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SUMMARY

Model-based clustering utilizes a finite mixture model to identify underlying patterns or
clusters across samples. A finite mixture model is a convex combination of two or more
distributions, where appropriate distributions are chosen depending on the type of the data.
Recently, there has been a great interest in clustering human microbiome data. Microbiome
data are compositional (yielding relative abundance) and are high-dimensional. Previously,
a family of logistic normal multinomial factor analyzers (LNM-FA) for model-based clus-
tering of high-dimensional microbiome data was proposed via a factor analyzer structure.
This reduced the number of parameters and computation overhead compared to a traditional
mixtures of logistic normal multinomial models. Here, we propose a penalized LNM-FA
(PLNM-FA) model by utilizing lasso regularization to each entry of the loading matrix.
This introduces further parsimony compared to LNM-FA and also estimates the number of
latent factors simultaneously. Parameter estimation is done using a variational variant of
the alternating expectation conditional maximization algorithm to maximize the penalized
maximum likelihood. The performance of proposed algorithm is evaluated using simula-
tion studies and real data.

Keywords and phrases: Model-based clustering, penalized factor analyzers, microbiome
data, variational approximation
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1 Introduction
Cluster analysis is widely used to group observations into homogeneous subpopulations. A model-based
clustering approach utilizes a finite mixture model, which assumes the data come from a finite collection of
subpopulations or components where each subpopulation can be represented by a probability distribution.
For a random variable W, a G-component finite mixture density can be written as

f(wi|Θ) =

G∑
g=1

πgfg(wi|Ωg),
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where πg > 0 is the mixing portion such that
∑G
g=1 πg = 1, fg(wi|Ωg) is the density function of gth

component, and Θ = (π1, . . . , πG,Ω1, . . . ,ΩG) represents the model parameters.
Compositional count data are routinely encountered in bioinformatics. In such data, the count of each

sample is constrained by the total count, and the sample space can be represented by a simplex (Pawlowsky-
Glahn et al., 2007) defined as {

x = [x1, x2, . . . , xD] | xi > 0,

D∑
i=1

xi = κ
}
.

Thus, it is important to take into account κ while modelling x or while computing distance or dissimilarity
measures involving x. An example of such compositional count data is microbiome data. Microbiome data
provides information on a dynamic ecosystem of microorganisms (bacteria, archaea, fungi, and viruses) that
live in and on us. These microbes play a vital role in host-immune responses and host health (Metwally
et al., 2018). Microbiome data obtained through next generation sequencing technology can be represented
as a count matrix in which observations (i.e., rows) correspond to the abundance of various taxa of an
individual/sample. Microbiome data is treated as compositional because the observed counts are restricted
by the total counts in a sample (Gloor et al., 2017), and thus only yield relative abundance. Similar to
RNA-seq data, count normalization is either performed on these datasets as the first step of the analysis or
normalization is incorporated in the modelling paradigm. However, such approaches are less suitable for
microbiome datasets because microbiome data are skewed and are highly sparse at lower taxonomic levels
(Gloor et al., 2017).

Cluster analysis has been used to gain insight from microbiome data (Wu et al., 2011; Hotterbeekx
et al., 2016; Taie et al., 2018; Abdel-Aziz et al., 2021). Several model-based clustering frameworks have
been proposed for microbiome data (Holmes et al., 2012; Subedi et al., 2020; Fang and Subedi, 2020;
Tu and Subedi, 2021). Holmes et al. (2012) proposed a Dirichlet-multinomial mixture model (DMM) to
cluster microbiome data. Subedi et al. (2020) proposed mixtures of Dirichlet-multinomial regression models
to cluster microbiome data, which can also model covariates. A Dirichlet-multinomial (DM) distribution
that takes into account the compositional nature of the data (La Rosa et al., 2012; Chen and Li, 2013;
Wadsworth et al., 2017; Koslovsky and Vannucci, 2020). However, the covariance of the microbiome data
cannot be modelled adequately using a Dirichlet-multinomial distribution because of the limited number of
parameters in the Dirichlet distribution (Xia et al., 2013). An additive logistic normal multinomial (LNM)
model (Aitchison, 1982) was used by Xia et al. (2013) to model microbiome data. In an LNM model, the
observed counts are modelled using a hierarchical structure where the observed counts conditional on the
proportions are assumed to be multinomial. An additive log-ratio transformation is then used to transform
the proportions from a simplex to an open real space and a Gaussian prior is imposed on this log-ratio
transformed composition. Fang and Subedi (2020) developed mixtures of LNM models (LNM-MM) to
cluster microbiome data.

While the LNM model provides flexibility in modelling the covariance structure, it can be highly pa-
rameterized for high dimensional data. Within a mixture model framework, a factor analyzer structure
(Spearman, 1904) has been widely used to reduce the number of parameters in the component covariance
matrix (McLachlan and Peel, 2000; McNicholas and Murphy, 2008; Subedi et al., 2013). In a mixture of
factor analyzers (McLachlan and Peel, 2000), a K-dimensional vector Y can be modelled as

Yi = µg + ΛgUig + εig,
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where Uig ∼ Nq(0, Iq) is a q-dimensional vector of latent factors, εig ∼ NK(0,Dg) is a K-dimensional
vector of errors, µg is K × 1 mean vector of gth component, Λg is K × q factor loadings matrix, Dg is
diagonal matrix, and Uig ⊥ εig . Thus, the covariance matrix of Y can now be decomposed as ΛgΛ

T
g +Dg

with number of parameters Kq − q(q−1)
2 + K compared to a general covariance matrix with parameters

K(K−1)
2 . When q << K, the number of parameters in the covariance matrix can be greatly reduced.

Recently, Tu and Subedi (2021) developed a mixture of logistic normal multinomial factor analyzers (LNM-
FA) for high dimensional compositional count data by utilizing a factor analyzer structure within the LNM
mixture model.

It is important to introduce sparsity in the covariance matrix as it provides information on possible
independence among the variables. An early approach to introducing sparsity in the covariance matrix was
by Dempster (1972) who suggested simplifying the covariance structure by setting some of the elements in
the inverse covariance matrix to 0. In recent years, L1 (lasso) regularization has been widely used to obtain
a sparse estimation of the covariance matrix (Rothman et al., 2010; Bien and Tibshirani, 2011) or the inverse
of the covariance matrix (Meinshausen and Bühlmann, 2006; Friedman et al., 2008; Banerjee et al., 2008).
Alternately, Xie et al. (2010) proposed a penalized mixture factor analyzer (PMFA) model which introduces
sparsity in the covariance matrix by using a group lasso regularization and shrinking an entire row of factor
loading matrix Λ to 0. While the approach is effective for introducing sparsity, it can be restrictive for
microbiome data. As Σ = ΛΛT +D, if the entire row of the loading matrix Λ is set to 0, the taxon will be
modeled as uncorrelated to all other taxa. However, for microbiome data, this may be impractical as Taxon
A can be uncorrelated with TaxonB but can be correlated with Taxon C. Furthermore, Xie et al. (2010) also
used an L1 penalty to shrink some entries of µ to 0. In the context of compositional data, however, setting
the entries in µ (i.e., in the latent space) to 0 will impact the relative abundance estimation of other variables.
Here, we introduce a penalized LNM-FA (PLNM-FA) mixture model, which only utilizes a lasso penalty to
entries of the loading matrix Λ in LNM-FA. This approach provides a flexible and sparse estimation of the
covariance structure. In Section 2, we provide the mathematical details of the proposed models. In Section
3 and 4, we illustrate our approach on both simulated and real datasets. In Section 5, we conclude with a
summary of the paper.

2 Methodology

2.1 Additive logistic normal multinomial model

In the LNM model, conditional on the composition, the observed count vector W with K + 1 taxa is
modelled using a multinomial distribution such that

f(W|P) ∝ pw1
1 pw2

2 . . . p
wK+1

K+1 .

An additive log-ratio transformation φ is then used to transform P from simplex to Y in an open real space

Y = φ (P) =

{
log

(
p1

pK+1

)
, . . . , log

(
pK
pK+1

)}
, (2.1)
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where φ : (0, 1)K+1 → RK is a one-to-one function, and a Gaussian prior is imposed on this log-ratio
transformed variable Y. Using φ−1, P can be written as

P = φ−1(Y) =

{
exp(y1)∑K

k=1 exp(yk) + 1
, · · · , exp(yK)∑K

k=1 exp(yk) + 1
,

1∑K
k=1 exp(yk) + 1

}
. (2.2)

Thus, the density of W|Y can be also written as

f(W|Y) ∝
K∏
k=1

{
exp(yk)∑K

k=1 exp(yk) + 1

}wk
{

1∑K
k=1 exp(yk) + 1

}wK+1

.

Furthermore, Y is assumed to be a multivariate Gaussian distribution with mean µ and covariance Σ. The
marginal density of W becomes

f(w |µ,Σ) =

∫
IRK

f(w|y) f(y|µ,Σg) dy

∝
∫

IRK

K+1∏
k=1

{
φ−1(y)k

}wk |Σ|− 1
2 exp

{
−1

2
(y − µg)>Σ−1(y − µ)

}
dy.

One main challenge when using the LNM model is that the posterior distributions of the transformed variable
do not have a closed form solution and thus, parameter estimation typically involves a Markov chain Monte
Carlo (MCMC) approach (Xia et al., 2013; Äijö et al., 2018), which comes with heavy computational cost.
Recently, Fang and Subedi (2020) developed a computationally efficient framework for parameter estimation
for an additive logistic normal multinomial (LNM-MM) mixture model by utilizing variational Gaussian
approximations (VGA; Wainwright et al., 2008). In VGA, a complex posterior distribution is approximated
using computationally convenient Gaussian densities by minimizing the Kullback-Leibler (KL) divergence
between the true and approximating Gaussian densities.

2.2 Mixture of penalized logistic normal multinomial factor analyzers

A G-component finite mixture of logistic normal multinomial models can be written as:

f(w | Θ) =

G∑
g=1

πgfg(wi|µg,Σg),

where fg(wi|µg,Σg) is a logistic normal multinomial model with parameters µ and Σ, πg > 0 is the
mixing proportion such that

∑G
g=1 πg = 1, and Θ = (π1, . . . , πG,µ1, . . . ,µG,Σ1, . . . ,ΣG) denotes all

the model parameters. In the context of clustering, the unobserved group membership of each observation is
treated as missing data. We define a cluster membership indicator variable Zi such that

Zig =

1 observation i ∈ gthgroup,

0 otherwise.
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Tu and Subedi (2021) developed a mixture of logistic normal multinomial factor analyzers by utilizing
the factor analysis structure for the log-ratio transformed variable Yi such that

Yi = µg + ΛgUig + εig,

where Uig ∼ Nq(0, Iq) is a q-dimensional vector of latent factors, εig ∼ NK(0,Dg) is K-dimensional
vector of errors, µg is K × 1 mean vector of gth component, Λg is K × q factor loadings matrix, Dg is a
diagonal matrix, and Uig ⊥ εig .

Using the observed data (w1, . . . ,wn) and missing data (z1, . . . , zn), the complete data likelihood can
be written as

L(Ω) =

n∏
i=1

G∏
g=1

{
πgfg(wi|µg,Λg,Dg)

}zig
,

whereΩ = (π1, . . . , πG,µ1, . . . ,µG,Λ1, . . . ,ΛG,D1, . . . ,DG) denote all model parameters. The complete-
data log-likelihood can be written as

l(Ω) =

n∑
i=1

G∑
g=1

zig

{
log πg + log f(wi|µg,Λg,Dg)

}
,

where the marginal distribution of W is

f(wi |µg,Λg,Dg) =

∫
IRK

f(wi|yi) f(yi|µg,ΛgΛ
T
g +Dg) dy

∝
∫

IRK

K+1∏
k=1

{
φ−1(yi)k

}wk |ΛgΛ
T
g +Dg|−

1
2 exp

{
−1

2
(yi − µg)>(ΛgΛ

T
g +Dg)

−1(yi − µg)
}
dy.

The lasso penalty (Tibshirani, 1996) is a widely used regularization technique (L1 regularization) that shrinks
some parameters to be exactly zero. Here, we introduce the lasso regularization to loading matrix Λg:

p(Λ) =
s

1− s

G∑
g=1

K∑
i=1

q∑
j=1

|[Λg]ij |,

where |[Λg]ij | is the absolute value of the ith row and jth column of Λg , and s is for the shrinkage/tuning
parameter such that 0 < s < 1. Similar to Xie et al. (2010), the penalized complete-data log likelihood can
be written as

l(Ω) =

n∑
i=1

G∑
g=1

zig {log πg + log f(wi|µg,Λg,Dg)} − p(Λ).

2.3 Parameter estimation

Here, similar to Tu and Subedi (2021), we develop a variational variant of the alternating expectation con-
ditional maximization (AECM; Meng and Van Dyk, 1997) algorithm that uses different specification of the
missing data at different cycles.
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First Cycle
In the first cycle, we treat Z and Y as missing variables. The complete-data penalized log-likelihood using
the marginal probability mass function of W can be written as

l1(Ω) =

n∑
i=1

G∑
g=1

zig

{
log πg + log

∫
f(wi|yi)fg(yi|µg,ΛgΛ

T
g +Dg)dy

}
− p(Λ).

Replacing the marginal density of W by the component specific ELBO F̃ (µg,ΛgΛ
T
g +Dg,mig,Vig)

(see Appendix A.1 for detail), the variational Gaussian lower bound of complete-data log-likelihood be-
comes

l̃1 =

n∑
i=1

G∑
g=1

zig

{
log πg −

(
1T(K+1)wi

)[
log

(
1T(K) exp

(
mig +

diag(Vig)

2

)
+ 1

)]
+ Ci +w∗Ti mig +

1

2
log |Vig|+

K

2
− 1

2
log |Σg| −

1

2
tr(Σ−1g Vig)

−1

2
(mig − µg)TΣ−1g (mig − µg)

}
− p(Λ),

where 1(K) stands for a column vector of 1’s with dimension K, Ci stands for log 1Twi!∏K
k=1wik!

, diag(Vig) =

(v2ig,11, v
2
ig,22, . . . , v

2
ig,KK) puts the diagonal elements of the K × K matrix Vig into a K-dimensional

vector, and Σg = ΛgΛ
T
g + Dg . In this cycle, for the parameter updates in the (t + 1)th iteration, the

following steps are conducted:

Step 1: Update the variational Gaussian lower bound of the complete-data log-likelihood from the first cycle
l̃1 by updating mig and Vig . For updating V

(t+1)
ig and m

(t+1)
ig , we use the Newton-Raphson method.

We take the derivative with respect to v(t+1)
ig and m

(t+1)
ig and find the solution to the following score

function:

∂l̃1
∂vig

= v
(t)
ig

−1
− v(t)ig diag(Σ(t)

g

−1
)− (1T(K+1)wi)v

(t)
ig

exp
(
m

(t)
ig +

(v
(t)
ig )2

2

)
1T(K) exp

(
m

(t)
ig +

(v
(t)
ig )2

2

)
+ 1

.

∂l̃1
∂mig

= w∗i −Σ(t)
g

−1
(m

(t)
ig − µ

(t)
g )− (1T(K+1)wi)

exp
(
m

(t)
ig +

(v
(t)
ig )2

2

)
1T(K) exp

(
m

(t)
ig +

(v
(t)
ig )2

2

)
+ 1

.

Step 2: Update the component indicator variable Zig . Conditional on the variational parameters m
(t+1)
ig ,

V
(t+1)
ig and on µ(t)

g , Λ
(t)
g , and D

(t)
g , we use an approximation of E(Z

(t+1)
ig ) using the ELBO:

ẑ
(t+1)
ig =

π
(t)
g exp

{
F̃ (µ

(t)
g ,Λ

(t)
g Λ

(t)
g

T
+D

(t)
g ,m

(t+1)
ig ,V

(t+1)
ig )

}
∑G
g=1 π

(t)
g exp

{
F̃ (µ

(t)
g ,Λ

(t)
g Λ

(t)
g

T
+D

(t)
g ,m

(t+1)
ig ,V

(t+1)
ig )

} .



Penalized Logistic Normal Multinomial Factor Analyzers . . . 191

Step 3: Given the variational parameters and ẑ(t+1)
ig , we update the parameters πg and µg as:

π̂(t+1)
g =

∑n
i=1 ẑ

(t+1)
ig

n
, and µ̂(t+1)

g =

∑n
i=1 ẑ

(t+1)
ig m

(t+1)
ig∑n

i=1 ẑ
(t+1)
ig

.

Second Cycle
In the second cycle, we treat Z, Y andU as the missing variables and the complete penalized log-likelihood
using marginal probability mass function of W has the following form:

l2(Ω) =

n∑
i=1

G∑
g=1

zig

{
log πg + log

[∫
f(wi|yi)fg(yi|µg + Λgui,Dg)fg(ui|0, Iq) dy du

]}
− p(Λ).

Here, we assume q(y,u) can be factorized as q(y,u) = q(y)q(u), mig and Vig are the variational pa-
rameters of q(yi) from first cycle, and m̃ig and Ṽig are the variational parameters of q(ui). The approximate
variational Gaussian lower bound of complete penalized data log-likelihood using F̃2 becomes:

l̃2 =

n∑
i=1

G∑
g=1

zig

{
log πg −

(
1T(K+1)wi

)[
log

(
1T(K) exp

(
mig +

diag(Vig)

2

)
+ 1

)]

+ Ci +w∗i
Tmig +

1

2

(
log |Vig|+ log |Ṽg|+ q +K − log |Dg| − m̃T

igm̃ig − tr(Ṽg)

− tr(D−1g (Vig + (mig − µg)T (mig − µg))) + 2(mig − µg)TD−1g Λgm̃ig

−m̃T
igΛ

T
gD

−1
g Λgm̃ig − tr(ΛT

gD
−1
g ΛgṼg)

)}
− p(Λ).

Details of the derivation of the lower bound F̃2 is provided in Appendix A.2. In this cycle, for the parameter
updates in the (t+ 1)th iteration, the following steps are conducted:

Step 1: Update the variational Gaussian lower bound of complete-data log-likelihood of the second cycle l̃2
by updating m̃

(t+1)
ig and Ṽ

(t+1)
g as

m̃
(t+1)
ig = (Λ(t)

g

T
D(t)
g

−1
Λ(t)
g + Iq)

−1Λ(t)
g

T
D(t)
g

−1
(m

(t+1)
ig − µ(t+1)

g ), and

Ṽ(t+1)
g = (Λ(t)

g

T
D(t)
g

−1
Λ(t)
g + Iq)

−1.

Step 2: Update the group indicator variable Z. Similar to the first cycle, we compute an approximation of
E(Zig) using the ELBO from the second cycle:

ẑ
(t+1)
ig =

π
(t+1)
g exp

{
F̃2(µ

(t+1)
g ,Λ

(t)
g ,D

(t)
g ,m

(t+1)
ig ,V

(t+1)
ig , m̃

(t+1)
ig , Ṽ

(t+1)
g )

}
∑G
g=1 π

(t+1)
g exp

{
F̃2(µ

(t+1)
g ,Λ

(t)
g ,D

(t)
g ,m

(t+1)
ig ,V

(t+1)
ig , m̃

(t+1)
ig , Ṽ

(t+1)
g )

} .
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Step 3: UpdateD(t+1)
g as

D̂(t+1)
g = diag

{
Σ̂(t+1)
g − 2Λ(t)

g (Λ(t)
g

T
D(t)
g

−1
Λ(t)
g + Iq)

−1Λ(t)
g

T
D(t)
g

−1
Ŝ(t+1)
g + Λ(t)

g θ
(t+1)
g Λ(t)

g

T
}
.

Step 4: When updating Λg , we will update each entry of Λg: [Λg]ij with i = 1 . . .K and j = 1 . . . q.
Let [Λg]i(−j) represents the entire ith row of Λg but without the jth entry. Since at [Λg]ij is not
differentiable at 0, we break it down into 2 cases:

• When [Λg]ij > 0, then the solution has to be greater than 0, which is

[Λg]ij =
[Sgβ

T
g ]ij −

s
1−s [Dg ]ii

ng
− [Λg]i(−j)[θg](−j)j

[θg]jj
> 0.

• When [Λg]ij < 0, then the solution has to be less than 0, which is

[Λg]ij =
[Sgβ

T
g ]ij +

s
1−s [Dg ]ii

ng
− [Λg]i(−j)[θg](−j)j

[θg]jj
< 0.

We select the [Λg]ij that satisfies the above condition. When neither conditions are satisfied, we set
[Λg]ij = 0. Here,

Ŝ(t+1)
g =

∑n
i=1 z

(t+1)
ig (m

(t+1)
ig − µ(t+1)

g )T (m
(t+1)
ig − µ(t+1)

g )∑n
i=1 ẑ

(t+1)
ig

,

Σ̂(t+1)
g =

∑n
i=1 z

(t+1)
ig

[
V

(t+1)
ig + (m

(t+1)
ig − µ(t+1)

g )(m
(t+1)
ig − µ(t+1)

g )>
]

∑n
i=1 ẑ

(t+1)
ig

,

θ(t+1)
g = (Λ(t)

g

T
D(t)
g

−1
Λ(t)
g + Iq)

−1 + β(t+1)
g S(t+1)

g β(t+1)
g

T
,

β(t+1)
g = (Λ(t)

g

T
D(t)
g

−1
Λ(t)
g + Iq)

−1Λ(t)
g

T
D(t)
g

−1
, and

n∑
i=1

zig = ng.

Overall, the variational AECM algorithm consists of the following steps:

1. Set the number of clusters: G and q, then initialize Λg,Dg , and zig .

2. First cycle:

Step 1: Approximate log f(w) by estimating Vig and mig .

Step 2: E-step: update zig .

Step 3: CM-step: update πg and µg .

3. Second cycle:

Step 1: Approximate log f(w) by estimating Ṽig and m̃ig .
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Step 2: E-step: update zig again.

Step 3: CM-step: update Sg,Σg,Dg , and Λg .

4. Compute the penalized mixture density
∑n
i=1 log

∑G
g=1 πgf(wi|Ω)− p(Λ) for current estimates. If

converged, stop. Otherwise, go to step 2.

For high dimensional data, the factor loading matrix Λg tends to be most parameterized. Thus, to introduce
further parsimony, we allow for imposing constraints on Λg to be equal or different across groups (see Table
1).

Table 1: Constrained and unconstrained covariance structures derived from PLNM-FA model.

Model Λg Total number of parameters

Unconstrained Λg = Λg

∑G
g=1 rg +KG+G− 1 +KG

Constrained Λg = Λ r +KG+G− 1 +KG

In Table 1, the two models refer to whether or not constraints were imposed on the loading matrix, and
rg = o∗g − q∗g(q∗g − 1)/2, where o∗g denotes the number of nonzero entries in Λg , and q∗g is the number of
nonzero columns in Λg . For high dimensional data with small sample size, imposing such a constraint can
reduce the number of parameters needed for the covariance matrices substantially. Details of the parameter
estimation for the constrained PLNM-FA models are provided in the Appendix A.3.

2.4 Initialization and model selection

Let z∗ig , π∗g , µ∗g , D∗g , Λ∗g , m∗ig and V∗ig be the initial values for Zig , πg , µg , Dg , Λg , mig and Vig re-
spectively. Following Tu and Subedi (2021), we initialize our component indicator variable Zig , model
parameters, and variational parameters as:

1. z∗ig is initialized using the cluster membership obtained by fitting parsimonious Gaussian mixture
models (PGMM; McNicholas and Murphy, 2008) to the transformed variable Y obtained using Equa-
tion (2.1). For computational purposes, any 0 in the W are replaced by 0.001 for initialization. The
implementation of PGMM is available in R package “pgmm”(McNicholas et al., 2019).

2. Using this initial partition, µ∗g is initialized as the sample mean of the gth cluster and π∗g is initialized
as the proportion of observations in the gth cluster in this initial partition.

3. Similar to McNicholas and Murphy (2008), we estimate the sample covariance matrix S∗g for each
group and then used eigendecomposition of S∗g to obtain D∗g and Λ∗g . Suppose λg is a vector of the
first q largest eigenvalues of S∗g and the columns of Lg are the corresponding eigenvectors, then

Λ∗g = Lgλ
1
2
g , and D∗g = diag{S∗g −Λ∗gΛ

∗T
g }.
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4. As Newton-Raphson method is used to update the variational parameters, we need m∗ and V∗. For
m∗, we apply an additive log ratio transformation on the observed taxa compositions p̂ and set m∗ =

φ(p̂) using Equation (2.1). For V∗, we use a diagonal matrix with all diagonal entries set to 0.1.

Note the variational parameters Ṽig and m̃ig are initialized using m∗, D∗g , and Λ∗g using their respective
updating equation from step 1 of the second cycle.

In clustering, the number of components are generally unknown. In our context, the number of latent fac-
tors q as well as the best fitting model between constrained and unconstrained PLNM-FA are also unknown.
Hence, we run both constrained and unconstrained models for a range of G and q and the best-fitting model
is chosen using a model-selection criteria a posteriori. Here, we use the Bayesian Information Criterion
(BIC; Schwarz, 1978) for model selection, which is considered to be consistent and efficient in practice
under certain regularity conditions (Keribin, 2000; Fraley and Raftery, 1998). Mathematically,

BIC = −2l + ψ log n,

where l is the log-likelihood, ψ is the number of free parameters, and n is the number of observations. The
agreement between the true and observed classification can be assessed using the adjusted Rand index (ARI;
Hubert and Arabie, 1985). ARI has a value of 1 under perfect agreement and expected value of 0 under
random classification. As lasso regularization shrinks some of the entries in Λg to 0, one can always over
specify the number of latent factors q, and the entries in the additional columns of Λg will all shrink to 0 if
they are redundant, thus indicating a lower q is preferred. According to Lawley and Maxwell (1962), when

K is very large, q should satisfy (K − q)2 > K + q which can be simplified as q < K + 1
2 −

√
2K + 1

4 .
The shrinkage/tuning parameter selection is also done using BIC.

The optimal tuning parameter s is determined using a multi-stage grid search. We first apply LNM-FA
to determine G and model (i.e. constrained or unconstrained). Although LNM-FA can also select the the
number of latent factors q, it imposes a constraint that the number of latent factors are same for all clusters.
The G and model type selected by LNM-FA is then used by PLNM-FA to select the tuning parameter s and
number of latent factors q. Thus, we fit the PLNM-FA with a larger value for q (say initial q) and we impose
L1 penalization on the elements of the factor loading matrix. The effective number of latent factors for each
cluster equals the difference of initial q and the number of columns of the factor loading matrix with all 0’s.
Thus, it allows us to select the optimal value for q for each cluster.

Regarding the choice of shrinkage tuning parameter s, a fine grid search over the entire range of s (i.e.,
between 0 and 1) for all datasets would be ideal but that can be computationally intensive. Since all the 100
datasets in one simulation setting are simulated using the same set of parameters, in each simulation setting,
we first picked 1 out of 100 dataset, and ran a grid search over the full range of s between 0 and 1 but with
only 10 values (i.e. 0, 0.11, 0.22 ··· 0.999). The s with the smallest BIC is rounded to the closest 0.05 and
we do another grid search within ±0.1 of the selected value. The s with the smallest BIC is again rounded
to the closest 0.05. 15 equally spaced points within ±0.05 of this newly selected value were then used for
grid search for all 100 datasets in that simulation setting. The optimal s was chosen within this interval
using BIC (model with the smallest BIC) for all 100 datasets. This approach is computationally efficient as
it avoids doing fine grid search in regions that are far away from optimal s. This approach worked well in
all simulation studies. For real dataset, a similar approach was used where a similar grid search was done
for each dataset separately. Note that similar to the LNM-FA models, Λg is not identifiable because any
orthonormal matrixA could satisfy ΛgΛ

T
g = ΛgAA

TΛT
g = Λ∗gΛ

∗
g
T .



Penalized Logistic Normal Multinomial Factor Analyzers . . . 195

3 Simulation Study
In this section, we use simulation studies to demonstrate the clustering performance and parameter recovery
of the proposed PLNM-FA models. We first generated Y from a multivariate normal distribution, then
transformed the data into composition P using an additive log ratio transformation. Count data are then
generated using a multinomial distribution with compositionP and the total count for each observation were
generated from a uniform distribution U [5000, 10000]. Four sets of simulation studies were conducted, each
consisting of 100 different datasets. The best fitting model and the pair of (q, s) was chosen using the BIC.
For all simulation studies, we compared the performance of the proposed model with two other competing
models: LNM-FA and DMM.

3.1 Simulation study 1

Here, we generated 100 eight-dimensional datasets, each of size n = 500 from the constrained model with
G = 3, and q = 3. Figure 1 shows a visualization of the cluster structure in the latent space for one of
the hundred datasets and Figure 2 shows the visualization of the relative abundance for observed count data
from the same simulated data.
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Figure 1: Pairwise scatter plot of latent variable Y from an example dataset from simulation study 1. The
observations are colored using their true class label. For this dataset, an ARI of 1 was obtained by

PLNM-FA.

We first ran the LNM-FA for both constrained and unconstrained models with G = 1, . . . , 4 and q =

1, . . . , 4, and then applied PLNM-FA for selecting tuning parameter s in range 0 < s < 1 with q = 4. In
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Figure 2: Boxplots of the relative abundances of the observed counts in each cluster from an example
dataset from simulation study 1.

all 100 datasets, BIC selected a constrained model with G = 3 and the tuning parameter s had a mean =
0.97 (standard deviation [sd] 0.01). The average ARI of the final model selected by PLNM-FA was 1.00
(sd = 0.00). The ARI for both the LNM-FA and DMM were also 1 with sd of 0.00. The true values of the
parameters πg , µg and Σ (i.e., common Σ across all groups) are provided in Table 2. The true values of
Λ and D for Σ used to generate the datasets are provided in Appendix A.4. Note that the estimated values
of Σ are biased as the estimate for Λ is biased due to the lasso regularization. The proportion of times the
elements of Σ were estimated as non-zero over 100 estimations is also provided in Table 2. When the true
values of the entries in Σ were non-zero, our approach always identified these entries as non-zero. The
proportion of times when the truly null values of the entries in Σ were estimated as non-zero were close to
20%. However, the average of the estimated values was close to 0.
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Table 2: Generating parameters along with the averages and standard errors of the estimated values of the
parameters from the 100 datasets of simulation study 1. Note that for Σ, we are providing an average

across all components and all 100 datasets as a common Σ value was used to generate the data for all three
components.

True parameters Average of estimated parameters

(standard errors)

Component 1(n1 = 250)

µ1 [1.2, 2.8, 0.4, -0.4, 1.2, 2.8, 0.4] [1.19, 2.79, 0.40, -0.41, 1.18, 2.81, 0.40]

(0.05, 0.05, 0.05, 0.06, 0.06, 0.05, 0.06)

π1 0.5 0.5 (0.02)

Component 2(n2 = 150)

µ2 [2.0, 1.6, 1.6, 2.4, 2.0, 1.6, 1.6] [2.01, 1.60, 1.60, 2.39 , 1.99, 1.60 , 1.60]

(0.07, 0.08, 0.07, 0.08, 0.08,0.06, 0.06)

π2 0.3 0.3 (0.02)

Component 3(n3 = 100)

µ3 [3.2, 0.4, -0.8, 1.2, 3.2, 0.4, -0.8] [3.20 ,0.41, -0.79, 1.20, 3.19, 0.39, -0.81 ]

(0.10, 0.09, 0.09, 0.08,0.08, 0.08, 0.08 )

π3 0.2 0.2 (0.02)

The common covariance matrix for all three components and the average of estimated covariance matrix.

Σ



0.7 0.5 0.5 0 0 0 0

0.5 0.6 0.5 0 0 0 0

0.5 0.5 0.62 0 0 0 0

0 0 0 0.75 0.5 0 0

0 0 0 0.5 0.68 0 0

0 0 0 0 0 0.72 0.5

0 0 0 0 0 0.5 0.7





0.46 0.38 0.37 −0.00 −0.00 −0.00 0.00

0.38 0.58 0.37 −0.00 0.00 −0.00 0.00

0.37 0.37 0.47 −0.00 −0.00 0.00 0.00

−0.00 −0.00 −0.00 0.65 0.39 −0.00 −0.00

−0.00 0.00 −0.00 0.39 0.59 −0.00 −0.00

−0.00 −0.00 0.00 −0.00 −0.00 0.60 0.40

0.00 0.00 0.00 −0.00 −0.00 0.40 0.50



Proportion of times the elements of Σ̂ were non-zero



1.00 1.00 1.00 0.20 0.27 0.24 0.26

1.00 1.00 1.00 0.19 0.22 0.19 0.20

1.00 1.00 1.00 0.16 0.21 0.18 0.18

0.20 0.19 0.16 1.00 1.00 0.16 0.18

0.27 0.22 0.21 1.00 1.00 0.16 0.18

0.24 0.19 0.18 0.16 0.16 1.00 1.00

0.26 0.20 0.18 0.18 0.18 1.00 1.00


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3.2 Simulation study 2

We generated 100 eight-dimensional datasets, each of size n = 500,G = 3, and q = 3. Here, the parameters
µg and πg were the same as simulation study 1 but Σg was different for different components. We first ran
LNM-FA for both constrained and unconstrained models with G = 1, . . . , 4 and q = 1, . . . , 4, and then
applied PLNM-FA with q = 4. In all 100 datasets, the BIC selected an unconstrained model withG = 3 and
the tuning parameter s had a mean of 0.95 and sd 0.01. The average ARI of the selected PLNM-FA model is
1.00 (sd: 0.00). The LNM-FA and DMM both had an average ARI of 0.99 (sd: 0.002). The true values and
estimations of the parameters π, µg and Σg are provided in Table 3. Similar to simulation study 1, when the
true values of the entries in Σg were non-zero, our approach always identified these entries as non-zero and
the proportion of times when the true 0 values of the entries in Σg were estimated as non-zero are small.

Table 3: Generating parameters along with the averages and standard errors of the estimated values of the
parameters from the 100 datasets from Simulation 2.

True parameters Average of estimated parameters

(standard errors)

Component 1(n1 = 250)

π1 0.5 0.5 (0.02)

µ1 [1.2, 2.8, 0.4, -0.4, 1.2, 2.8, 0.4] [1.19, 2.79, 0.40, -0.40, 1.19, 2.80, 0.40]

(0.05, 0.04, 0.05, 0.06, 0.05, 0.05, 0.05)

Σ1



0.68 0.4 0 0 0 0 0

0.4 0.5 0 0 0 0 0

0 0 0.62 0.4 0 0 0

0 0 0.4 0.49 0 0 0

0 0 0 0 0.63 0.4 0.4

0 0 0 0 0.4 0.54 0.4

0 0 0 0 0.4 0.4 0.51





0.54 0.26 −0.00 −0.00 −0.00 −0.00 −0.00

0.26 0.39 −0.00 −0.00 0.00 −0.00 0.00

−0.00 −0.00 0.50 0.27 −0.00 0.00 −0.00

−0.00 −0.00 0.27 0.39 −0.00 0.00 −0.00

−0.00 0.00 −0.00 −0.00 0.48 0.26 0.25

−0.00 −0.00 0.00 0.00 0.26 0.41 0.27

−0.00 0.00 −0.00 −0.00 0.25 0.27 0.38



Proportion of times the elements of Σ̂1 is non-zero



1.00 1.00 0.04 0.14 0.10 0.20 0.20

1.00 1.00 0.11 0.19 0.11 0.20 0.22

0.04 0.11 1.00 1.00 0.10 0.16 0.19

0.14 0.19 1.00 1.00 0.12 0.23 0.22

0.10 0.11 0.10 0.12 1.00 1.00 1.00

0.20 0.20 0.16 0.23 1.00 1.00 1.00

0.20 0.22 0.19 0.22 1.00 1.00 1.00


Component 2(n2 = 150)

π2 0.3 0.3 (0.02)

µ2 [2, 1.6, 1.6, 2.4, 2, 1.6, 1.6] [2.00, 1.60, 1.60, 2.39, 1.99, 1.59, 1.60]

(0.07, 0.08, 0.07, 0.08, 0.08, 0.05, 0.06)
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Σ2



0.58 0.5 0.5 0 0 0 0

0.5 0.7 0.5 0 0 0 0

0.5 0.5 0.6 0 0 0 0

0 0 0 0.74 0.5 0 0

0 0 0 0.5 0.68 0 0

0 0 0 0 0 0.7 0.5

0 0 0 0 0 0.5 0.58





0.36 0.26 0.28 −0.00 −0.00 −0.00 −0.00

0.26 0.45 0.26 −0.00 −0.00 −0.00 −0.00

0.28 0.26 0.37 −0.00 −0.00 −0.00 −0.00

−0.00 −0.00 −0.00 0.54 0.23 0.00 −0.00

−0.00 −0.00 −0.00 0.23 0.49 0.00 −0.00

−0.00 −0.00 −0.00 0.00 0.00 0.49 0.29

−0.00 −0.00 −0.00 −0.00 −0.00 0.29 0.41



Proportion of times the elements of Σ̂2 is non-zero



1.00 1.00 1.00 0.12 0.11 0.12 0.17

1.00 1.00 1.00 0.03 0.02 0.04 0.08

1.00 1.00 1.00 0.09 0.08 0.05 0.08

0.12 0.03 0.09 1.00 0.95 0.00 0.03

0.11 0.02 0.08 0.95 1.00 0.02 0.05

0.12 0.04 0.05 0.00 0.02 1.00 1.00

0.17 0.08 0.08 0.03 0.05 1.00 1.00


Component 3(n3 = 100)

π3 0.2 0.2 (0.02)

µ3 [3.2, 0.4, -0.8, 1.2, 3.2, 0.4, -0.8] [3.20,0.40, -0.80, 1.20, 3.18, 0.39, -0.82]

(0.10, 0.10, 0.09, 0.09,0.08, 0.09, 0.08)

Σ3



0.8 0.6 0.6 0.6 0 0 0

0.6 0.85 0.6 0.6 0 0 0

0.6 0.5 0.65 0.6 0 0 0

0.6 0.6 0.6 0.76 0 0 0

0 0 0 0 0.7 0.6 0.6

0 0 0 0 0.6 0.69 0.6

0 0 0 0 0.6 0.6 0.82





0.43 0.22 0.23 0.24 0.00 −0.00 0.00

0.22 0.48 0.22 0.22 0.00 −0.00 0.00

0.23 0.22 0.33 0.23 0.00 0.00 0.00

0.24 0.22 0.23 0.40 −0.00 −0.00 0.00

0.00 0.00 0.00 −0.00 0.38 0.28 0.25

−0.00 −0.00 0.00 −0.00 0.28 0.38 0.23

0.00 0.00 0.00 0.00 0.25 0.23 0.47



Proportion of times the elements of Σ̂3 is non-zero



1.00 1.00 1.00 1.00 0.10 0.11 0.07

1.00 1.00 1.00 1.00 0.09 0.09 0.04

1.00 1.00 1.00 1.00 0.13 0.14 0.09

1.00 1.00 1.00 1.00 0.10 0.10 0.05

0.10 0.09 0.13 0.10 1.00 1.00 1.00

0.11 0.09 0.14 0.10 1.00 1.00 1.00

0.07 0.04 0.09 0.05 1.00 1.00 1.00


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3.3 Simulation study 3

Here, we study a scenario where different components have different number of latent factors and compare
the performance with competing models. We generated 100 eight-dimensional datasets, each of size n =

1000, G = 3 and q1 = 5, q2 = q3 = 1. Entries in µg and factor loading matrix Λg were generated from a
Gaussian distribution and elements of Dg were selected from a uniform distribution (details are provided in
the Appendix A.4). Furthermore, a randomly selected 30, 4 and 4 entries in Λ1, Λ2, and Λ3, respectively,
were set to be 0.

We first ran LNM-FA for both constrained and unconstrained models with G = 1, . . . , 4 and q =

1, . . . , 5, and then applied PLNM-FA with q = 5. In all 100 datasets, the BIC selected an unconstrained
three-component model and the tuning parameter s had a mean 0.95 (sd = 0.01). The average ARI of
the selected PLNM-FA model was 0.72 (sd = 0.11). On the other hand, in all 100 datasets, the LNM-FA
selected a G = 3, q = 1 with an average ARI of 0.54 (sd = 0.10) and the DMM selected a four-component
model with an average ARI with 0.00 (sd = 0). The estimated Σg along with the true Σg are provided
in the Appendix A.5. Although not all true zeros in the covariance matrices were shrunk completely to
zero, the average of the estimated values was close to 0 when the true values in the covariance matrix were
0. Furthermore, introducing sparsity in the covariance matrices via PLNM-FA showed an increase in the
clustering performance compared to LNM-FA.

3.4 Simulation study 4

Here, we aim to demonstrate the performance of the proposed model for datasets with higher dimensions.
We generated one hundred 51-dimensional datasets, each of size n = 300, G = 3, and q1 = q2 = q3 =

1. Similar to simulation study 3, the entries in µg and factor loading matrix Λg were generated from a
Gaussian distribution and elements of Dg were selected from a uniform distribution (details are provided in
the Appendix A.4). We then randomly selected 25 entries in each Λg to be 0.

We first ran LNM-FA for both the constrained and unconstrained models with G = 1, . . . , 4 and q =

1, . . . , 4, and then applied PLNM-FA with q = 3. The correct model (unconstrained three component model
with q = 1) was selected for 70 out of 100 data sets. For 26 out of the 100 datasets, the BIC selected a two-
component model (unconstrained with q = 1) and for 4 out of the 100 datasets, a four-component model
(unconstrained with q = 1) was selected. The selected tuning parameter s had a mean 0.99 and sd 0.004.
The average ARI of the final model selected by PLNM-FA was 0.99 (sd of 0.10). In this case, the LNM-
FA had an average ARI of 0.97 (sd = 0.09), however, DMM only selected a three-component model twice
resulting in an overall ARI with 0.16 (sd = 0.06). As the covariance matrix here is quite large, in Table 4, we
provide the average proportion of times a true 0 in a covariance matrix was estimated to be non-zero for each
component. While the numbers are higher compared to other simulation studies, in the high-dimensional
setting, it is challenging to estimate the true covariance matrix due to small number of observations, which
means it is harder to penalize those 0 entries as well.

4 Real data analysis

We applied our method to two publicly available microbiome datasets. To fit the most flexible model,
here we only focused on the unconstrained model as it allows for different covariance structure among the
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Table 4: Performance of PLNM-FA in simulation 3

Average proportion of times a true zero

Component entry was estimated to be non-zero ARI

1st 0.49 (0.24)

Simulation study 4 2nd 0.43 (0.22) 0.99 (0.10)

3rd 0.25 (0.15)

components.

FerrettiP Dataset: We applied our algorithm to the gut microbiome dataset FerrettiP (Ferretti et al.,
2018) available in the R package curatedMetagenomicData (Pasolli et al., 2017). The study consisted
of microbiome samples from 25 mother-infant pairs across multiple body sites from birth up to 4 months
postpartum. As microbiome samples from different body sites can be different, here we focus our analysis
on gut microbiome samples. We used only one time point (i.e., Day 1) for the newborns and conducted our
analysis at the genus level. The resulting dataset comprises of 42 individuals (23 adults and 19 newborns)
and 262 genera.

PehrssonE Dataset: We also applied our algorithm to the dataset PehrssonE (Pehrsson et al., 2016) avail-
able in the R package curatedMetagenomicData (Pasolli et al., 2017). Antibiotic-resistant infections
costs lives of hundreds of thousands of individuals annually in the world (Pehrsson et al., 2016). Pehrs-
son et al. (2016) studied the bacterial community structure and resistance exchange networks using faecal
samples from two low-income resource-limited Latin American habitats: 77 from peri-urban shanty-town in
Lima, Peru (PER) and 114 from rural village in El Salvador (SLV). Here, we also worked at the genus level,
resulting in a dataset comprising 191 individuals and 140 genera.

While information on 262 genera for FerrettiP and 140 genera for PehrssonE datasets are avail-
able, only a small proportion of these genera are different among the two groups (i.e., adults vs. infants for
FerrettiP dataset, and PER vs. SLV for PehrssonE dataset). For both datasets, our first step is to
identify group differentiating variables from the noise variables as having a large number of noise variables
may negatively impact the clustering performance. As we are using real datasets for illustrating clustering
performance when relevant group differentiating taxa are present, first we conducted differential abundance
analysis using the R package ALDEx2 (Fernandes et al., 2013, 2014; Gloor et al., 2016) to identify genera
that are different among the two groups. When this information is not available, one may run the cluster
analysis using the top x most abundant taxa (where x is arbitrary number). However, note that the top x
most abundant taxa may not be group differentiating for the condition of interest. We used the Welch’s t-test
option in ALDEx2 on the log-transformed counts for each genera and selected those genera with adjusted
p-value less than 0.1 (after Benjamini-Hochberg correction). The numbers of differentially abundant genera
for FerrettiP, and Pehrsson datasets are 8 and 21, respectively. To preserve the relative abundance,
the remaining genera are aggregated in a category “Others”, which is then used as the reference level for the
additive log-ratio transformation.

We first ran LNM-FA for G = 1, . . . , 4 for both datasets to select the optimal number of components.
Given the two datasets’ different dimensions, we set q = 1, . . . , 4 for FerrettiP dataset and q = 1, . . . , 6
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for Pehrsson dataset. After determining G, we then fit the PLNM-FA to both datasets and used BIC to
select the best fitting model. The BIC selected aG = 2 model with s = 0.6357 for PehrssonP dataset and
G = 2 with s = 0.2284 model for FerrettiP dataset. We also ran LNM-FA, DMM, and LNM-MM on
both datasets for G = 1 . . . 4 and comparison of the clustering performance of these approaches is provided
in Table 5.

The entries in Λg are the weights of the taxa contribution in forming the latent variables. Figure 3 shows
the estimated Λg for Feretti dataset.
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Figure 3: Heatmap of enties in Λ for FerrettiP dataset. The number stands for the value in Λg , and red
or blue colour stands for value being greater than 0 or less than 0, while a blank cell without any number

means that estimated value was exactly 0.

When no taxa contributes to a latent variable, then all entries in that column are shrunk to 0, thus reveal-
ing that latent variable is not needed. Therefore, when the number of latent variables are over-specified, our
approach also allows for the estimation of the number of latent factors q. For Feretti dataset, we fitted
PLNM-FA with q = 4 for both components. However, the estimated loadings for q = 2, 3, and, 4 are 0 for
all taxa for the first component indicating that one latent factor would be sufficient for the first component
while all four latent factors are needed to capture the covariance structure of the second component. The
heatmaps of the observed and estimated correlations between the log-ratio transformed taxa from both clus-
ters of Feretti dataset are shown in Figure 4. The correlation heatmap is calculated from Σ. As seen in
Figure 4, PLNM-FA recovers the underlying cluster correlation structure fairly well and when the observed
correlation is close to 0, our approach estimates it to be 0.

Similarly, although q = 6 was specified for all components for PLNM-FA for the Pehrsson dataset,
several columns of estimated Λ were all 0’s thus recommending that a lower q is sufficient for all components
(i.e., q = 2, q = 3, and q = 3 for components 1, 2, and 3 were selected respectively). See Figure 5 for the
visualization of the estimated Λg for Pehrsson dataset.
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Table 5: Summary of the clustering performances on both real datasets using best fitting unconstrained
model by PLNM-FA, LNM-FA, DMM and LNM-MM

Data Approach Estimated Classification Table ARI

(Model) G q

Infant Adult

PLNM-FA 2 (1, 4) Est. Group 1 18 1 0.81

Est. Group 2 1 22

Infant Adult

FerrettiP LNM-FA 2 1 Est. Group 1 18 1 0.81

Est. Group 2 1 22

LNM-MM - - - - - -

Infant Adult

DMM 2 - Est. Group 1 18 1 0.81

Est. Group 2 1 22

PER SLV

PLNM-FA 3 (2, 3, 3) Est. Group 1 41 0 0.38

Est. Group 2 33 34

Est. Group 3 3 80

PER SLV

PehrssonE LNM-FA 3 1 Est. Group 1 42 0 0.39

Est. Group 2 32 34

Est. Group 3 3 80

LNM-MM - - - - - -

PER SLV

DMM 4 - Est. Group 1 34 0 0.33

Est. Group 2 31 5

Est. Group 3 1 57

Est. Group 4 11 52



204 Tu and Subedi

Bacteroides

Alistipes

Parabacteroides

Subdoligranulum

Barnesiella

Propionibacterium

Faecalibacterium

Odoribacter

B
a

c
te

ro
id

e
s

A
lis

ti
p

e
s

P
a

ra
b

a
c
te

ro
id

e
s

S
u

b
d

o
lig

ra
n
u

lu
m

B
a

rn
e

s
ie

lla

P
ro

p
io

n
ib

a
c
te

ri
u

m

F
a

e
c
a

lib
a

c
te

ri
u

m

O
d

o
ri

b
a

c
te

r

−1

−0.5

0

0.5

1

Alistipes

Barnesiella

Propionibacterium

Bacteroides

Parabacteroides

Subdoligranulum

Faecalibacterium

Odoribacter

A
lis

ti
p

e
s

B
a

rn
e

s
ie

lla

P
ro

p
io

n
ib

a
c
te

ri
u

m

B
a

c
te

ro
id

e
s

P
a

ra
b

a
c
te

ro
id

e
s

S
u

b
d

o
lig

ra
n
u

lu
m

F
a

e
c
a

lib
a

c
te

ri
u

m

O
d

o
ri

b
a

c
te

r

−1

−0.5

0

0.5

1

(a) Observed correlation structures
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(b) Recovered correlation structures using PLNM-FA
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(c) Recovered correlation structures using LNM-FA

Figure 4: Heatmap of cluster-specific correlation structures in Infant and Adult for FerrettiP dataset

Note that not all taxa contribute to the latent factors and their weights vary from cluster to cluster. In
cluster 1, the weights of Buryrivibrio and Dorea are 0 for both latent factors whereas in cluster 2, the weights
of the Escherichia, Desulfovibrio, and Bilophila are 0 for all latent factors. The heatmaps of the observed
and estimated correlations between the log-ratio transformed taxa from both clusters of Pehrsson dataset
in Figure 6 show that our model recovered the underlying correlation structure fairly well.
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Figure 5: Heatmap of enties in Λ for PehrssonE dataset. The number stands for the value in Λg , and red
or blue colour stands for value greater than 0 or less than 0, while a blank cell without any number means

that estimated value was exactly 0.

When the observed correlation is very small, our approach estimates the correlation as 0. For example,
the estimated correlation between Bilophila and all other taxa are 0 in both Clusters 2 and 3. This agrees
with the very small observed correlation between Bilophila and all other taxa in Cluster 2 and 3. However,
in Cluster 1, Bilophila has a stronger positive or negative correlation with several taxa and therefore, the es-
timated correlations are non-zero. Thus, although in terms of clustering of the observations, both PLNM-FA
and LNM-FA provide competitive performance on this dataset, the proposed PLNM-FA introduces sparsity
in Λg and provides sparse estimations for Σg that could provide valuable insight into the underlying micro-
bial community structure. Furthermore, as can be seen in Figures 4 and 6, allowing the number of latent
variable (i.e., q) to vary among clusters and introducing sparsity on the elements of Λg resulted in a more
accurate recovery of the underlying correlation structure compared to PLNM-FA for both real datasets.

5 Conclusion
Here, we introduced a novel approach that provides a sparse covariance estimation of the covariance structure
for mixtures of LNM-FA models via L1 regularization of the elements of the factor loading matrix. Two
models are proposed by imposing constraints on the factor loading matrix to be equal or different across
groups. Due to the L1 regularization of the loading matrix in factor analyzer structure, entries can be
shrunk to zero when fitting data where observed covariances are close to 0, such that we can obtain a sparse
estimation of Σg . As shrinkage is applied to the entries, it allows for more flexibility in sparsity of the
covariance structure. Through simulation studies, we demonstrated that our proposed approach provides
excellent clustering performance and can recover sparsity in Σg . In cases where the algorithm did not
shrink entries to exactly 0, the estimated values were quite small and close to 0. Additionally, when the
number of latent factors are over-specified, our approach can also estimate the optimal number of latent
components by shrinking the weights of entire columns to 0. When a variable is not correlated with any
other variables in the model, the entire row in Λ for that variable will shrink to 0, resulting in an estimated
correlation of 0 for all variables. As compared to LNM-FA, which assumes the same number of latent
components for each cluster and relies on BIC to select optimal q, PLNM-FA allows different q in each
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(a) Observed correlation structures
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(b) Recovered correlation structures using PLNM-FA
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(c) Recovered correlation structures using LNM-FA

Figure 6: Heatmap of cluster-specific observed and recovered correlation structures for PehrssonE
dataset

Λ. Furthermore, introducing sparsity allows us to recover Σg more accurately than LNM-FA, and in some
cases, improves the clustering performance as well. In our analysis, we utilized the BIC for selecting the
optimal number of components, the model structure, and the tuning parameters. If the range of tuning
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parameter is not wide and dense enough, BIC may not be able to optimal s. Some future direction will
focus on investigating various approaches for tuning parameter selection. Our approach currently assumes
that there is one tuning parameter for all components which can be restrictive, especially in the cases where
the number of latent factors or the sparsity of Λg are different across different components. Considering
different tuning parameter in different components can help in increasing the clustering performance and
improvement in the recovery of the underlying correlation structure, but it is very computational intensive.
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Meinshausen, N. and Bühlmann, P. (2006), “High dimensional graphs and variable selection with the
LASSO,” The Annals of Statistics, 34, 1436–1462.

Meng, X.-L. and Van Dyk, D. (1997), “The EM algorithm—an old folk-song sung to a fast new tune,”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59, 511–567.

Metwally, A. A., Aldirawi, H., and Yang, J. (2018), “A review on probabilistic models used in microbiome
studies.” Communications in Information and Systems, 18, 173–191.

Pasolli, E., Schiffer, L., Manghi, P., Renson, A., Obenchain, V., Truong, D. T., Beghini, F., Malik, F., Ramos,
M., Dowd, J. B., Huttenhower, C., Morgan, M., Segata, N., and Waldron, L. (2017), “Accessible, curated
metagenomic data through ExperimentHub,” Nature Methods, 14, 1023–1024.

Pawlowsky-Glahn, V., Egozcue, J. J., and Tolosana-Delgado, R. (2007), “Lecture Notes on Compositional
Data Analysis,” .

Pehrsson, E., Tsukayama, P., Patel, S., Mejı́a-Bautista, M., Sosa-Soto, G., Navarrete, K., Calderon, M.,
Cabrera, L., Hoyos-Arango, W., Bertoli, M., Berg, D., Gilman, R., and Dantas, G. (2016), “Interconnected
microbiomes and resistomes in low-income human habitats,” Nature, 533, 212–216.

Rothman, A. J., Levina, E., and Zhu, J. (2010), “A new approach to Cholesky-based covariance regulariza-
tion in high dimensions,” Biometrika, 97, 539–550.

Schwarz, G. (1978), “Estimating the dimension of a model,” The Annals of Statistics, 6, 461–464.

Spearman, C. (1904), “The proof and measurement of association between two things,” The American Jour-
nal of Psychology, 15, 72–101.

Subedi, S., Neish, D., Bak, S., and Feng, Z. (2020), “Cluster analysis of microbiome data via mixtures of
Dirichlet-multinomial regression models,” Journal of Royal Statistical Society: Series C, 69, 1163–1187.

Subedi, S., Punzo, A., Ingrassia, S., and Mcnicholas, P. D. (2013), “Clustering and classification via cluster-
weighted factor analyzers,” Advances in Data Analysis and Classification, 7, 5–40.

Taie, W. S., Omar, Y., and Badr, A. (2018), “Clustering of human intestine microbiomes with k-means,” in
2018 21st Saudi Computer Society National Computer Conference (NCC), IEEE, pp. 1–6.

Tibshirani, R. (1996), “Regression Shrinkage and Selection Via the Lasso,” Journal of the Royal Statistical
Society: Series B (Methodological), 58, 267–288.

Tu, W. and Subedi, S. (2021), “Logistic Normal Multinomial Factor Analyzers for Clustering Microbiome
Data,” ArXiv preprint arXiv:2101.01871.



210 Tu and Subedi

Wadsworth, W. D., Argiento, R., Guindani, M., Galloway-Pena, J., Shelburne, S. A., and Vannucci, M.
(2017), “An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic
abundances in microbiome data,” BMC Bioinformatics, 18, 1–12.

Wainwright, M. J., Jordan, M. I., et al. (2008), “Graphical models, exponential families, and variational
inference,” Foundations and Trends in Machine Learning, 1, 1–305.

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.-Y., Keilbaugh, S. A., Bewtra, M., Knights,
D., Walters, W. A., Knight, R., et al. (2011), “Linking long-term dietary patterns with gut microbial
enterotypes,” Science, 334, 105–108.

Xia, F., Chen, J., Fung, W. K., and Li, H. (2013), “A logistic normal multinomial regression model for
microbiome compositional data analysis,” Biometrics, 69, 1053—1063.

Xie, B., Pan, W., and Shen, X. (2010), “Penalized mixtures of factor analyzers with application to clustering
high-dimensional microarray data,” Bioinformatics, 26, 501–508.

Received: June 9, 2022

Accepted: February 8, 2023

A Mathematical Details
Fang and Subedi (2020) first introduced the ELBO for the LNM mixture model and Tu and Subedi (2021)
simplified this further. While the ELBO for the LNM model is the same as Tu and Subedi (2021), we are
providing the details here in the Appendix for completeness.

A.1 ELBO for LNM model

First, we decompose F (q(y),w) into 3 parts:

F (q(y),w) =

∫
q(y) log f(w|y)dy +

∫
q(y) log f(y)dy −

∫
q(y) log q(y)dy.

where q(y) ∼ N(m,V). The second and third integral (i.e. Eq(y)(log f(y)) and Eq(y)(log q(y))) have
explicit solutions such that

Eq(y)(log f(y)) = −K
2

log(2π)− 1

2
log |Σ| − 1

2
(m− µ)TΣ−1(m− µ)− 1

2
tr(Σ−1V)

and
−Eq(y)(log q(y)) =

1

2
log |V|+ K

2
+
K

2
log(2π).

Note that V is a diagonal matrix. As for the first integral, it has no explicit solution because of the
expectation of log sum exponential term:

Eq(y)(log f(w|y)) = C +w∗Tm−

(
K+1∑
k=1

wk

)
Eq(y)

[
log

K+1∑
k=1

exp yk

]
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where w∗ represents a K dimension vector with first K elements of w, yK+1 is set to 0 and C stands for
log 1Tw!∏K

k=1wk!
. Blei and Lafferty (2007) proposed an upper bound for Eq(y)

[
log
(∑K+1

k=1 exp yk

)]
as

Eq(y|m,V)

[
log

(
K+1∑
k=1

exp yk

)]
≤ ξ−1

{
K+1∑
k=1

Eq(y|m,V) [exp(yk)]

}
− 1 + log(ξ), (A.1)

where ξ ∈ IR is introduced as a new variational parameter. Fang and Subedi (2020) utilized this upper
bound to find a lower bound for Eq(y)(log f(w|y)). Here we further simplify the lower bound by Blei and
Lafferty (2007). Let Z =

∑K+1
k=1 exp(yk), then we have:

Eq(y)

[
log

(
K+1∑
k=1

exp yk

)]
≤ logEq(y)

(
K+1∑
k=1

exp yk

)
= log

[
K∑
k=1

exp

(
mk +

v2k
2

)
+ 1

]
,

where mk, v
2
k stands for kth entry of m and the kth diagonal entry of V. The two upper bounds are equal

when we minimize A.1 with respect to ξ. .
Combining all 3 parts together, we have the approximate lower bound for log f(w):

F̃ (q(y),w) = C +w∗Tm−

(
K+1∑
k=1

wk

){
log

[
K∑
k=1

exp

(
mk +

v2k
2

)
+ 1

]}
+

1

2
log |V|+ K

2
− 1

2
log |Σ| − 1

2
(m− µ)TΣ−1(m− µ)− 1

2
tr(Σ−1V)

A.2 ELBO for cycle 2

Same as the LNM-FA by Tu and Subedi (2021), in the second cycle, we have

F (q(u,y),w) =

∫
q(u,y) log

f(w,u,y)

q(u,y)
dydu

=

∫
q(u,y) log f(w|u,y)dydu+

∫
q(u,y) log f(u,y)dydu

−
∫
q(u,y) log q(u,y)dydu.

Furthermore, we assume that q(u,y) = q(u)q(y), u ∼ N(m̃, Ṽ) and y ∼ N(m,V). Thus, the first term
can be written as: ∫

q(u,y) log f(w|u,y)dydu =

∫
q(u)q(y) log f(w|y)dydu

=

∫
q(y) log f(w|y)dy

This is identical to the first term in the ELBO in the first cycle and thus its lower bound is∫
q(u,y) log f(w|u,y)dydu ≥ C +w∗Tm−

(
K+1∑
k=1

wk

){
log

(
K∑
k=1

exp

(
mk +

v2k
2

)
+ 1

)}
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The third term is

−
∫
q(u,y) log q(u,y)dydu =

1

2

(
log |V|+ log |Ṽ|+ q +K + (K + q) log 2π

)
.

The second term is∫
q(u,y) log f(u,y)dydu =

∫
q(u)q(y) log[f(y|u)f(u)]dydu

= Eq(u)Eq(y)(log f(y|u)f(u))

=− 1

2

{
(q +K) log(2π)− log |D| − m̃T m̃− tr(Ṽ)− tr(ΛTD−1ΛṼ)

− tr
(
D−1(V + (m− µ)T (m− µ))

)
+ 2(m− µ)TD−1Λm̃

−m̃TΛTD−1Λm̃
}
.

Overall, the ELBO in second cycle is:

F (q(u,y),w) ≥ C +wTm−

(
K+1∑
i=1

wi

){
log

(
K∑
k=1

exp

(
mk +

v2k
2

)
+ 1

)}
+

1

2
(log |V|+ log |Ṽ|+ q +K − log |D| − m̃T m̃− tr(Ṽ)−

tr(D−1(V + (m− µ)T (m− µ))) + 2(m− µ)TD−1Λm̃−
m̃TΛTD−1Λm̃− tr(ΛTD−1ΛṼ))

where m and V are calculated from first stage.

A.3 Parameter estimation for constrained PLMN-FA model

Here, we will obtain the parameter estimates for constrained PLMN-FA model with the constraint Λg = Λ.
Let [Λg]ij represents the ith row and jth column of Λg , and i = 1 . . .K, j = 1 . . . q. [Λg]i(−j) represents
the entire ith row of Λg but without the jth entry.

1. When [Λ]ij > 0, taking derivative of the variational penalized log likelihood l̃2 with respect to [Λ]ij
gives us:

∂l̃2
∂[Λ]ij

= [

G∑
g=1

ng(D
−1
g Sgβ

T
g −D−1g Λθg)]ij −

s

1− s
, where ng =

n∑
i=1

zig.

After simplification, the solution is:∑G
g=1 ng[D

−1
g ]ii

(
[Sgβ

T
g ]ij − [Λ]i(−j)[θg](−j)j

)
− s

1−s∑G
g=1 ng[D

−1
g ]ii[θg]jj

If the solution less than 0, then we assign [Λ]ij = 0.
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2. When [Λ]ij < 0, the solution is∑G
g=1 ng[D

−1
g ]ii

(
[Sgβ

T
g ]ij − [Λ]i(−j)[θg](−j)j

)
+ s

1−s∑G
g=1 ng[D

−1
g ]ii[θg]jj

If the solution greater than 0, then we assign [Λ]ij = 0. After setting Λ1 = Λ2 = . . . = Λg = Λ, the
estimates of the rest of the parameter remains unchanged.

A.4 True parameters for Σg in simulation studies

True Λ for Σ in simulation study 1:
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0.6 0.00

0.00
√

0.6

0.00
√

0.6

0.00
√

0.6


TrueDg in Simulation 2.

D1 = diag [0.28, 0.1, 0.22, 0.09, 0.23, 0.14, 0.11]

D2 = diag [0.08, 0.2, 0.1, 0.24, 0.18, 0.2, 0.08]

D3 = diag [0.2, 0.25, 0.05, 0.16, 0.1, 0.09, 0.22]

True parameter generation for simulation study 3:

1. µ1 ∼ N(−0.3, 0.1), µ2 ∼ N(0.1, 0.1), and µ3 ∼ N(0.5, 0.1).

2. Λ1 ∼ N(0, 1), Λ2 ∼ N(0, 0.1), and Λ3 ∼ N(0, 0.1).

3. Diagonal elements ofDg ∼ Uniform(0, 0.4)

True parameter generation for simulation study 4:

1. µ1 ∼ N(0.2, 1), µ2 ∼ N(−0.2, 1), and µ3 ∼ N(0, 1).

2. Λg ∼ N(0, 0.1).

3. Diagonal elements ofDg ∼ Uniform(0, 0.05).

A.5 Estimated Σg for simulation study 3
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