the outcome
in two treatment groups and provides asymptotically consistent effect estimates of randomization
on participants’ outcomes (Herndn and Herndndez-Diaz, 2012). That means, ITT estimates the ef-
fect of randomized to a treatment group, irrespective of whether the subject adhered to the assigned
treatment strategies during the follow-up. But for pragmatic trials, where deviation from protocol
(e.g., partial adherence to medication under real-world clinical condition) is possible, such an esti-
mate may have less value for a patient or a caregiver deciding about treatment. They may prefer
to know the effect of the treatment strategies on the subjects who followed the protocol. As-treated
and per-protocol are two analysis strategies that are often proposed to estimate the effect of receiving
treatment in trials with incomplete adherence. In a naive as-treated analysis, person-time contributed
by a subject under a given treatment are considered whether a subject switches or stops taking a treat-
ment to calculate the as-treated effect. In a naive per-protocol analysis, subjects who deviate from
the treatment protocol they were randomized to are either censored at the time of protocol deviation,
or excluded from the analysis. Unfortunately, none of these naive analysis strategies will gener-
ally produce unbiased treatment effect estimates unless the non-adherence happens completely at
random (Herndn and Herndndez-Diaz, 2012).

Estimators of the per-protocol effect

For naive per-protocol analyses, subjects are artificially censored at the time when they first stop or
switch medication or is lost to follow-up. It is reasonable to expect that patients with poor health
outcomes would tend to switch or stop medication, and hence the resulting censoring may not be
independent. Therefore, selection bias induced by dependent censoring creating during the naive
per-protocol analysis biases the results. To correct the estimates, pre- and post-treatment prognostic
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factors, that confounds the relationship between adherence and the study outcome, need to be mea-
sured and adjusted. It has been shown that, the inverse probability of (adherence) weighted (IPW)
Kaplan-Meier and Cox partial likelihood estimators will provide asymptotically consistent estimates
of the per-protocol effect, if the model is correctly specified (Robins and Finkelstein, 2000). Adher-
ence to medication pattern may also impact some of these time-dependent confounders, and IPW
marginal structural model were subsequently proposed to reduce bias due to treatment-confounder
feedback (Herndn and Robins, 2017; Murray et al., 2021). Similarly, as-treated analyses can also
be vulnerable to post-baseline time-varying confounding that may impact future adherence, and can
be corrected via IP treatment weighting, with certain assumptions (Danaei et al., 2013). Despite
appropriate methods developed in the statistical literature, most practitioners were reluctant to apply
anything other than ITT. For example, the landmark Coronary Drug Project (CDP) highlighted the
difficulty of working with per-protocol estimates in the presence of non-adherence (Group, 1980),
discouraging practitioners over the years to work with per-protocol effect estimates. A pair of recent
papers by Murray and Herndn (Murray and Hernén, 2016, 2018) have recently reanalyzed the orig-
inal CDP data, and illustrated the benefits of using IPW estimators of the per-protocol effect. These
illustrations renewed the interest in this estimator in various subsequent applications (Lu et al., 2019;
Wanis et al., 2020; Murray et al., 2020) and methodological recommendations (Herndn and Robins,
2017; Mo et al., 2020; Murray et al., 2019).

Gap in the literature

Almost all of the previous simulation studies designed to assess the properties of the IPW (adher-
ence adjusted) estimators were designed for as-treated analyses (Young et al., 2010; Xiao et al.,
2010; Westreich et al., 2012; Young and Tchetgen Tchetgen, 2014). Young and colleagues (Young
et al., 2019) recently published a general simulation design suitable for assessing IPW per-protocol
estimators for a trial. This design allowed subjects from both groups to deviate from the protocol,
when the true underlying effect is null, but confounded at various degrees. This study primarily
focused on assessing the impact of different measurement schedules of the time-varying covariates
on the estimation of per-protocol effects (in terms of bias) based on large, simulated data (N =
200, 000). The few other simulation designs proposed for the IPW estimator of the per-protocol ef-
fect were designed for specific scenarios. For example, multiple studies were based on a simulation
design mimicking oncology trials, where only the control group subjects were allowed to switch to
the treatment group upon disease progression (Morden et al., 2011; Latimer et al., 2017, 2018). In
these simulation studies, estimates from IPW methods were found to be highly sensitive to changes
in the switching proportion compared to the other methods they considered. Such treatment switch-
ing can be considered a special case of protocol deviation if the protocol did not specify a provision
to switch treatment.

While the asymptotic properties of IPW estimator of the per-protocol has been known (Robins
and Finkelstein, 2000), Biostatisticians writing the statistical analysis plan for pragmatic trials with
practical sample size would be interested in knowing when this approach is expected to deviate from
asymptotic behaviour, and may produce sub-optimal results. To the best of our knowledge, there
hasn’t been a comprehensive study to assess the finite sample size properties of the IPW estimator
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of the per-protocol comparing various performance measures such as, bias, variability, 95% coverage
etc. Also, we could not find a study that quantified whether these IPW estimators are sensitive to
different amounts of protocol deviation in both arms (see Discussion section for further description
of gaps in the literature and novelty of the current study).

Aims

In this work, we primarily aim to assess such finite sample properties for the IPW estimator of the
per-protocol effect for a sustained but static treatment strategy over a follow-up on a survival out-
come. To achieve that, we used a comprehensive simulation study, considering different roles of
(measured or unmeasured) baseline covariates under different data generating process. As a sec-
ondary aim, we assess whether a change in the rate of non-adherence impacts this [IPW estimator’s
statistical properties. We additionally performed several confirmatory simulations when the follow-
ing parameter are varied: treatment effect size, trial size, event rate, effect of time on outcome, and
sparse follow-up measurements. Finally, we include a case study from the Lipid Research Clinics
(LRC) Coronary Primary Prevention Trial (CPPT). This trial had a sample size of 3, 550, with nearly
80% of the subjects deviated from the randomization treatment group by the end of the follow-up.
The case study assessed whether a long-term reduction of serum cholesterol in hypercholesterolemic
men, initially free of coronary heart disease (CHD), would lead to a lower incidence of CHD. This
case study demonstrates real-world applications of the estimators under consideration to account for
non-adherence.

2 Methods

2.1 Data generation mechanism

Young et al. proposed a simulation mechanism to mimic the structure of a two-armed randomized
pragmatic trial comparing two sustained treatment strategies on a survival outcome (Young et al.,
2019). In the current work, we simulated data based on our extension of that algorithm that al-
lowed setting a non-null treatment effect in the outcome event generation model (described below).
Baseline observations were generated from random draws from assumed distributions with specified
parameters, and subsequent observations were realized from specified models that depended on past
observations.

This data generating mechanism consists of monthly measurements, indexed by time as ¢ =
0.1...., /. The month { = 0 is the baseline visit, with months ¢ = 1,2,...K corresponding to
follow-up visits, ' = 60 being the end of follow-up. Participants are followed-up with via monthly
visits until the outcome event is observed or the end of the follow-up period (baseline and K visits
recorded).

Randomization group or treatment strategies Z: At the baseline visit, participants are ran-
domly assigned to receive either the newer treatment (Z = 1) or the standard of care treatment
(Z = 0). Randomization variable Z is randomly generated as a single Bernoulli trial with the mean
0.5 which indicates, on average, half the participants are randomized to the treatment arm.



Properties of Inverse Probability of Adherence Weighted Estimator . .. 137

Baseline covariate or prognostic factor B;: At the baseline visit (f = 0), a vector of baseline
covariates B3; are measured for subject :. Measurement of baseline covariates are common in clin-
ical trials and may include demographic characteristics, e.g., age, sex, race, ethnicity, and baseline
disease characteristics, e.g., symptom scores, disease duration. For our simulation, one baseline
covariate, B; for subject i, is assumed to follow a beta distribution: B; ~ beta(2,2). We also
considered situations where this baseline covariate is unmeasured.

Post-randomization covariates: For sustained treatment strategies, postbaseline prognostic
factors may affect treatment adherence, and hence time-varying variables L, ; for subject 7 (e.g.,
development of comorbid conditions, concomitant therapies, lab tests) are important to measure. At
each monthly visit ¢, participant ¢ is measured for post-randomization covariates L; ; = (L1.¢.i, L2.t.i).

Time-varying continuous covariate L . ; is generated initially from a normal distribution with
parameters that depend on an individual’s values for B;, and at time ¢ for individual 7, based on
previous adherence and covariate histories, that are affecting the current values of L, ; ; as follows

Liti= Pio+ BuiBi + BiaAi—1,i + Bigcumsum(A; o ;)

2.1)
+ Bracumavg(Ly ;_q ;) + BisLo -1 + Bigt + €

with ¢; ~ N (0, ), where cumavg() denotes the cumulative average function, and cumsum() de-
notes the cumulative sum function. A;_;; and A;_»; are the indicators for treatment received for
time ¢ — 1 and ¢ — 2 respectively for subject ¢ (A, ; is defined below in more details).

Time-varying binary covariate Lo ;; is generated from a Bernoulli distribution with mean pz»
defined as a function of previous adherence and covariate histories:

logit(pra) = Bag + P21 Bi + Bagcumavg(Ly 4 )+

. . ; 2.2)
Bo3Llat—1,i+ BaaAi_1,i + Boscumavg(A;_o ;) + Hoet.

Treatment received 4, ;: Binary indicator for treatment received (treatment vs. placebo or
standard care) for subject 7 at time ¢ is denoted by 4; ;. A ; and A, ; represent the treatment received
for i-th subject at baseline and follow-up time ¢ respectively. Participants are considered adherent in
month ¢ when treatment in that month is the same as the treatment assigned at randomization (Z).
When a subject’s treatment in month ¢ is not the same as the treatment assigned at randomization for
the first time, we label that person as non-adherent at the month (¢) due to protocol deviation. We
assumed that once a participant becomes non-adherent (e.g., deviates from protocol), they remain
non-adherent. 4, ; was generated from a Bernoulli distribution with mean p 4,; defined by arm. For
the standard of care arm:

Arm Z =0: logit(pasi) = agp + argcumavg(Ly ¢ ;) + agoLlo 1 + agoti + ageBi.  (2.3)
Similarly, for the new treatment arm:
Amm Z =1: logit(pas) = agr + apjcumavg(Ly ;i) + ag1 Loy 1 + agiti +an B (2.4)

In the above two equations, ay and vy, are the intercept parameters from two treatment arms.
These parameter values can be altered to control the cumulative proportion of protocol deviations
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by the end of the follow-up. In practical scenarios, expectation of perfect adherence may not be
realistic, and therefore, trialists often adopt the definition of ‘satisfactory adherence’ (e.g., taking
80% of the medication in a given month) (Herndn and Robins, 2017).

Outcome: We consider a survival outcome (time to an event, e.g., death), where each subject
is followed up until an event occurs or the end of 60-th month (study end). Let Y;.;; be the
indicator of the event at month ¢+1 for subject ¢, where this outcome was generated from a Bernoulli
distribution with mean py-;. In the simulation, if the outcome event is realized (e.g., when Y;; = 1),
we discontinue data generation for the subject in the following time periods. We assume no loss to
follow-up and all participants are at risk of the outcome event at the baseline visit Y, = 0.

logit(py+i) = 0y + 01 8; + 02 Ay, (2.5)

where #; determines the baseline event rate, and s is the treatment effect of interest (allows non-null
effect), while &, is the coefficient associated with the baseline confounder (measured or unmeasured,
depending on the scenario considered).

Estimators under consideration

This work considers naive estimates (ITT and per-protocol), conditional per-protocol estimates, and
IPW per protocol estimates. For simplicity, we have dropped the subscript 7 from the following
discussions.

Intention to Treat (ITT): The ITT estimate compares all patients who were randomized to the
treatment arm vs. all patients who were randomized to the control arm. To calculate model-based
ITT estimates, we implemented pooled logistic regression as follows:

logit(P(Y; = 1)) = v0 +72zZ + . (2.6)

The resulting estimated coefficient vz is the log(OR), estimating ITT effect. Pooled logistic
regression with time as a covariate is a suitable outcome model in this situation as pooled logistic
regression approximates Cox regression when the outcome of interest is rare (Green and Symons,
1983; D' Agostino et al., 1990; Ngwa et al., 2016) (we have later checked the impact on the estimates
when the assumption is not met). Including time as a covariate in pooled logistic regression allows
the effect of time on the outcome to be taken into account (D’Agostino et al., 1990; Ngwa et al.,
2016).

Naive Per-protocol (Naive PP): We have calculated a per-protocol estimate by censoring partic-
ipants at the time they become non-adherent to their randomized treatment. The naive model-based
per-protocol estimates are calculated using the following pooled logistic regression on the trial data
that has been censored based on adherence:

logit(P(Y; = 1)) =0 + va,, A + 7it. 2.7

rr

The estimated coefficient 7 4, is the log(OR), estimating naive per-protocol effect.
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Inverse Probability of (Adherence) Weighted Per-protocol (IPW PP): Inverse Probability
Weights adjust for the bias introduced by artificially censoring the data using both the post-randomization
covariates L; and Lo and the baseline covariate B. The stabilized weight (sIPW) are calculated as:

t

P(4, = 1|B.t
Wie=]] et i1 SR 2.8)
oy P(Ae=1B.t. Ly, Lay)

whereas the unstabilized weight (IPW) formula’s numerator in equation (2.8) is replaced by 1. The
numerator probabilities for stabilized weight formula are the predicted values from logistic regres-
sion of the following form:

logit(P(A¢ = 1)) = vy + 4t + vpB, (2.9)

and the denominator probabilities for both stabilized and unstabilized formulas are the predicted
values from logistic regression of the following form:

logit(P(A; = 1)) = v} + vt + VB + v} L1t + Vs Loy, (2.10)

These weights can then be used to calculate the final IPW per-protocol estimate. The artificially
censored trial data is used in the following weighted outcome model:

logit(P(Y = 1)) = 70 + YA,,0 A + it + 78B. (2.11)

Logistic regression was used for calculating the stabilized weights, separately for each trial arm.
To estimate stabilized inverse probability weighted per-protocol (sIPW PP), the outcome model
(weighted pooled logistic regression) must also include the baseline covariate B. For unstabilized
weights (uIPW PP), we should not include B in the outcome model. It is well-known that the
estimates using the stabilized weights are associated with lower variance of the effect estimates
(Cole and Herndn, 2008), and hence more popularly used. The estimated coefficient 74, is the
log(OR). When B was unmeasured, the term B was omitted from both weight and outcome model
calculations (from equations (2.9) - (2.11).

Conditional Per-protocol (Adj. PP): We have included a number of conditional per-protocol
estimators, where naive per-protocol data (created based on censoring of subjects at the time of
protocol deviation) are adjusted by following list of covariates in the pooled logistic regression: (i)
baseline adjusted-per-protocol estimate (B Adj. PP; naive PP with adjusting for B in the outcome
model), (ii) post-baseline prognostic factor adjusted-per-protocol estimate (L Adj. PP; ; naive PP
with adjusting for L in the outcome mode), and (iii) adjusted by both (B+L Adj. PP; naive PP with
adjusting for B and L in the outcome mode) in the outcome model. None of these models were
weighted. Appendix G describes rationale of adjusting for the baseline covariates in a pragmatic
trial context.

Target parameter for simulations, and estimation method: For all simulations, the treatment
effect is quantified using the logarithmic transformation of Odds Ratios (log(OR)s). The pooled
logistic regressions are giving us ORs that are approximating hazard ratios under rare event as-
sumption. Standard errors for these estimates were sandwich estimators that take into account the
clustering of multiple observations from the same individual (Cameron and Miller, 2015).
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2.2 Simulation settings considered

We considered simulations under two broad categories, as per our aim in this manuscript. For our
base scenario (Diagram 1 (i); the most complicated case), we set n = 1, 000 for each arm. Complete
set of parameters for the base case is described in the footnote of Figure 1. Appendix Table C.1
describes the set of parameters or characteristics changed to generate each simulation setting. 1, 000
iterations were considered in each simulation.

Aim 1: Assessing the impact of different structure of the data generating mechanism: The
corresponding relationships between each quantity in our data generating process are summarized in
Figure 1. Diagram 1 (i) is our base data generating mechanism, which represents the most compli-
cated scenario, where B is a baseline prognostic factor, directly affecting adherence to the protocol
A, post-baseline risk factors L and survival. In Diagram 1 (i), adherence to protocol A affects sub-
sequent post-baseline risk factors L, whereas in Diagram | (ii), there is no such effect; and this
distinction is true for all the diagrams labeled (i) vs. (ii). Diagrams 2 (i) and (ii) are similar to
Diagrams (i) and (ii) respectively, but B does not directly impact adherence to the protocol A but
affects post-baseline risk factors L, that could in turn affect adherence A. In Diagrams 3 (i) and
(i1), B is a variable that only impacts survival, whereas, B is a noise variable (has no impact on any
of the variables) in Diagrams 4 (i) and (ii). In all scenarios, we chose the parameter values such
that the cumulative proportion of protocol deviations are approximately the same in both arms (e.g.,
approximately 40% in both arms: controlled by ay and evy;), and approximately the same baseline
event rate (e.g., approximately 15% per scenario), determined by 6. Fixing these 3 parameters (via
grid search) allowed us to control for variability caused by these extraneous reasons.

Aim 2: Assessing the impact of non-adherence: We considered different non-adherent rates
(between 0% to 80%) for the diagrams when adherence affects future time-dependent (all Diagrams
with (i) setting). In our simulation, we changed non-adherence rates by the end of the follow-up by
changing the intercepts of the parameters aqy and ag;. We considered three scenarios: (a) varying
non-adherence rates when the non-adherence rates are the same in both arms, (b) allowing differen-
tial non-adherence rates in both arms, (c) considering sparse measurements (varying degree of gaps
in months between each measurement) in recording the following variables: (i) adherence measure-
ments, (ii) adherence and post-baseline prognostic factors, and (iii) post-baseline prognostic factors.
In our setting, sparse measurements for the time-varying covariates and adherence were imputed us-
ing Last Observation Carried Forward (LOCF) using the most recent prior month’s observed values.
After imputing, the estimation models were fitted.

Additional simulations to study finite sample properties: Besides these simulations that were
assessing our above 2 aims, we also have conducted a number of additional simulations based on
our base case (Diagram 1 (i)) for checking the validity of our simulation algorithm, and to assess
whether we get expected results in the scenarios when the following parameter are varied:

(1) treatment effects and trial size, (2) event rate, (3) effect of time on outcome, and (4) sparse
follow-up measurements. While most of these settings are confirmatory in nature, we are particularly
interested about the event rate setting, as the pooled logistic regressions were used under the rare
event assumption (approximating Cox regression), and we want to assess the impact on the estimates
when the event is not rare.
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2.3 Measures of performance

For each effect estimate under consideration, the following statistical properties have been calculated
and compared: bias, coverage probability, mean squared error, convergence, bias-adjusted coverage
probability, empirical standard error, average model standard error, power or type I error, and con-
fidence interval length (Morris et al., 2019). See Appendix A for definitions and formulas for these
performance measures.

3 Results

3.1 Aim 1: Different structures of data generating mechanism
Impact on bias

For the six data generating mechanisms we have considered, we reported bias for each scenario
in Appendix Figure D.l1. We also showed the impact on bias when baseline variable B is either
measured or unmeasured.

Naive estimates: The panels on the left are reporting ITT and naive per-protocol estimates that
do not take any covariates (baseline risk factors, or post-baseline prognostic factors) into considera-
tion. For ITT, the treatment effect estimate is unbiased, if there is no treatment effect (65 = 0). This
result is consistent with previously reported results (Young et al.. 2019). However, for any non-null
effect, as expected, we observe bias in the ITT estimates.
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In contrast, the bias in naive per-protocol estimate is considerably higher when B is acting as a
confounder (where B directly affects A in Diagrams 1 (i), 1 (ii)). When B is indirectly affecting A
(via L) in Diagrams 2 (i) and 2 (ii), the amount of bias is slightly lower than the previous scenarios,
but still substantial bias remains. The amount of bias is drastically reduced when B is merely acting
as a risk factor for the survival (Diagrams 3 (i) and (ii)), but the bias in the estimation persists when
we are dealing with non-null per-protocol effects. Part of this remaining bias is due to not adjusting
for artificial censoring in the naive estimation procedure, where the survival could be explained by
B. The only situations where naive per-protocol methods provide unbiased estimates is when B is
a noise variable (Diagrams 4 (i) and (ii)).

Per-protocol estimates adjusting for covariates: For Diagrams | and 2, by the back-door path
criterion, baseline prognostic factor B is inducing confounding, and unadjusted treatment effect es-
timates for the per-protocol will be confounded. Adjustment of B is necessary to produce unbiased
treatment effect estimates. Conditioning or IPW could both be used for adjusting B. We obtained
three regression estimates, adjusting for B only, L only, or B and L. Particularly when adherence
affects future time-dependent variables and the relationship between adherence and survival is con-
founded by B (Diagrams 1 (i) and 2 (i)), the bias is very high if B is not adjusted. As long as B is
adjusted, in combination with L or not, we can obtain unbiased estimates. We can also adjust via
inverse probability weighting to obtain unbiased estimates.

Per-protocol estimates when baseline prognostic factors are unmeasured: We also reported
the estimates of the per-protocol effects, but in a situation when B was not measured and can not
be adjusted. Only if B is a noise variable, adjustment of this variable is not necessary. When
adherence does not affect future time-dependent variables or B is merely a risk factor of the survival,
the unbiased effect estimates can be estimated only if the treatment effect is null. For non-null
effects in these situations, increasing bias levels are observed as the treatment effect increases. When
adherence affects future time-dependent variables and B is a confounder, unbiased estimation of the
null treatment effect is not guaranteed.

IPW approach performed as well as, or better than the regression adjustment approach (L ad-
justed) in all scenarios under consideration where B is unmeasured. Compared to conditional re-
gression approach (L Adj. PP), IPW approach is particularly helpful in reducing bias when adher-
ence affects future time-dependent variables and the relationship between adherence and survival is
confounded by unmeasured B (Diagram | (i) and 2 (i)).

Impact on coverage and mean squared error

When B is measured and adjusted (B Adj. PP and sIPW PP), we observed desirable statistical
properties, e.g., nominal coverage and low MSE (Appendix Figure D.2 A). When B is a confounder
but unmeasured, adjustment of the baseline variable is not possible. In that case, naive per-protocol
estimates provide very low coverage probability as well as high MSE. When only time-varying
prognostic factors are adjusted (L Adj. PP), for Diagrams 1 (i) and 2 (i), the coverage probabilities
are very low. When we estimate stabilized IPW (in absence of B), the estimates for the coverage
and MSE are less than ideal for the data generating process when B is a confounder (Diagrams 1
(i) and 1 (ii) for all parameters, and Diagrams 2 (i) and 2 (ii) for non-null parameters). However,
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based on Appendix Figure D.2 B, the worst-case scenarios (i.e., most extreme deviations) of these
IPW estimates compared to an ideal scenario (Appendix Figure D.2 A) are much better than those
worst-case scenarios observed in the other per-protocol estimates (e.g., L Adj. PP) in terms of MSE.
However, the IPW estimates for Diagrams 1 (i) and (ii) were associated with notable under-coverage,
and higher standard error.

3.2 Aim 2: Impact of varying non-adherence rates
Varying non-adherence rates

Appendix Figure D.3 described the situation when we change the intercepts of the equations (2.3)
and (2.4) to obtain different non-adherence rates by the end of the follow-up, but the rates of non-
adherence remain the same in both arms. We only show results from the data generating process
when adherence affects future time-dependent variables (all Diagrams with (i) setting). For most
of the per-protocol estimates (estimates conditional on B or B and L, and stabilized IPW), the
estimates are unbiased even at 60% non-adherence rate (Appendix Figure D.3 A). For unstabilized
IPW, however, bias is observed at a lower rate of non-adherence (after 40% in our context). For
all the estimators, the model SE generally increases with the increase of the non-adherence rates
(Appendix Figure D.3 B).

Differential non-adherence rates

Appendix Figure D.4 considers the situation for the data generating process when adherence affects
future time-dependent variables, but the rates of non-adherence can be different in both arms. Sim-
ilar to the previous graph, we can see that the bias level increased when the non-adherence rates in
the control arm become too high. With increased non-adherence rates in the treatment arm, bias in-
creases slightly, only noticeable at a very high rate of non-adherence in the control arm. Particularly
for unstabilized IPW estimator, the bias level increases more steeply compared to that for unstabi-
lized IPW or baseline adjusted per-protocol estimator. We also considered another set of simulations
when the baseline prognostic factor B is unmeasured. Various per protocol estimates are reported in
Appendix Figure E.9. These estimates were associated with slightly higher bias in every situation,
but the pattern remains very similar.

Varying non-adherence and varying measurement schedule

Appendix Figure D.5 illustrates the bias as the non-adherence rate varies for different numbers of
months between measurements. In this simulation, non-adherence rates were set to be equal in both
treatment arms, the effect of interest was fixed at #; = —0.7, and LOCF was implemented before
the analysis, and the data generation process follows Diagram | (i) (the base scenario). Results
presented are based on having both the receipt of treatment A and the time-varying covariates L
subject to sparse measurement.

The stabilized IPW per-protocol estimate shows bias increases as the non-adherence rates in-
crease. When non-adherence exceeds approximately 40%, we see the bias increase for a measure-
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ment schedule of every 24 months. In contrast, more frequent monthly measurement schedules do
not see this increase in bias until non-adherence rates exceed 60%. Variability of the bias increases
as non-adherence rates increase (figure not shown). This indicates the high rates of non-adherence
and infrequent measurements degrades performance faster than high rates of non-adherence on their
own. In contrast, the baseline adjusted per-protocol estimate is approximately unbiased for all
non-adherence rates, with measurements taken every 24 months yielding slightly higher bias than
monthly measurements. Sparse measurement schedules resulted in moderate and mild increases in
bias for the stabilized IPW and baseline adjusted per-protocol estimates respectively, only when ad-
herence was one of the variables subject to sparse follow-up. When only the time-varying covariates
were subject to sparse follow-up, all estimates had the same performance in terms of bias regardless
of measurement schedule for the data generating mechanism we considered.

3.3 Results from simulations to study finite sample properties

Results of these simulation scenarios based on our base case (Diagram (i)) are outlined in Appendix
E. These simulation results can be summarized into the following messages.

Treatment effects and trial size: We considered 3 different trial sizes - 200 (small), 1000
(moderate), 2000 (large) participants per treatment arm. As expected, we observed stabilized IPW
and baseline adjusted per-protocol estimators provide approximately unbiased results with moderate
to large sample sizes, but some observed bias when the trial size is small. In terms of SE, the gain
from moderate to large trial size is not much, but the small trials show high SE. resulting in much
reduced power for small trial sizes. Interestingly, the coverage remained nominal (near 95%) even
when trial size was small for baseline adjusted or IPW PP.

Event rate: For model-based estimates, the survival model is approximated by pooled logistic
regression under the rare event assumption. However, when we varied event rates between 1 —
75%, stabilized IPW and baseline adjusted per-protocol estimators provided unbiased results, with
reasonable model SE. We expected cumulative survival estimator to perform better under rare event
scenario, but surprisingly model-based estimates performed better in terms of bias. This is partly
due to the convergence was slightly lower for cumulative survival estimator.

Effect of time on outcome: When we modified the effect of time on the outcome model, result-
ing in higher event rates, the stabilized IPW and baseline adjusted per-protocol estimators were not
affected by this change, and the results were unbiased. Interestingly, naive estimators (ITT and naive
PP) were noticeably impacted by this change. Due to the increase in event rates with the increment
of the effect of time, model SEs decreased for all estimators.

Sparse follow-up measurements: As seen in the previous section, with LOCF imputation on
the unmeasured records, for non-null treatment effect scenarios, the stabilized IPW and baseline
adjusted per-protocol estimates indicate an increase in bias trend as the measurements are less fre-
quently measured over the follow-up period. We also considered complete case analysis. As ex-
pected, complete case analysis results consistently had less power compared to LOCF imputation
results for the per-protocol estimators.
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4 Case Study: Lipid Research Clinics Coronary Primary Pre-
vention Trial

Study setting

The Lipid trial was a two-armed double-blind clinical trial, supported by the National Heart, Lung,
and Blood Institute. The study aimed to test the hypothesis that long-term reduction of serum choles-
terol in hypercholesterolemic men initially free of coronary heart disease (CHD) would lead to a
lesser incidence of CHD (Lipid Research Clinics Program, 1984). The study population was 35-59
years aged asymptomatic, nondiabetic, normotensive men with primary Type II hyperlipoproteine-
mia, assigned to treatment with cholestyramine or a placebo. The study initially recruited 3, 806
participants between mid-1973 and mid-1976, a total of 3, 550 subjects were deemed eligible and
were randomized at the fifth visit and followed a minimum of seven years. Further details can be
found elsewhere (The Lipid Research Clinics Program, 1979).

Outcome, adherence and covariates

The outcome of interest was atherosclerotic CHD death or non-fatal myocardial infarction (Lipid
Research Clinics Program, 1984). The percentage of participants who experienced the event of
interest was 7.3%. Overall, 84.0% participants in the treatment arm were nonadherent by their last
observation, while it was 77.2% in the placebo arm. Many baseline and time-varying covariates
were collected in the Lipid trial. We considered five baseline and 38 time-varying covariates in the
present study as was done in previous studies (The Lipid Research Clinics Program, 1979; Lipid
Research Clinics Program, 1984; Wanis et al., 2020). The description of these covariates and the
trial can be found in Appendix F.

Results

Using the discrete-time hazards model, approximated by the pooled logistic regression, we reported
log-odds ratio (OR), robust SE, OR, and 95% CI from the estimators under consideration in Ap-
pendix Table F.1. Our adjusted per-protocol analysis using the stabilized version of the IPW PP
shows that the risk of CHD death or non-fatal myocardial infarction in the cholestyramine treatment
group was 26% less compared to placebo. Utilizing unstabilized weights (with maximum weight
172) resulted in a somewhat different HR estimate compared to those obtained via baseline risk
factor adjusted per-protocol and stabilized inverse probability of adherence weighted per-protocol
estimators. In contrast, when we truncated 5% of the weights on both extremes, the maximum
weight reduced to 1.44, and the resulting HR (24% reduction in risk) was very similar to the one
obtained using the stabilized weights.
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5 Discussion

Different data generating mechanisms This work compared various per-protocol estimators
under different data generating mechanisms including: whether baseline confounding exists, and
whether time-dependent confounding exists where a post-baseline confounder is impacted by prior
adherence. Based on our simulations, we observed that no matter whether we are using baseline ad-
justed per-protocol or stabilized IPW per-protocol estimators, we end up getting the correct answer
if all the necessary baseline confounders are measured, adjusted and model is correctly specified
and time-varying confounders are measured frequently during the follow-up period. And these find-
ings are supported by the previous literature (Robins and Finkelstein, 2000; Young et al., 2019).
In practice, however, it is challenging to guarantee measurement and adjustment of all necessary
confounders. Our simulation assessed realistic conditions where some confounders might not be
measured or adjusted (i.e., a realistic situation that has not been explored earlier). Based on the
data generating mechanisms under consideration, we observed that even the worst-case scenario
for the IPW per-protocol estimate (in terms of performance measures: bias, MSE and coverage)
is better than the conditional estimators, when unmeasured confounding exists. In other words, in
the complex realistic situations, even if the analysts do not have access to all confounders or may
not know the true data generating mechanism, IPW per-protocol is the preferable estimator for the
practitioners in most situations. Subject area experts may have some idea about a possible data gen-
erating mechanism by which the variables under consideration impact each other, variables that are
relevant for adjustment, and whether those variables are measurable. Our results highlight potential
limitations of adjusted pre-protocol estimates in terms of the finite sample properties.

Different adherence patterns In our simulation, when all baseline confounders are measured,
and adherence patterns are the same in both arms, both baseline adjusted per-protocol and IPW per-
protocol estimates obtained negligible bias as non-adherence rates increased up to 60%. However,
for even higher non-adherence rates, the degree of bias depends on the data generating mechanism.
When a baseline confounder impacts not only adherence, but also time-dependent confounders, the
degree of bias is the highest. When the baseline confounder only impacts time-dependent con-
founders, the level of bias is slightly reduced compared to the previous scenario. When the baseline
covariate is not a confounder, the level of bias is minimal. These results align with previous work
while also highlighting that different underlying data generation mechanisms greatly impact the
performance of adjusted per-protocol effect estimates.

When the adherence pattern differs between arms (i.e., another realistic situation that has not
been explored earlier), the estimates showed similar trends, but the degree of bias may decrease
if the adherence pattern in either arm is low. We have also considered a differential adherence
scenario without adjusting for a necessary confounder (e.g., when we have an unmeasured baseline
prognostic factor), and the results were slightly more biased, but the trends remained the same. In
all these settings, we have seen that the unstabilized version of the IPW estimator for high non-
adherence is associated with more bias when baseline confounder impacts not only adherence, but
also time-dependent confounders. However, when we estimated the stabilized version of the IPW
estimators, the level of bias reduced drastically. With sparse follow-up measures, even the stabilized
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IPW per-protocol estimates saw bias increase for lower non-adherence rates than with more frequent
measurement of the post-baseline variables, due to their reliance on the measurement and adjustment
of the post-baseline prognostic factors. When a trial is subject to both high rates of non-adherence
and sparse measurements during the follow-up period, and all the necessary baseline confounders are
measured, baseline adjusted per-protocol estimates were associated with the least bias. As the true
data generating process is generally unknown and guaranteeing measurement of all the necessary
confounding is rarely possible, estimating different per-protocol estimators may provide us useful
insights.

Confirmatory simulations Our confirmatory simulations used the base case where we have a
baseline confounder, and there exist post-baseline confounders that are affected by prior treatment.
Using this simulation mechanism, we have the following observations. (1) Trials with a low sample
size (e.g., n = 200 participants per arm according to our simulations) often produce unbiased ad-
justed per-protocol effect estimates with sufficient coverage, but to achieve sufficient power, larger
trial sizes are required. (2) In trials where the event rate is low (e.g., < 1% according to our sim-
ulations) adjusted per-protocol estimates are biased with high variability. Model-based adjusted
per-protocol estimates did not have any issue with convergence with low event rates, while cumula-
tive survival type estimates have lower variability and convergence. We have utilized pooled logistic
regression models to approximate survival models with the “rare disease assumption” (Murray et al.,
2021). Interestingly, in simulations with large event rates, the results from model-based estimates
were unbiased, and this illustrates that the results were not too sensitive to violation of this rare dis-
ease assumption in the settings we have considered. (3) Differing effects of time on the outcome did
not impact the IPW per-protocol estimates. (4) By comparing different measurement schedules dur-
ing the follow-up period, we have shown that the stabilized IPW and baseline adjusted per-protocol
estimates show a slight increase in bias as the frequency of measurements decreases in the follow-up
period. This observation indicates the importance of frequent measures of both adherence and time-
varying covariates to facilitate the calculation of IPW per-protocol estimates. A similar conclusion
was drawn previously for the null treatment scenario (Young et al., 2019), and our conclusion is
extended for a generalized non-null scenario. We have also compared our estimators’ performance
when there are sparse follow-up measurements, which are imputed using LOCF or analyzed as a
complete case. Our work illustrated that LOCF estimates have lower variability and bias than com-
plete case estimates as the measurement schedule becomes more infrequent. LOCF imputation also
yields greater power than complete case as the treatment effect varies. Similar conclusions were
previously drawn for as-treated analysis (Mojaverian et al., 2015), and we extended this observation
in the per-protocol analysis setting.

Novelty of the current work We extended our simulations for non-null situations compared to the
previous simulation by Young et al. (2019) focusing on bias assessment of the per-protocol effect
estimators (Young et al., 2019). The previous study generated one large cohort (with a sample size
of 200, 000) to focus on bias (Young et al., 2019). In this work, each simulated trial had 2. 000 in
most setting, allowing us to investigate variability and coverage of the effect estimates as measures
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of performance.

The current work is the a comprehensive simulation study considering many settings, and first
one to consider many data generating mechanisms (e.g., how a potential prognostic factor measured
baseline impacts other variables) and different adjustment strategies (e.g., when that baseline vari-
able is available to adjust or not) that were not considered in prior studies in understanding the finite
sample properties of the estimators under consideration.

In terms of estimation methods, previous works were comparing the performances of cumulative
survival effect estimates (Murray and Herndn, 2018; Young et al., 2019). One disadvantage of
the cumulative survival version of the per-protocol estimator is that it has no direct mechanism to
include the baseline covariate, and hence utilizing stabilized version of the weights are not possible
in a straight-forward manner. Model-based estimators are free from such limitation. Our work
primarily focuses on the performance of model-based effect estimates, although cumulative survival
effect estimates were also calculated for confirmation purposes (see Appendix B for details). Even
though estimates from pooled logistic regression is typically described as approximating estimates
from a survival analysis model when the even rate is rare, this work showed unbiased model-based
estimates resulted in scenarios with a wide range of event rates. This statement remained true when
event rates were not rare. Hence we feel comfortable that the results of the simulation are generalize
to situation when the event rate is not rare.

In previous simulations, it was reported that the IPW per-protocol estimator is sensitive to a high
proportion of control patients (more than 65%) switching to treatment group (Latimer et al., 2017),
but produce low bias when switching proportions are low (less than 40%) (Latimer et al., 2018).
The current work is the first in our knowledge to assess if similar patterns occur in a general sce-
nario, where “both treatment groups” are allowed to deviate from the protocol, and if such patterns
exist, under what condition the bias is most severe. We additionally considered the deferential non-
adherence setting which is very common in realistic settings. These settings included a situation
with high non-adherence rate (e.g., 80%) that was aligned with the non-adherence rate observed in
our case study.

Case study Using the intention to treat analysis, a 15% reduction in risk of CHD death or non-fatal
myocardial infarction was previously reported in the cholestyramine treatment group than placebo
(Lipid Research Clinics Program, 1984). This result is consistent with our ITT result. Naive per-
protocol estimate showed a 20% reduction in risk. However, one could argue that this result is
subject to artificial (i.e., dependent) censoring as the analysis required censoring the patients at the
time of medication non-adherence for the first time, without adjusting for the prognostic factors
that could be predictive of medication non-adherence. When we adjusted for the post-baseline
prognostic factors in a conditional model, the results deviated substantially. HR moved to the other
direction of the null (20% increase in risk), but the 95% confidence interval was much wider. It is
possible that there exist some time-dependent confounders that is affected by past treatment, like our
Diagrams with the (i) settings, and hence, adjusting for these post-baseline factors in a conditional
model resulted in very different estimates. Estimates obtained by baseline adjusted approaches
(baseline risk factor adjusted per-protocol and stabilized inverse probability of adherence weighted
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per-protocol) resulted in similar conclusions (22% and 26% reduction in risk).

As in any real data analysis, despite the use of many baseline and post-baseline covariates, we
can not still guarantee that no open back-door paths exist. However, the similarity of several differ-
ent estimates (from baseline risk factor adjusted per-protocol, truncated unstabilized and stabilized
inverse probability of adherence weighted per-protocol) is comforting in this case study.

Strengths A strength of this work is the number of different practical scenarios (e.g., different
data generating mechanisms, different adherence patterns) to which these effect estimates have been
applied, and consideration of different data generating mechanisms. We primarily focused on the
model-based effect estimates (as opposed to cumulative survival effect estimates). These estimators
allow the direct estimation of the variance of the treatment effect and the easier inclusion of any
potential baseline covariates. These features of the model-based approaches allowed us to report ad-
ditional statistical properties for each effect estimate including power, average model standard error,
empirical standard error, coverage probability, and unbiased coverage probability. These statistical
properties provide strong evidence of the performance of each effect estimate beyond bias. We also
assessed the finite sample properties with practical sample sizes. Even though there exist large ran-
domized pragmatic trials (e.g., Cocoros et al. (2018) had 44,786 subjects), statistical properties of
relatively moderately size pragmatic trials are of much interest.

Limitations and assumptions Similar to the previous simulation, we assume that no participants
were lost to follow-up and that once a participant became non-adherent, they remained non-adherent
for the remainder of the trial (Young et al., 2019). For events such as death, it is usually possible to
get a reliable estimate of death times from vital statistics registries. However, there might be situa-
tions when censoring may be appropriate to account for loss to follow-up. These assumptions may
limit the generalizability of our findings. Estimators under consideration assume that all important
prognostic factors are measurable, but in real-world studies it may not be guaranteed. If impor-
tant prognostic factors that affect adherence or loss to follow-up are not measured and adjusted,
the obtained effect estimates may be biased (Herndn and Robins, 2017). We did however, assess
the performances of the estimators when such a factor remains unmeasured. We also considered a
limited number of covariates and assumed correct specification of the models in the data generation
and estimation.

In our analyses, we used LOCF for imputation. Despite the popularity of the LOCF, compared
to more modern imputation approaches such as multiple imputation or mixed-effect model repeated
measure imputation, LOCF may produce biased results (Siddiqui et al., 2009; Mojaverian et al.,
2015; Moodie et al., 2008). Recent research suggested that analysts should consider multiple impu-
tation approach for per-protocol analyses in pragmatic trials in a sparse follow-up situation (when
missing completely at random is plausible) (Karim and Hossain, 2022). Particularly the multiple im-
putation approach is necessary when confounding exists and higher variability of the time-varying
factor is evident. Future research could consider the performance of these estimators under the
missing at random assumption. Some of the future works are proposed in Appendix H.
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Conclusion In the current study, we explored the relative performance of different per-protocol
effect estimators in the presence of non-adherence under different data generation mechanisms for
sustained treatment strategies. These mechanisms included different roles of a baseline variable,
and future time-varying prognostic factors potentially being impacted by past adherence. We also
compared performance when the necessary baseline variable is measured or not. In all settings, when
baseline confounders are measured and adjusted, we generally obtain unbiased estimates when IPW
per-protocol or the baseline adjusted per-protocol estimators are used. However, when some of
these variables are not measured, IPW per-protocol may still be preferable compared to the other
estimators under consideration. We also observed that high non-adherence patterns might impact
these effect estimators, particularly when the data generating process includes complex patterns
(existence of baseline or time-dependent confounding that may be impacted by previous adherence
history).
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