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SUMMARY

We often encounter missing data in longitudinal studies. When the missingness in lon-
gitudinal data is nonignorable, it is necessary to incorporate the missing data mechanism
into the observed data likelihood function for a valid statistical inference. In this article,
we propose and explore a novel semiparametric approach to estimating the regression pa-
rameters and variance components using a partially linear mixed model with nonignorable
and nonmonotone missing responses. The finite sample properties of the proposed method
are studied using Monte Carlo simulations, where our method is found to be very effective
in capturing any curvilinear pattern in the mean response. The method is also illustrated
using some actual longitudinal data obtained from a public health survey, referred to as the
Health and Retirement Study (HRS).
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1 Introduction
During the past few decades, missing data problems have been studied extensively in the literature,
with a focus on the case when data are missing at random (MAR), i.e., when the missingness depends
only on the observed values, but not on the values that are missing (Little and Rubin, 2002). By
contrast, research into nonignorable missing data or data that are not missing at random (NMAR) is
quite limited. The main problem with analyzing nonignorable missing data is that often it is difficult
to specify a parametric model for the missing data that can be incorporated into the observed data
likelihood function. Also, the likelihood inference with nonignorable missingness often requires
intensive computation involving multi-dimensional integration.
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Missing data are common in longitudinal studies because of study dropouts, mistimed measure-
ments, subjects being too sick to come to the clinic to be measured, etc. A subject’s response can
be missing at one follow-up time and then be measured at the next follow-up time, resulting in an
arbitrary and nonmonotone missingness pattern. Often missing data are nonignorable in the sense
that the missingness depends on the missing values themselves. For example, side effects of a treat-
ment may make a patient’s health worse and thereby affect the patient participation (Ibrahim et al.,
2001). For nonignorable missing data, methods developed under the MAR assumption may result
in estimation bias and incorrect inference (Zhao and Shao, 2015). Methods for analyzing nonignor-
able missing data have been studied by a number of authors in recent years. Ibrahim et al. (2001)
proposed an approximate Monte Carlo EM method for estimating parameters in generalized linear
mixed models with nonignorable missing data.

A parameteric linear mixed model may not be adequate for analyzing longitudinal data when the
response variable and associated covariates tend to have a complex nonlinear relationship (Grace
et al., 2009). In this regard, semiparametric partially linear mixed models for longitudinal data
have become increasingly popular. Recently, there has been much research into nonparametric and
semiparametric regression methods for clustered longitudinal data. For more details, we refer to
Grace et al. (2009), Wang et al. (2005), Fan and Li (2004), Carroll et al. (1997), Heckman (1986),
Ruppert and Carroll (2009), Parise et al. (2001), Coull et al. (2001a), Coull et al. (2001b), and
Opsomer et al. (2008), among others.

Also, an attention has been paid to semiparametric approaches to analyzing incomplete longitu-
dinal data with nonignorable missing responses, where the missing data model is considered para-
metric and the response model semiparametric. Robins et al. (1994, 1995) discussed semiparametric
methods for nonignorable missing responses based on weighted estimating equations for repeated
outcomes. Many researchers considered a parametric model for the missing data and a nonparamet-
ric model for the response variable (Qin et al., 2002; Chang and Kott, 2008; Kott and Chang, 2010;
Morikawa and Kim, 2016; Morikawa et al., 2017; Ai et al., 2018).

This research is motivated by a longitudinal public health survey from the Health and Retirement
Study (HRS, 2019) conducted by the Institute for Social Research at the University of Michigan. We
consider analyzing a subset of the RAND HRS data (RAND, 2019) concerning the physical health
of aged people, which includes the most recent surveys for the years 2010, 2012, 2014 and 2016.
The HRS data feature nonmonotone missingness in the response variable BMI (body mass index).
The missing values in BMI is considered nonignorable (NMAR) in the sense that the missingness
probability may depend on the missing values themselves. Also, the relationship between the re-
sponse BMI and covariate Age is considered nonlinear, as evident from an initial analysis. To model
the nonlinear relationship, we investigate a flexible semiparametric approach in the framework of
the partially linear mixed model with nonignorable and nonmonotone missing responses. To reduce
the computational burden involving high-dimensional integration, we adopt an approximate Monte
Carlo EM approach following Ibrahim et al. (2001).

The paper is organized as follows. Section 2 introduces the model and notation to describe a
partially linear mixed model for the mean response and a logistic regression model for the missing
data. Section 3 introduces the proposed MCEM method for estimating the model parameters. The
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asymptotic properties of the MCEM estimators are also discussed in Section 3. Section 4 presents
results from a simulation study, which was carried out to investigate the finite-sample properties of
the proposed MCEM estimators. Section 5 provides an application of the proposed method using the
longitudinal survey data from the Health and Retirement Study (HRS) introduced earlier. Section 6
provides conclusions of the paper with some directions for future research.

2 Model and Notation

2.1 Partially linear mixed effect model

Consider first a simple response model with a single covariate x, given by

y = m0(x) + ε, (2.1)

where the random error ε has the mean 0 and variance σ2
ε , andm0(·) is an unknown smooth function

representing the mean response of y given the covariate x. We assume that m0(·) can be approxi-
mated sufficiently well by a penalized spline (P-spline) regression function, given by

m(x,βββ,γγγ) = ctννν = β0 + β1x+ . . .+ βpx
p +

K∑
k=1

γk(x− δk)p+, (2.2)

for k = 1, . . . ,K, where c = {1, x, . . . , xp, (x−δ1)p+, . . . , (x−δK)p+}t is the truncated polynomial
basis consisting of piecewise continuous p-th degree polynomials with a fixed set of knots δ1 <

. . . < δK and νννt = (βββt, γγγt), with βββ = (β1, . . . , βp)
t and γγγ = (γ1, . . . , γK)t denoting the coefficient

vectors corresponding to the parametric and spline portions of the regression function, respectively.
Here p ≥ 1 is the degree of the spline. When p = 1, 2, or 3, the truncated power basis is called the
“linear”, “quadratic” or “cubic”, respectively. We denote

(x− δk)+ =

 (x− δk) if x > δk

0 if x ≤ δk,

for k = 1, . . . ,K. The knots δ1 < . . . < δK are typically chosen as the quantiles of the distribution
of the covariate x (Opsomer et al., 2008).

The choice of the number of knots K has been a subject of extensive research in spline regres-
sion. Too many knots may lead to overfitting the data, whereas too few knots may lead to underfitting
(Eilers and Marx, 1996). Also, there is a trade-off between the number of knots and bias-variance
of the regression estimator. A large number of knots may lead to an estimate with a small bias and
a large variance. On the other hand, a small number of knots may lead to an estimate with a large
bias and a small variance. The reduced-knot specification may offer considerable computational ad-
vantages (Harezlak et al., 2005). More knots should be put in places where there is more curvature
in the response function (Minggao and Taylor, 1996). In practice, one may consider several sets of
knots and choose the one that gives the best result. Often a spline model with a number of knots
between 5 and 10 give satisfactory results (Minggao and Taylor, 1996).
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Furthermore, the class of regression functions m(·,βββ,γγγ) is very large and can approximate most
smooth functions m0(·) with a high degree of accuracy (Opsomer et al., 2008). As is commonly
done in the context of P-spline regression, it is assumed that the lack-of-fit error m0(·)−m(·,βββ,γγγ)

is negligible relative to the estimation error m(·,βββ,γγγ)−m(·, β̂ββ, γ̂γγ) (Opsomer et al., 2008). Ruppert
(2002) provided a simulation-based evidence that this lack-of-fit error is indeed negligible in the
case of univariate semi-parametric regression.

In the next step, consider a partially linear mixed model (PLMM) for longitudinal data, given by

yij = wt
ijααα+m0(xij) + ztijui + εij , (2.3)

where subscript i represents the ith subject (i = 1, · · · ,m) and j represents observations from
a given subject. We assume that each subject is measured at a fixed number of time-points j =

1, · · · , n. Also in Eq. (2.3), wij is a vector of covaiates that are observed along with the response
yij and ααα is a vector of regression coefficients. In this sitting, the fixed effects of wij are modeled
parametrically, while the effect of xij is modeled nonparametrically. We consider approximating
model (2.3) by the P-spline model

yij = wt
ijααα+m(xij ,βββ,γγγ) + ztijui + εij , (2.4)

where

m(xij ,βββ,γγγ) = β0 + β1xij + . . .+ βpx
p
ij +

K∑
k=1

γk(xij − δk)p+ = xtijβββ + dtijγγγ,

with xij = (1, xij , . . . , x
p
ij)

t and dij = {(xij − δ1)p+, . . . , (xij − δK)p+}t.
Model (2.4) can be written in the matrix form

yi = Wiααα+ Xiβββ + Diγγγ + Ziui + εεεi, (2.5)

for i = 1, . . . ,m, where yi = (yi1, . . . , yin)t represents the response vector from the ith subject,
and Wi, Xi, Di, and Zi are corresponding design matrices with their jth (j = 1, . . . , n) rows wt

ij ,
xtij , d

t
ij , and ztij , respectively. We assume that the random cluster effects ui and random errors

εεεi = (εi1, . . . , εin)t are mutually independent and follow normal distributions, given by

ui ∼ Nq (000,Vu) and εεεi ∼ Nn
(
000, σ2

εIn
)
, (2.6)

where Nq(000,Vu) denotes the q-dimensional multivariate normal distribution with the mean vector
000 and a covariance matrix Vu, and In is an n× n identity matrix.

Model (2.5) can be rewritten as

yi = X∗
iβββ

∗ + Ziui + εεεi, (2.7)

where X∗
i = (Wt

i ,X
t
i,D

t
i)
t denotes a combined design matrix andβββ∗ = (αααt,βββt, γγγt)t is a combined

regression parameter vector. From (2.7), the marginal mean and variance of yi are obtained as

E(yi) = X∗
i β

∗ and V (yi) = Vyi = ZiVuZ
t
i + σ2

εIn.
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Under the normality of the random effects ui and random errors εεεi, the conditional distribution
of yi given ui is obtained as

yi|ui ∼ Nn(X∗
iβββ

∗ + Ziui, σ
2
εIn). (2.8)

The corresponding marginal distribution of yi is obtained as

yi ∼ Nn(X∗
iβββ

∗,ZiVuZ
t
i + σ2

εIn). (2.9)

For a complete set of longitudinal data, given the variance components Vu and σ2
ε , the regression

parameters βββ∗ may be estimated using the method of generalized least squares (GLS). The variance
components may be estimated using the method of maximum likelihood (ML) or the restricted max-
imum likelihood (REML). For incomplete longitudinal data, however, the estimation may require
maximizing an adjusted log-likelihood that incorporates a missing data model into the observed data
likelihood function, as described in the next section.

2.2 Models for missing data

The missing data model is defined as the distribution of the binary missingness indicators
ri = (ri1, . . . , rin)t, with

rij =

 1 if yij is observed,

0 if yij is missing,

for i = 1, . . . ,m and j = 1, . . . , n. The conditional distribution of ri|yi is a multinomial distribu-
tion with 2n cell probabilities. To model the missing data indicators, Diggle and Kenward (1994)
proposed a binomial model whose probability mass function is given by

f (ri|yi,φφφ) =

n∏
j=1

{p (rij = 1|φφφ)}rij {1− p (rij = 1|φφφ)}1−rij , (2.10)

where p (rij = 1|φφφ) is modelled by a logistic regression including all previous outcomes and the
current outcome. This model is defined by

logit {p (rij = 1|φφφ)} ≡ log

{
p (rij = 1|φφφ)

1− p (rij = 1|φφφ)

}
= φ0 + φ1yij +

j∑
k=2

φkyj+1−k,

for i = 1, . . . ,m and j = 1, . . . , n. Here the missing data indicators rij’s for a given subject are
assumed independent. A more general multinomial missing data model, which includes a general
correlation structure, can be constructed by identifying the joint distribution of ri = (ri1, . . . , rin)t

through a sequence of one-dimensional conditional distributions, as suggested by Ibrahim et al.
(2001), i.e.,

p (ri|yi,φφφ) = p (ri1|yi,φφφ1) p (ri2|ri1,yi,φφφ2) . . . p (rin|ri1, . . . , ri,n−1,yi,φφφn) , (2.11)
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whereφφφj is a vector of indexing parameters for the jth conditional distribution andφφφ = (φφφt1, . . . ,φφφ
t
n)t

represents the vector of all missing data parameters. As each rij is a binary random variable, we can
use a sequence of binary logistic regression models for three conditional densities in (2.11). This
modeling approach can potentially reduce the number of nuisance parameters that have to be spec-
ified for the missing data mechanism. In addition, it yields general correlation structures between
the rij’s, and allows more flexibility in the specification of the missing data model. Finally, it pro-
vides a natural way to specify the joint distribution of the missing data indicators when knowledge
about the missingness of one response affects the probability of missingness of another (Ibrahim and
Molenberghs, 2009).

3 Estimation under missing data

We extend the Monte Carlo EM (MCEM) approach of Ibrahim et al. (2001) for estimating the
parameters of the partially linear mixed effects model (2.3) with nonignorable and nonmonotone
missing responses. The MCEM approach approximates the conditional expectations involving the
E-step of the EM algorithm.

3.1 Complete data log-likelihood

Treating {(yi, ri,ui), i = 1, . . . ,m} as “complete data”, the complete data log-likelihood is ob-
tained as

`(θθθ) =

m∑
i=1

`(θθθ;yi,ui, ri) ≡
m∑
i=1

{
log f(yi|βββ∗, σ2

ε ,ui) + log f(ui|Vu) + log f(ri|φφφ,yi)
}
, (3.1)

where f
(
yi|βββ∗, σ2

ε ,ui
)

is the conditional density of yi|ui as defined in (2.8), f(ui|Vu) is the
density of the random effects ui, and f (ri|φφφ,yi) is the density of the missing data indicators ri. The
vector θθθ =

(
βββ∗, σ2

ε ,Vu,φφφ
)

represents all model parameters, where our focus is on the estimation
of the regression parameters βββ∗ and variance components (σ2

ε ,Vu), with φφφ being considered as a
vector of nuisance parameters.

3.2 E-step

The E-step of the EM algorithm consists of computing the expected value of the complete data log-
likelihood given the observed data (yobs,i, ri) and current parameter estimates θθθ(l). Assuming that
the patterns of missing data in yi are arbitrary and nonmonotone, some permutation of the indices
of yi can be written as yi = (ymis,i,yobs,i), where yobs,i denotes the observed values and ymis,i the
missing values of the response vector yi. Since both ui and ymis,i are unobserved, they are integrated
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out in the E-step. For the ith observation and at the (l + 1)st iteration, the E-step calculates

Qi(θθθ|θθθ(l)) = E
{
`(θθθ;yi,ui, ri)|yobs,i, ri, θθθ

(l)
}

=

∫ ∫ {
log f(yi|βββ∗,ui) + log f(ui|Vu) + log f(ri|yi,φφφ)

}
× f

(
ymis,i,ui|yobs,i, ri, θθθ

(l)
)
dui dymis,i

≡ I1 + I2 + I3, (3.2)

where θθθ(l) =
(
βββ∗(l), σ

2(l)
ε ,V

(l)
u ,φφφ(l)

)
, and f

(
ymis,i,ui|yobs,i, ri, θθθ

(l)
)

represents the conditional
distribution of the “missing data” (ymis,i,ui), given the observed data (yobs,i, ri). Note that Eq. (3.2)
involves integration with respect to the random effects ui, which can be found analytically. For this,
we can write the conditional density f

(
ymis,i,ui|yobs,i, ri, θθθ

(l)
)

as

f
(
ymis,i,ui|yobs,i, ri, θθθ

(l)
)

= f
(
ymis,i|yobs,i, ri, θθθ

(l)
)
f
(
ui|yi, θθθ(l)

)
,

where the conditional distribution of ui, given yi and current estimator θθθ(l), may be obtained as

ui|(yi, θθθ(l)) ∼ N
(
u
(l)
i ,ΣΣΣ

(l)
i

)
,

with

u
(l)
i = ΣΣΣ

(l)
i ZZZ

t
i

(
yi −X∗

iβββ
∗(l)
)
/σ2(l)

ε , and ΣΣΣ
(l)
i =

(
σ−2(l)
ε ZtiZi + (V(l)

u )−1
)−1

.

Then after some algebra, the term I1 in Eq. (3.2) may be obtained as

I1 = −n
2

log(σ2
ε)− 1

2σ2
ε

{
tr
(
Zt

iZiΣΣΣ
(l)
i

)
+

∫ (
yi −X∗

iβββ
∗ − Ziu

(l)
i

)t (
yi −X∗

iβββ
∗ − Ziu

(l)
i

)
× f

(
ymis,i|yobs,i, ri, θθθ

(l)
)
dymis,i

}
. (3.3)

The term I2 in (3.2) may be obtained as

I2 = −1

2
log(|Vu|)−

1

2
tr(V−1

u ΣΣΣ
(l)
i )− 1

2

∫ (
u
(l)t
i V−1

u u
(l)
i

)
f
(
ymis,i|yobs,i, ri, θθθ

(l)
)
dymis,i. (3.4)

Also, the term I3 in (3.2) leads to

I3 =

∫
log f (ri|yi,φφφ) f

(
ymis,i|yobs,i, ri, θθθ

(l)
)
dymis,i. (3.5)

Note that the terms I1–I3 in (3.2) still require integration with respect to the conditional density
f
(
ymis,i|yobs,i, ri, θθθ

(l)
)
. If the dimension of the vector of missing data ymis,i is large, it may be

difficult to perform the integration numerically. For this reason, we adopt a Monte Carlo approach
that can approximate the conditional expectations by generating random draws from the conditional
distribution of ymis,i|(yobs,i, ri, θθθ

(l)), as described in the next section.
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3.3 Monte Carlo EM algorithm

To approximate the expectations in the E-step of the EM algorithm, we draw random samples from
the conditional density f

(
ymis,i|yobs,i, ri, θθθ

(l)
)
, which can be written up to a constant of proportion-

ality as

f
(
ymis,i|yobs,i, ri, θθθ

(l)
)

= f
(
yi|βββ∗(l), σ2(l)

ε ,V(l)
u

)
f
(
ri|yi,φφφ(l)

)
∝ exp

(
−1

2

(
yi −X∗

iβββ
∗(l)
)t (

ZiV
(l)
u Zti + σ2(l)

ε In

)−1 (
yi −X∗

iβββ
∗(l)
))

× f
(
ri|yi,φφφ(l)

)
, (3.6)

where the normal density for yi and the logistic regression for ri are log-concave in the components
of yi. So the sampling from (3.6) can be done using the adaptive rejection sampling algorithm of
Gilks and Wild (1992), based on the conditional density

f
(
ymis,ih, |ymis,it, t 6= h,yobs,i, ri, θθθ

(l)
)
, (3.7)

where ymis,ih denotes the h-th component of ymis,i. We use the R function “arms” to generate
samples from the conditional density (3.6), which uses the Gibbs sampler along with the adaptive
rejection sampling algorithm.

Let (y∗
i1, . . . ,y

∗
imi

) be a random sample of sizemi drawn from the conditional distribution (3.6).
Define

y
(k)
i = (y∗

ik,yobs,i)
t
, and u

(lk)
i = ΣΣΣ

(l)
i Zti

(
y
(k)
i −X∗

iβββ
∗(l)
)
/σ2(l)

ε ,

for k = 1, . . . ,mi. Then the Monte Carlo E-step for the ith subject at the (l + 1)st EM iteration
approximates the objective function (3.2) by

Qi

(
θθθ|θθθ(l)

)
= −n

2
log(σ2

ε)− 1

2σ2
ε

{
tr
(
Zt

iZiΣΣΣ
(l)
i

)
+

1

mi

mi∑
k=1

(
y
(k)
i −X∗

iβββ
∗ − Ziu

(lk)
i

)t (
y
(k)
i −X∗

iβββ
∗ − Ziu

(lk)
i

)}

− 1

2
log(|Vu|)−

1

2
tr(V−1

u ΣΣΣ
(l)
i )− 1

2

1

mi

mi∑
k=1

(
u
(l)t
i V−1

u u
(l)
i

)
+

1

mi

mi∑
k=1

log f
(
ri|y(k)

i ,φφφ
)
. (3.8)

Here the approximate E-step takes a complete data weighted form in which ymis,i is replaced by
a set of mi values, each contributing a weight of 1/mi. By the law of large numbers, the “estima-
tor” (3.8) converges to the theoretical expectation (3.2) (Levine and Casella, 2001). The values of
mi’s may be equal, mi = m∗, for all i and also for each EM iteration. However, if the mi’s are
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chosen to be different, this may speed up the convergence in EM iterations, as discussed in Booth
and Hobert (1999).

The M-step of the EM algorithm consists of maximizing the objective function for allm subjects,
defined by

Q
(
θθθ|θθθ(l)

)
=

m∑
i=1

Qi

(
θθθ|θθθ(l)

)
.

We can use the iterative Newton-Raphson method for numerically estimating the model parameters.
In particular, for estimating the regression parameters βββ∗, the Newton-Raphson method leads to the
iterative equations

βββ∗(l+1) =

(
m∑
i=1

X∗t
i X∗

i

)−1 m∑
i=1

(
X∗t
i

1

mi

mi∑
k=1

(
y
(k)
i − Ziu

(lk)
i

))
. (3.9)

Details about the computational algorithm for estimating all model parameters are discussed in Sec-
tion 4.3.

3.4 Asymptotic variance

The asymptotic variance of the estimators θ̂θθ =
(
β̂ββ∗, σ̂2

ε , V̂u, φ̂φφ
)

may be obtained from the inverse of

the observed Fisher information matrix, as V (θ̂θθ) = [I(θ̂θθ)]−1, where the Fisher information matrix
I(θ̂θθ) may be calculated from the observed data log-likelihood following Louis (1982); see also
McCulloch et al. (2008) and McLachlan and Krishnan (2008) for details. We have

∂2`

∂θθθ∂θθθt
=

∂2

∂θθθ∂θθθt
E (log fy,u,r(y,u, r)|yobs, r)

+ E
(
S(θθθ;y,u, r)S (θθθ;y,u, r)t

∣∣yobs, r
)

− ∂

∂θθθ
E (log fy,u,r(y,u, r)|yobs, r)

∂

∂θθθ
E (log fy,u,r(y,u, r)|yobs, r)t , (3.10)

where S(θθθ;y,u, r) = ∂ log fy,u,r(y,u, r)/∂θθθ denotes the score vector for the complete data.
From (3.10) and by using the Q function in the E-step, we obtain

I(θ̂θθ) = − ∂2

∂θθθ∂θθθt
Q(θ̂θθ|θ̂θθ)− E

(
S(θ̂θθ;y,u, r)S(θ̂θθ;y,u, r)t

∣∣∣yobs, r
)

+
∂

∂θθθ
Q(θ̂θθ|θ̂θθ) ∂

∂θθθ
Q(θ̂θθ|θ̂θθ). (3.11)

By the Monte Carlo approach, the observed Fisher information (3.11) can be approximated as

I(θ̂θθ) ≈− ∂2

∂θθθ∂θθθt
Q(θ̂θθ|θ̂θθ)−

{
m∑
i=1

mi∑
k=1

1

mi
Si(θ̂θθ;bik, ri)Si(θ̂θθ;bik, ri)

t

}

+

m∑
i=1

∂

∂θθθ
Qi(θ̂θθ|θ̂θθ)

∂

∂θθθ
Qi(θ̂θθ|θ̂θθ)t, (3.12)

where θ̂θθ is the MCEM estimate of θθθ.
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4 Simulation Study

To study the empirical properties of our proposed semiparametric MCEM method (Method 1), we
ran two sets of simulations with two different sample sizes (m = 100 and 200 subjects; n = 2

observations per subject). In the first set, the estimators were studied for the case when the true
model is linear, while in the second set these were studied when the true model is nonlinear. We also
compared our proposed estimators to those obtained by the ordinary MCEM method (Method 2) of
Ibrahim et al. (2001), where the mean response function was considered linear. Each simulation run
was based on 1000 replications of data sets.

4.1 Response model for simulations

The data were generated from the semiparametric mixed model

yij = α1trtAi +m0(xij) + ui + εij , i = 1, . . . ,m, j = 1, 2, (4.1)

where the covariate trtAi is a group indicator of treatment A, which takes the value 0 for the first 50%
subjects under the control group and 1 for the remaining subjects under the treatment group. The
values of the covariate xij were generated from the normal N(1, 1). We used two different forms of
the mean response m0(x): a) m0(x) = 1 + x (linear) and b) m0(x) = 1 + x+ x2 (quadratic). The
intercept random effects ui were generated fromN(0, σ2

u) and the random errors εij were generated
from N

(
0, σ2

ε

)
, with σ2

u = σ2
ε = 1.

For the semiparametric method, we used the linear P-spline approximation with p = 1. The
number of knots K and their locations (δ1, . . . , δK) were chosen as per the recommendations of
Ruppert and Carroll (2009) and Opsomer et al. (2008). We chose K = 5, with the knots being
placed at the empirical quantiles of the x distribution that gave roughly equal number of x-values
between the knots.

In our numerical studies, we focused on estimating the variance parameters σ2
u and σ2

ε , and
the mean response at five different x-values, m0(x1), . . . ,m0(x5), with x1, . . . , x5 being chosen as
normal quantiles with probabilities 0.1, 0.3, 0.5, 0.7, 0.9, respectively. Our proposed semiparametric
approach estimates the spline regression parameters βββ∗ = (βββt, γγγt)

t that leads to an approximation
m̂(x) = xtijβ̂ββ + dtijγ̂γγ to the true mean response m0(x).

4.2 Missing data model

We considered a nonignorable missing data model that was functionally dependent on the current
and previous values of the response variable. For computational simplicity, without loss of general-
ity, we considered the outcome at the first time point always observed. The outcome at the second
time point may be missing with the missingness probability pi2 = P (ri2 = 1|φφφ) that follows a
binary logistic regression model, given by

log

(
pit

1− pit

)
= φ0 + φ1yi1 + φ2yi2 + φ3xi2 = ωωωti2φφφ, (4.2)
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where ωωωi2 = (1, yi1, yi2, xi2)t and φφφ = (φ0, φ1, φ2, φ3)t. In this setting, the joint density of the
missing data indicators is given by

p(r|y,φφφ) =

m∏
i=1

pri2i2 (1− pi2)
1−ri2 .

Note that a non-zero value of φ2 in model (4.2) would lead to missing data that are not missing
at random (NMAR). We chose φφφ = (φ0, φ1, φ2, φ3)t = (−2.5, 0.2, 0.3, 1)t, which resulted in
roughly 23% missing values in the response variable. We also considered a higher proportion (30%)
of missing data by choosing the parameter values φφφ = (φ0, φ1, φ2, φ3)t = (−3, 0.2, 0.3, 1)t.

4.3 Estimation

We estimate all regression parameters, variance components and parameters of the missing data
model using the Monte Carlo EM (MCEM) algorithm, as described below.

4.3.1 The MCEM algorithm

1. Set l = 0. Choose initial values βββ∗(l) = (α
(l)
1 ,βββ(l)t, γγγ(l)t)t, σ

2(l)
u , σ

2(l)
ε and φφφ(l).

2. Approximate the nonlinear true mean response m(x) by the linear spline

m̂(l)(x) = β̂
(l)
0 + β̂

(l)
1 x+

5∑
k=1

γ̂
(l)
k (x− δk)+.

3. Using the Gibbs sampling algorithm described earlier in Section 3.3, generate random draws
y∗
i1, . . . ,y

∗
imi

from the conditional distribution (3.6). Define y
(k)
i = (y∗

ik,yobs,i)
t, for k =

1, . . . ,mi. Use these y
(k)
i to find the MCEM estimates. Specifically,

(a) Compute βββ∗(l+1) from

βββ∗(l+1) =

(
m∑
i=1

X∗t
i X∗

i

)−1 m∑
i=1

(
X∗t
i

1

mi

mi∑
k=1

(
y
(k)
i − Ziu

(lk)
i

))
.

(b) Compute σ2(l+1)
u from

σ2(l+1)
u =

1

m

m∑
i=1

(
1

mi

mi∑
k=1

u
(lk)t
i u

(lk)
i + ΣΣΣ

(l)
i

)
.

(c) Compute σ2(l+1)
ε from

σ2(l+1)
ε =

1

mn

m∑
i=1

{
1

mi

mi∑
k=1

(
y
(k)
i −X∗

iβββ
∗(l+1) − Ziu

(lk)
i

)t
×
(
y
(k)
i −X∗

iβββ
∗(l+1) − Ziu

(lk)
i

)
+ nΣΣΣ

(l)
i

}
·
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(d) Compute φφφ(l+1) using a Newton-Raphson iterative method, as described in (4.3).

4. Set l = l + 1 and continue Steps 2–3.

5. If a convergence is achieved, then declare the current estimates to be the semiparametric
MCEM estimates, θ̂θθ = (β̂ββ

∗
, σ̂2
u, σ̂

2
ε , φ̂φφ)t, otherwise return to Step 2.

To compute the asymptotic variance of θ̂θθ, we evaluate the observed Fisher information (3.12) at the
MCEM estimates θ̂θθ = (β̂ββ

∗
, σ̂2
u, σ̂

2
ε , φ̂φφ)t. Details are given in the Appendix. In our experience, the

above algorithm is not very sensitive to the choice of initial values. We found the initial estimates
by treating that the data were missing at random (MAR). In most cases, we obtained convergence
in the MCEM estimation in fewer than 25 iterations when mi = 2000 samples were used for the
Monte Carlo approximation.

4.3.2 Estimation of missing data model parameters

To estimate the parameters φφφ, we solve the score equation

S(φφφ) =

m∑
i=1

1

mi

mi∑
k=1

ωωω
(k)
i2

(
ri2 − p(k)i2

)
= 0.

An approximate Fisher information is given by

I (φφφ) =

m∑
i=1

1

mi

mi∑
k=1

ωωω
(k)
i2 p

(k)
i2

(
1− p(k)i2

)
ωωω
t(k)
i2 ,

where

ωωω
(k)
i2 =

(
1,y

(k)
i , xi2

)t
= (1, yobs,i1, y

∗
ik, xi2)

t
,

and

p
(k)
i2 =

eωωω
(k)
i2 φφφ

1 + eωωω
(k)
i2 φφφ

=
eφ0+φ1yobs,i1+φ2y

∗
ik+φ3xi2

1 + eφ0+φ1yobs,i1+φ2y∗ik+φ3xi2
.

We use the Newton-Raphson iterative method to estimate the missing data model parameters φφφ,
given by

φφφ(l+1) = φφφ(l) + (I (φφφ))
−1
∣∣∣
φφφ=φφφ(l)

(S(φφφ))|φφφ=φφφ(l) , (4.3)

for l = 0, 1, 2, ..., where (l) indicates the lth iteration.
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4.4 Results

Tables 1 and 2 present simulated biases and mean squared errors (MSEs) of the estimators of the
regression parameter α1, mean response m0(x) and variance components (σ2

u, σ
2
ε). Table 1 shows

the empirical results for the case when m0(x) is linear: m0(x) = 1 + x, and Table 2 repeats those
for the case when m0(x) is quadratic: m0(x) = 1 + x+ x2.

It is clear from Table 1 that whenm0(x) is linear, both Methods 1 and 2 provide roughly unbiased
estimates of the mean response and variance components. As expected, the biases and mean squared
errors of the estimators tend to decrease as the sample size increases. When comparing the two
methods, our proposed semiparametric method (Method 1) produces slightly larger MSEs of the
estimators of m0(x) for the case when m0(x) is, in fact, linear, as shown in Table 1. However,
our focus is on the estimation of m0(x) when it is nonlinear. In the case of the quadratic m0(x),
Table 2 shows that the proposed semiparametric method (Method 1) performs much better than the
parametric MCEM method (Method 2). For example, when estimating m0(x2) with sample size
m = 200, Table 2 shows that Method 1 provides an empirical bias of 0.0107 and an MSE of 0.0557,
whereas Method 2 provides a larger bias of 0.5438 and also a much larger MSE of 0.3498.

We also ran simulations for larger proportions (more than 30%) of missing responses (not shown
here), where we observed a similar behaviour among the estimates of the regression parameters and
variance components. The Simulation code can be found using this link �

5 Application: HRS Longitudinal Data
In this section, we present an analysis of the Health and Retirement Study (HRS) data introduced
earlier in Section 1. The HRS is a longitudinal household survey conducted by the Institute for
Social Research at the University of Michigan. The survey includes groups of individuals over age
50 and their spouses in the USA. Its main goal is to provide grouped data (panel data) that allow
research and analysis in support of policies and rules on retirement, health insurance, saving, and
financial security. The HRS data, available at https://hrs.isr.umich.edu/data-products, were collected
from 13 waves of interviews across 15 survey years (1992, 1993, 1994, 1995), and biennially (1996
- 2016).

We consider a subset of the data concerning the physical health of individuals over age 50 and
their spouses. The subset includes the most recent surveys for the years 2010, 2012, 2014 and 2016.
In our study, the response is the respondent’s body mass index (BMI), collected longitudinally over
those four time points (years). The BMI is one of the important aspects of the physical health that
indicates whether or not the respondent is considered in a healthy category.

In our analysis, we consider the baseline covariates of individuals for the year 2010, which in-
clude binary indicators of their health conditions: high blood pressure (HBP), heart disease (Heart),
Stroke, and diabetes (Diab). Also, the data include binary indicators of their medical care utilization
(Hosp, overnight hospital stay in the last two years), smoking status (Smoke, whether the respondent
ever smoked cigarettes or not), and race (White, if the respondent is white or not) and a continuous
covariate Age in years. An initial analysis of the data indicated a nonlinear relationship between the
response BMI and covariate Age.

https://gist.github.com/NajlaAlorain/38a559466b7a8ead5b4d7bbb1fc77cc4
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Table 1: Comparison of proposed semiparametric MCEM (Method 1) with ordinary MCEM
(Method 2) of Ibrahim et al. (2001) when true response is linear. Simulated biases and mean squared
errors (MSEs) are shown for the estimators of the mean response m0(x) at different x-values. Miss-
ing data parameters φφφ = (−2.5, 0.2, 0.3, 1)t lead to NMAR with 23% missing responses. Simula-
tions are based on 1000 replicates of data sets.

Fitted Model

Method 1 Method 2

True Model Parameter True Value Bias MSE Bias MSE

m = 100

Linear α1 1.2 -0.0136 0.0653 0.0111 0.0643

m0(x1) 0.72 0.0119 0.1025 -0.0029 0.0545

m0(x2) 1.48 0.0294 0.1103 -0.0029 0.0375

m0(x3) 2 0.0182 0.1053 -0.0029 0.0333

m0(x4) 2.52 0.0189 0.0893 -0.0029 0.0352

m0(x5) 3.28 0.0157 0.0673 -0.003 0.0488

σ2
u 1 -0.0481 0.0717 -0.0142 0.069

σ2
ε 1 -0.055 0.0376 -0.0233 0.0356

m = 200

Linear α1 1.2 -0.013 0.0345 0.0040 0.033

m0(x1) 0.72 0.013 0.0477 -0.0054 0.0301

m0(x2) 1.48 0.0153 0.0548 -0.0053 0.0208

m0(x3) 2 0.0174 0.0598 -0.0052 0.0183

m0(x4) 2.52 0.0131 0.045 -0.0052 0.019

m0(x5) 3.28 0.0039 0.0398 -0.0051 0.0257

σ2
u 1 -0.0318 0.0359 -0.0072 0.0365

σ2
ε 1 -0.0281 0.018 -0.0087 0.0179
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Table 2: Comparison of proposed semiparametric MCEM (Method 1) with ordinary MCEM
(Method 2) of Ibrahim et al. (2001) when true response is nonlinear (quadratic). Simulated bi-
ases and mean squared errors (MSEs) are shown for the estimators of the mean response m0(x)
at different x-values. Missing data parameters φφφ = (−2.5, 0.2, 0.3, 1)t lead to NMAR with 23%
missing responses. Simulations are based on 1000 replicates of data sets.

Fitted Model

Method 1 Method 2

True Model Parameter True Value Bias MSE Bias MSE

m = 100

Quadratic α1 1.2 0.0007 0.066 -0.024 0.1205

m0(x1) 0.79 0.0986 0.11 -1.0251 1.3002

m0(x2) 1.71 0.0054 0.113 0.5403 0.4072

m0(x3) 3 -0.0132 0.099 0.9459 0.9685

m0(x4) 4.83 0.0141 0.0919 0.8106 0.7301

m0(x5) 8.47 0.1221 0.0877 -0.3599 0.2749

σ2
u 1 -0.0167 0.0727 0.105 0.1347

σ2
ε 1 -0.0388 0.038 1.707 3.323

m = 200

Quadratic α1 1.2 -0.0031 0.035 -0.0111 0.0573

m0(x1) 0.79 0.1015 0.0641 -1.0203 1.1604

m0(x2) 1.75 0.0107 0.0557 0.5438 0.3498

m0(x3) 3 -0.0329 0.0543 0.9485 0.9342

m0(x4) 4.83 0.0107 0.0429 0.8123 0.6955

m0(x5) 8.47 0.1142 0.0516 -0.3595 0.2035

σ2
u 1 0.0832 0.073 0.0257 0.064

σ2
ε 1 0.01007 0.0172 1.755 3.304
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A total of 9760 respondents were surveyed in years 2010, 2012, 2014 and 2016. Many individu-
als have BMI missing on at least one occasion. The percentage of subjects with at least one response
missing is 32%, and the overall percentage of missing observations is 5632/(4 × 9760) = 14.4%,
where 5632 represents the total number of missing observations. The percentages of respondents
with 1, 2 and 3 missing responses were 14%, 10.3% and 7.7%, respectively. The amount of missing
observations is 0.24% at baseline (year 2010) and 2.38%, 4.64% and 7.17% at the second (year
2012), third (year 2014) and fourth wave (year 2016), respectively.

In this study, compliance was not mandatory and respondents sometimes refused or missed an
interview on one occasion and then were interviewed at the next follow-up time, resulting in non-
monotone patterns of missing data. It is reasonable to conjecture that a respondent may not come to
an interview if his/her physical health is poor (e.g., unhealthy BMI) and therefore the outcome may
be nonignorably missing, or not missing at random (NMAR). So we consider analyzing the data as-
suming a nonignorable missing data model. Also, for comparison purposes, we consider analyzing
the data assuming that the missing data are MAR (missing at random) for which the likelihood-based
inference does not depend on the missing data mechanism.

The left panel in Figure 1 shows four boxplots of the response BMI obtained in four waves
(w10=year 2010, w11=year 2012, w12=year 2014, w13=year 2016). It is evident that the median
BMI levels are similar across the four waves. The right panel exhibits the scatter plot of the mean
BMI at a given age versus Age/10, which suggests a curvilinear relationship between the response
and covariate Age.

Figure 1: Boxplots of BMI (left). Scatter plot of average BMI vs. age/10 (right).

Figure 2 displays boxplots of the BMI for four different groups of individuals. Starting from the
left to the right, the first group consists of those individuals who completed all four interviews (no
missing values). The second, third and fourth groups consist of the individuals who missed one, two
and three interviews, respectively. It is evident that the median BMI levels are similar across the four
waves with a value of 27 for the first group with no missing values. In contrast, for the last group
with three missing values, the median BMI levels clearly differ across the four waves, with larger
BMI values (e.g., 36 at w12 and 33 at w13). Also, for the second and third groups, the medians are
different, with generally higher values of BMI (e.g., 28 at w13 in group 2 and 28.5 at w13 in group
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Figure 2: Boxplots of BMI for HRS Data

Figure 3: Estimated nonlinear curve m0(age) for HRS data (left). Scatter plot of average BMI vs.
age for HRS data (right).
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3), as compared to the first group.
Here we study the relationship between the BMI of respondents and other baseline covariates,

assuming a nonignorable missing data mechanism. Let yit denote the BMI of the ith individual
observed at the tth time point (t = 1, 2, 3, 4). We consider a semiparametric partially linear mixed
model for the BMI, given by

yit = α0 + α1t+ α2HBPi + α3Hearti + α4Stroki + α5Diabi + α6Smoki
+ α7Hospi + α8Whitei +m0((Age/10)i) + ui + εit, (5.1)

for i = 1, . . . ,m, and t = 1, . . . , n, with m = 9760 and n = 4. Here m0(·) is assumed an un-
known smooth function of the covariate Age. The random effects ui are assumed to be independent
N(0, σ2

u). Also, the random errors εit are assumed to be independent N(0, σ2
ε).

We consider a logistic regression model for the missingness probability pit = P (rit = 1|φφφ),
given by

log

(
pit

1− pit

)
= φ0 + φ1(yit/10) + φ2t+ φ3HBPi + φ4Hearti + φ5Strokei

+ φ6Diabi + φ7Smokei + φ8Hospi + φ9Whitei + φ10(Age/10)i. (5.2)

The missing data indicators rit are assumed independent for all (i, t), so that the joint density of the
missing data indicators is given by

f (rrr|φφφ) =

m∏
i=1

n∏
t=1

{P (rit = 1|φφφ)}rit {1− P (rit = 1|φφφ)}1−rit .

For a comparative study, we estimate the model parameters by considering four different models:

M1. Proposed partially linear mixed model (5.1) for the mean response E(yit) and nonignorable
model (5.2) for the missing data.

M2. Partially linear mixed model (5.1) for the mean response E(yit), but a misspecified MAR
model for the missing data.

M3. Ordinary linear mixed model for the mean response E(yit) and nonignorable model (5.2) for
the missing data.

M4. Ordinary linear mixed model for the mean response E(yit), but a misspecified MAR model
for the missing data.

The MCEM methods M1 and M3 for nonignorable missing data were based onmi = 500 Gibbs
samples generated from the conditional distribution of the missing data given the observed data.
For the spline approximation to the nonlinear function m0(·), we used a linear spline (p = 1) with
K = 5 knots. We also considered quadratic (p = 2) and cubic (p = 3) splines (not shown here)
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to approximate m0(·), but the linear spline appeared to be sufficient to capture the curvature in the
mean response.

The left panel in Figure 3 displays the fitted nonlinear function m̂0(·) by our proposed semi-
parametric MCEM approach (M1) that uses a nonignorable missing data model. The right panel in
Figure 3 displays a scatter plot of the observed and fitted values of the average BMI against (Age/10),
which clearly indicates that our proposed semiparametric MCEM approach is very effective in mod-
elling the nonlinear mean response function.

Table 3 reports the estimates, their corresponding standard errors, and z-values for the regression
parameters and variance components of the partially linear mixed model (5.1) obtained by the four
methods M1–M4. We observe that the estimates and their standard errors are generally close to
each other for the nonignorable models M1 and M3. We also note that the estimates under M1 and
M3 generally have smaller standard errors, as compared to those obtained under ignorable (MAR)
models M2 and M4, which justifies the use of a nonignorable (NMAR) model for the missing data.

Furthermore, under all four models M1–M4, covariates time, high blood pressure and diabetes
appear to be highly significant with p-values less than 10−7, indicating a strong relationship with
the response BMI. Also, covariates Heart, Stroke and Smoke are all significant by all four methods,
but the semiparametric approach with nonignorable missing data (M1) provides smaller p-values as
compared to M3, justifying the need for modelling the mean response as a nonlinear function.

From Table 3, it appears that the BMI values are higher among respondents with high blood pres-
sure, heart disease and/or diabetes, and lower among respondents with stroke. White respondents
have lower BMI values as compared to others. The BMI appears to increase with increased overnight
stay at hospital and decrease with an increased smoking habit. The BMI values also decrease over
time. The variance components are also highly significant under all models.

Table 4 shows estimated mean response m̂0(·) at different values of age under the proposed
MCEM method (M1) with nonignorable missingness. For example, estimates of m0(·) are 29.5,
29.81 and 27.86 corresponding to the (age/10) values of 3.6, 4 and 6.5, respectively, indicating a
curvilinear relationship.

Table 5 presents the MCEM estimates of the missing data model parameters, their standard
errors, and corresponding z-values. Results in Table 5 suggest that the missingness rate varies across
all covariates as well as the response BMI at the current time point. Respondents are likely to have
exp(0.4448) = 1.56 times higher odds to miss the interview if their BMI values are increased by one
unit at the current time point. Also, the study suggests that respondents suffering from any of the
diseases, high blood pressure, heart disease, stroke or diabetes are less likely to miss an interview,
as compared to those who are otherwise healthy. Also, the results show that respondents who ever
smoked are likely to have lower odds to miss an interview as compared to nonsmokers. White
respondents are likely to have somewhat higher odds to miss an interview as compared to others.
Younger respondents are more likely to miss an interview as compared to older respondents. The
missingness probability increases with decreased overnight stays at the hospital. We also find that
covariate time has a negative effect on the missingness probability, that is, the odds of missing an
interview is higher at latter time points. The Application code can be found using this link �

https://gist.github.com/NajlaAlorain/936820339c8449f3f983efc33a09de95
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Table 4: Fitted values of nonlinear function m̂0(age) at different values of age by the proposed
semiparametric approach with nonignorable missing responses.

Estimated mean response at six age-values

Age/10 3.6 4 5.8 6.5 7.4 8

m̂(Age/10) 29.5 29.81 28.76 27.86 26.28 25.04

Table 5: ML estimates and standard errors (SEs) of nonignorable missing data model parameters for
HRS data analysis.

Covariate Estimate SE Z-value

Intercept (φ0) 6.445 0.219 29.409

yit/10 (φ1) 0.4448 0.029 14.938

Time (φ2) -0.895 0.016 -53.801

HBP (φ3) -0.189 0.035 -5.387

Heart (φ4) -0.266 0.035 -7.6041

Stroke (φ5) -0.459 0.047 -9.763

Diab (φ6) -0.328 0.0362 -9.068

Smoke (φ7) -0.3101 0.0325 -9.534

Hosp (φ8) -0.4306 0.0332 -12.947

White (φ9) 0.102 0.039 2.615

Age/10 (φ10) -0.382 0.025 -15.067

6 Discussion

The purpose of this research was to suggest a flexible semiparametric approach to analyzing in-
complete longitudinal data with nonignorable and nonmonotone patterns of missing responses. We
have developed a semiparametric Monte Carlo EM (MCEM) method in the framework of the pe-
nalized regression spline (P-spline) for approximating the mean response parameters and variance
components in a partially linear mixed model (PLMM). The proposed method appeared to be very
efficient for jointly estimating the parameters of the mean response function and the missing data
model. Our simulation study demonstrated that the proposed semiparametric approach generally
provides unbiased and efficient estimators when the missing data are NMAR. We have studied the
proposed method under different proportions of missing responses in longitudinal data. In all cases,
the proposed approach was found to be very flexible and effective in capturing the nonlinear curve
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when fitting the mean response function.
We have investigated nonignorable and nonmonotone patterns of missing data in the response

variable, where in practice there can be covariates which are also nonignorably missing. For this,
we need to incorporate the covariates distribution into the observed data likelihood function. Future
research is suggested for exploring nonignorable and nonmonotone patterns of missing data in both
responses and covariates in longitudinal data for a valid statistical inference.

As there is no practical way of assessing the missing data model used for analyzing incomplete
longitudinal data, in a future study, we wish to perform a sensitivity analysis to investigate if the
predictors of the mean response function are affected by a misspecified missing data model.
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A Appendix

The estimated Fisher information matrix of θθθ may be written in matrix form as
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where the components of I(θ̂θθ) are shown below. Calculating the estimated observed FIM of β̂ββ∗, we
get
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By plugging the score function and second derivatives w.r.t. βββ∗ into (A.1), we obtain
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By using the score function and second derivatives w.r.t. σ2
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This leads to
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For the off diagonal term I
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Now, in case there is no missing data, the estimated observed information matrix of θθθ can be
simplified as follows.
The Fisher information I

(
β̂ββ∗
)

may be obtained as

I
(
β̂ββ∗
)

=

m∑
i=1

X∗t
i V̂−1

yi X
∗
i .

The term I
(
σ̂2
ε

)
may be obtained as

I
(
σ̂2
ε

)
=

1

2

m∑
i=1

{
tr
(
−V̂−2

yi

)
+
(
yi −X∗

i β̂ββ
∗)t (

−2V̂−3
yi

)(
yi −X∗

i β̂ββ
∗)}

.

The term I
(
σ̂2
u

)
may be obtained as

I
(
σ̂2
u

)
=

1

2

m∑
i=1

{
tr
(
−V̂−2

yi (ZiZ
t
i)

2
)

+ (yi −X∗
i β̂ββ

∗
)t(−2V̂−1

yi ZiZ
t
iV̂

−1
yi ZiZ

t
iV̂

−1
yi )(yi −X∗

i β̂ββ
∗
)

}
.
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The off diagonal term I
(
β̂ββ∗, σ̂2

ε

)
may be obtained as

I
(
β̂ββ∗, σ̂2

ε

)
=

m∑
i=1

(
yi −X∗

i β̂ββ
∗)t

V̂−2
yi X

∗
i .

The term I
(
β̂ββ∗, σ̂2

u

)
may be obtained as

I
(
β̂ββ∗, σ̂2

u

)
=

m∑
i=1

(
yi −X∗

i β̂ββ
∗)t

V̂−1
yi ZiZ

t
iV̂

−1
yi X

∗
i .

The term I
(
σ̂2
u, σ̂

2
ε

)
may be obtained as

I
(
σ̂2
u, σ̂

2
ε

)
=

1

2

m∑
i=1

{
tr
(
−V̂−2

yi ZiZ
t
i

)
−
(
yi −X∗

i β̂ββ
∗)t

((−1)V̂−1
yi ZiZ

t
iV̂

−2
yi

−V̂−2
yi ZiZ

t
iV̂

−1
yi )

(
yi −X∗

i β̂ββ
∗)}

.
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