
Journal of Statistical Research https://doi.org/10.3329/jsr.v57i12.72965
2023, Vol. 57, No. 1-2, pp. 1-19 ISSN 0256 - 422 X

MODELING OF ORDINAL LONGITUDINAL ACCELEROMETER DATA

DREW M. LAZAR?

Department of Mathematical Sciences, Ball State University, Muncie, IN 47304
Email: dmlazar@bsu.edu

FATIMAH ALAWAD

Department of Mathematical Sciences, Ball State University, Muncie, IN 47304
Email: fkalawad@bsu.edu

MUNNI BEGUM

Department of Mathematical Sciences, Ball State University, Muncie, IN 47304
Email: mbegum@bsu.edu

ALEXANDER H.K. MONTOYE

Integrative Physiology and Health Science, Alma College, Alma, MI 48801
Email: montoyeah@alma.edu

SUMMARY

Improvements in accelerometer technology has led to new types of data on which more
powerful predictive models can be built to assess physical activity. This paper implements
an ordinal random forest model with recursive forecasting to take into account the ordinal,
longitudinal nature of responses. The data comes from 28 adults performing activities of
daily living in two visits, while wearing accelerometers on the ankle, hip, right and left
wrist. The first visit provided training data and the second testing data so that an indepen-
dent sample, cross-validation approach could be used. For this type of data, prior responses
are not available at the testing stage or in practice. However, recursive forecasts can be
made with prior predictions in place of lagging responses on models which were built to
use lagging responses as explanatory variables. Models are fit to account for multiple time
series, with different time series for each participant in the study. We found that ordinal
random forest, when the time series is taken into account, produces better accuracy rates
and better linearly weighted kappa values than both ordinary ordinal forest and random for-
est. On the testing set, the lowest error rates were produced by the ankle (28.0%), followed
by the left wrist (28.7%), hip (28.9%) and then the right wrist (30.2%) using the best per-
forming decision model for a four-activity level response. In addition, linearly weighted
kappa values indicated substantial agreement. The approach of this work can be adapted to
other types of longitudinal ordinal models for improvements in modeling techniques.
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1 Introduction

Accelerometers are devices that track acceleration forces in three orthogonal directions. They have
been used to objectively assess levels of physical activity since the first physical activity sensor
based on accelerometers were developed in the 1980s. Since then, the power, battery space, size,
and accuracy of the hardware of these accelerometer-based physical activity sensors (which we
now refer to as accelerometers) has improved dramatically. Recently, researchers have been able to
view and use raw signal acceleration data instead of relying on count thresholds to predict physical
activity responses (Troiano et al., 2014). This raw data is large, as it contains acceleration signals
at 30-100 measurements per second along the x, y, and z axes. Therefore, there are computational
difficulties in processing physical activity information reliably and accurately from raw signal data
for acceleration.

One method that has been implemented is to summarize raw acceleration data into every-30-
second epochs (Montoye et al., 2017b,a; Lazar et al., 2020). These summaries make up new ex-
planatory variables and consist of summaries for each axis of acceleration and summaries of pair-
wise associations between these axes. The summaries consist of the mean, variance, minimum,
limits, quartiles and the pair-wise correlation coefficients between the x and y, x and z and y and z
axes. This new, summarized explanatory data, along with the level of measured or observed activity
level in each 30 second epoch, can be used to create statistical decision models. Decision trees, ran-
dom forests, boosting and bagging, parametric linear and nonlinear models, and neural networks,
among others, are types of models used for this purpose (Montoye et al., 2017a, 2018; De Vries
et al., 2011).

The activity level response in our data has four ordered classes, sedentary behavior (SED), light
physical activity (LPA), moderate physical activity (MPA) and vigorous physical activity (VPA) and
we use different methods to predict the response taking this into account. Specifically, the level
of activity that a participant engages in during a particular period informs the level of activity that
the participant engages in subsequent periods. For example, if a participant engages in LPA in a
particular epoch, the participant is more likely to engage in LPA or MPA in the next epoch than
VPA. Thus, we account for the temporal, time-series nature of the responses. As there are multiple
participants’ activity levels represented in our data set, we need to account for multiple time series
in our models. In addition, taking into account ordinality is a crucial consideration in building
statistical models (Brant, 1990). For our data, we consider a modification of random forest known
as ordinal forest that takes into account the ordinality of the responses.

Accelerometer data is often multiple time series, sampled over periods of exercise and movement
for different participants. At the same time, the responses in training sets are often measured in
ordinal classes of activity levels. Our motivation for this research is to integrate these two important
features in order to improve the accuracy and the quality of models of accelerometer data. This is a
novel approach to modeling this type of data, and these methods can be improved and extended to
data from other physiological studies and to data from other domains as well.
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2 Background

Accelerometers have been used to objectively measure levels of physical activity since the 1980’s.
During the 1990’s the use of accelerometers for this purpose increased greatly. From 1981 to 1996
there was an average of 10 articles per year on the use of accelerometers in physical activity research,
and by 2013-2014 this average had increased to an average of 600 articles per year (Troiano et al.,
2014).

Over this time period, there has been steady movement from using activity count thresholds, to
using sums of acceleration signals over epochs, to using the raw acceleration signals in three axes
for analysis and prediction of the level of activity engaged in by a wearer of an accelerometer (Acti-
GraphCorp, 2017).

There has been extensive literature using this latter approach. These use a number of different
types of statistical and prediction models as well as analyze different placements, different ways
of measuring level of activity and specific uses of accelerometers in predicting physical activity
levels. For example, ensemble methods based on decision trees such as bagging, boosting and
random forest have been utilized in Montoye et al. (2018), Ellis et al. (2014), Lazar et al. (2020)
and Pavey et al. (2017), among others. Parametric and linear models to analyze accelerometer data,
including interpretation of coefficients and significance of variables, have been explored in Montoye
et al. (2017a), Lazar et al. (2020) and Robert et al. (2009). Neural networks and deep learning
have also been employed in De Vries et al. (2011), Nawaratne et al. (2020) and Montoye et al.
(2017a). The longitudinal, time series nature of accelerometer data has been considered in modeling
and prediction. Tan et al. (2019) employed long short-term memory (LSTM) networks to learn order
dependence in a sequence predictions from accelerometer data. Hidden Markov models, which make
Markov assumptions about the sequence of observable activity levels in practice and incorporate the
influence of the latent activity levels in the unobservable states, are considered in Witowski et al.
(2014), Nickel et al. (2011) and Leos-Barajas et al. (2017).

Amato et al. (2024) and references therein presents methods based on finite mixtures of matrix-
variate distributions to address the clustering problem of longitudinal ordinal data. They considered
a model based clustering algorithm with the assumption that the ordinal variable can be represented
as a discretized version of an underlying latent continuous variable.

Recursive forecasting with prior predictions has been similarly implemented in De Vries et al.
(2011) as “lag-one autocorrelation” in neural networks and Ellis et al. (2014) implemented it in ran-
dom forest. In both cases, these produced improved prediction accuracy. The background and imple-
mentations of this approach is seen in Branch and Evans (2006), Ng and Young (1990) and Tyralis
and Papacharalampous (2017).

Considering the ordinality of responses and weights according to different types of misclassifi-
cation is an idea that was introduced over thirty six years ago in Breiman et al. (1984) with the first
formulation of decision trees. Recently, new ways of integrating the order of responses in ensemble
methods have been introduced, such as in Hornung (2019) and Janitza et al. (2016). These methods
show slight improvements in error rates for large data sets but improvements in assessment measures
that account for ordinality. This is the case where the ordinal forest method in Hornung (2019) is ap-
plied in Hossain et al. (2021) to accelerometer data to predict a four-level ordered activity response.
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Sasaki et al. (2016) notes overall error rates of classification algorithms of free-living physical
activity from explanatory accelerometer data above an “acceptable” rate of 20%. Using recursive
forecasting and taking into account previous prior predictions in testing and in practice in ordinal
models, is meant to address such error rates and to consider and incoporate all relevant information
into building prediction models.

3 Methodology

We used data collected from two separate visits to the Ball State Clinical Exercise Physiology Lab-
oratory. These visits were designed to produce training and testing sets, respectively, for model
building and testing. We analyzed this data accordingly, with random forest models, ordinal forest
models and recursive forecasting models with one, two and three lag periods.

3.1 Accelerometer Data

The data that we used consists of 29 variables, 28 of which are explanatory. The single response
variable is the physical activity intensity level of the participant with possible values of SED, LPA,
MPA and VPA. Four of the explanatory variables are time-invariant demographic information of
the participants (age, height, weight, sex) and 24 features are summary statistics of raw signal ac-
celerometer data summarized into every 30-second epochs. The data along each axis consists of
summaries for each axis (mean, variance, minimum, maximum, and upper percentiles) and sum-
maries of pair-wise correlations between these axes. Participants wore accelerometers on the hip,
left and right wrists and on the ankle. By applying our models to a data set with the same variables
that is collected independently from the training set, i.e., by using a test set, the predictive ability of
these models is evaluated.

For the response variable, the 2011 Compendium of Physical Activities (Ainsworth et al., 2011)
provided MET (metabolic Equivalent of Task) values for each activity. Intensities were set in four
categories as: ≤ 1.5 METs as SED, 1.6-2.9 METs as LPA, 3.0-5.9 METs as MPA, and ≥ 6 as
vigorous VPA. Observed activities and their intensities according to the MET scale served as the
ground truth for development of prediction models using accelerometer data.

3.2 Participants and Data

There were 30 participants in the study who provided the accelerometer data that is analyzed in this
paper. Two separate visits were made by each of these participants to the Ball State Clinical Exercise
Physiology Laboratory. These visits were planned to generate training and testing sets for model
development and research. There were no orthopedic restrictions on any of the 30 participants. Ten
adults of five females and five males were drawn from each of the three groups of ages 18-39, 40-59,
and 60-79. In these age groups, there is a well-established variability in activity levels (Caspersen
et al., 2000; Sallis, 2000) and this distribution of participants allows models to be developed for
the general adult population. The distribution of the 1408 observations in the SED class in our
training data was 27.8 percent in 18-39, 34.9 percent in 40-59, and 37.3 percent in 60-79, and the



Modeling of Ordinal Longitudinal Accelerometer Data 5

distribution of the 298 observations in the VPA class was 50 percent in 18-39, 37.6 percent in 40-59
and 12.4 percent in 60-79. Overall, each of the the associations between age group and activity level,
BMI (from height and weight) level and activity level, and sex and activity level were statistically
significant in the training set according to a chi-squared test at significance level α = 0.05. Two
participants had invalid data during data collection, resulting in the data set for our sample of 28
individuals. Table 1 displays the participants’ demographic statistics.

Table 1: Demographics of Subjects

Total Sample Male n = 14 Female n = 14

Age (years) 48 (19.6) 48.5 (19.83) 47.6 (20.15)

Weight (in lbs) 176 (34.72) 194.96 (27.53) 157.3 (31.32)

Height (in inches) 68.5 (3.52) 71 (2.62) 65.9 (2.3)

BMI 26.4 (4.16) 27.03 (3.07) 25.8 (5.07)

In Table 2, we see the distribution of activity levels in the next epoch given activity levels in
the previous epoch for our 28 participants in the training set. For example, we see that when a
participant is engaged in sedentary activity, then in 88.89% of the next epochs they are engaged in
SED activity, 10.94% of the next epochs they are engaged in LPA, 00.27% of the next epochs they
are engaged in MPA, and 00.00% of the time they are engaged in VPA. In Figure 1, we see a typical
autocorrelation plot for a participant in the study, in this case, a 47 year old male, with a BMI (Body
Mass Index) of 34.23. The horizontal access gives the lag in the series of activity level responses
(coded 1 through 4) and the vertical access gives the correlation between observations with that lag.
We see significant (outside the dashed line), but steadily decreasing correlation as the lag period is
increased. In table 3, the lag correlations for the first 9 lags in the training set are computed for all
participants in the training set, and the average correlations are taken.

Table 2: Distribution of the next activities (Row Percentages in Parenthesis)

Activity Level SED LPA MPA VPA

SED 1307 (88.89∗) 161 (10.94) 4 (00.27) 0 (00.00)

LPA 139 (9.96) 1048 (75.13) 207 (14.84) 1 (≈ 0)

MPA 7 (00.63) 183 (16.38) 877 (78.51) 50 (04.48)

VPA 18 (05.56) 29 (08.95) 3 (00.93) 274 (84.57)
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Figure 1: Autocorrelation Plot: Male, Age 47, BMI of 34.23

Table 3: Average Lag

Lag 0 1 2 3 4 5 6 7 8 9

AC 1.000 0.769 0.643 0.560 0.484 0.421 0.367 0.322 0.289 0.269

3.3 Protocol

Two exercise laboratory visits, visit 1 followed by visit 2, were used to collect accelerometer data.
Visit 1 generated the training data for the construction of our models and visit 2 generated the test
data for assessment.

In visit 1, participants were closely supervised by research staff and planned to provide a variety
of activities of different intensities and speeds to fully train the model. Participants completed 11
tasks, beginning with 10 minutes of lying on a padded table. Then from Table 4, 10 tasks were
allocated. Two from the sedentary category were selected for each participant, four from the cat-
egory of lifestyle/chore activity, and four from the category of ambulatory/exercise were selected.
These activities were selected at random and in such a way that about the same number of par-
ticipants performed all the activities under each of the categories. For five minutes, and the task
was performed, with the order of activities progressing from sedentary to lifestyle/chore to out-
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Table 4: Activities during visit

Sedentary Lifestyle/Chore Ambulatory/Exercise

Reading, using a computer,

watching television, writing,

playing cards.

Standing, dusting, making

a bed, folding laundry,

sweeping, vacuuming,

simulated gardening,

picking up items from the

floor.

Slow/fast overground

walking, treadmill walking,

overground jogging,

treadmill jogging,

stationary cycling,

ascending stairs,

descending stairs.

patient/exercise. Two from the sedentary category were selected for each participant, four from
the category of lifestyle/chore activity, and four from the category of ambulatory/exercise were se-
lected. These activities were selected at random and in such a way that about the same number of
participants performed all the activities under each of the categories. For five minutes, and the task
was performed, with the order of activities progressing from sedentary to lifestyle/chore to outpa-
tient/exercise. Between operations, there was a 1-2 minute pause. Participants were asked to conduct
sedentary exercises and lifestyle/chore operations as they would in their everyday lives. They were
expected to maintain a consistent pace and intensity for the ambulatory/exercise activities.

In visit 2, study staff provided less structure than visit 1, with participants engaging in activities
in the way they would in their everyday lives. This method has been previously used for generat-
ing testing data to assess the generalizability of models to free-living settings (Sasaki et al., 2016;
Montoye et al., 2017b). Sixteen activities were performed by participants, each conducted for two to
fifteen minutes. The participants were instructed to choose four activities from the sedentary group,
four from the category of lifestyle/chore, and four from the category of outpatient/exercise. As pre-
vious research suggests that adults are often engaged in sedentary activity Montoye et al. (2017a);
Statistics (2008), participants were asked to perform at least 40 minutes of sedentary activity. Unlike
visit 1, visit 2 participants were able to select the time they spent performing activities, the activities
to perform, and the order in which to perform them, within a structure.

In both visits, each participant wore four ActiGraph GT9X Connect accelerometers on the left
and right wrists, right hips, and right ankles. The standard positioning was on the hip with count-
based activity level estimation, but new placements have increasingly been more widely used, like
the ankle and wrist. For better enforcement, particularly when worn on the wrist, and for enhanced
ability to monitor such movement metrics, including measures, when worn on the ankle, these ad-
ditional positions are selected. Models designed using thigh accelerometer data have demonstrated
greater accuracy than hip or wrist-worn accelerometers, but less convenience and lower conformity
with the location of the thigh accelerometer have also been recorded. At a rate of 60 samples per sec-
ond, the accelerometers were initialized to collect acceleration data along the x, y, and z axes. Data
were summed with characteristics such as mean, variance, minimum, maximum, and 70th, 80th,
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and 90th percentile, and pair-wise axis associations over each epoch, in 30-second non-overlapping
epochs. The demographic variables were also reported in the data for each participant’s sex, age,
height, and weight.

MET (Metabolic Equivalent of Task) values were observed by study staff for each activity ac-
cording to the 2011 Compendium of Physical Activities Ainsworth et al. (2011). Intensities of op-
erations were classified in four categories: ≤ 1.5 METs as sedentary (SED), 1.6-2.9 METs as mild
(LPA), 3.0-5.9 METs as moderate (MPA), and ≥ 6 as vigorous (VPA). In both visits, participants
took one to two minutes of rest at the end of each task before beginning the next activity. For the
creation of prediction models using accelerometer data, these observed events and their intensities
according to the MET scale served as the ground reality. This data was inserted into the data col-
lection in accurate 30-second epochs until ground truth data were coded according to an operation
speed.

4 Models

4.1 Random Forest

We implemented the random forest algorithm from the R randomForest package (Brieman et al.,
2018). We used common specifications of the numerous features of random forest when construct-
ing these models. Random forest requires that many decision trees are created from repeated boot-
strap samples from the data. We took these bootstrap samples with replacement and when creating
decision trees, we choose splits at nodes through the Gini impurity index (Tangirala, 2020). To avoid
overfitting and undue influence of particular variables, a subset of explanatory variables is chosen at
random for creating each tree. The number of such variables used for each tree was set as the square
root of the number of variables. Majority voting was used to make decisions from new observations
in testing. The splitting criteria, and decision voting of the random forest models, did not account
for the ordinal nature of the responses.

4.2 Ordinal Forest

We implemented the ordinal forest algorithm from the R package ordinalForest (Hornung, 2019).
Ordinal responses in our accelerometer data can be assigned numeric values and regression forests
(Breiman, 2001) can be used for prediction. As quantitative data is at a higher level of measure-
ment than ordinal data, this would account for ordinality, but because of the arbitrariness of these
assignments, this approach is shown to not lead to improvements in model quality (Hornung, 2019).
Instead, as summarized in Hossain et al. (2021), ordinal forest proceeds as follows:

1. Choose a large number of random, heterogeneous partitions of [0, 1] by J intervals, where J
is the number of classes in the response (J = 4, in our case).

2. Represent each of the J classes by the midpoints of respective, ordered intervals in the parti-
tion.
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3. For each representation of classes in the response variable by midpoints in 2., build a regres-
sion forest.

4. The representations used in the random forests built in 3. with the smallest out-of-bag errors
are averaged. The regression forest built on that summary is the resulting model from ordinal
forest.

In computing out-of-bag errors in step 3. above, different performance functions can be chosen,
each of which emphasize different objectives of the model. We used the “proportional” performance
function, which attempts to lower error rates from the larger classes at the expense of smaller ones
and thus, attempts to lower the overall error rate.

4.3 Recursive Forecasting with Multiple Time Series

As shown in section 3.2, physical activity levels inform later physical activity levels for each partic-
ipant. Thus, we use recursive forecasting to make predictions (Taieb et al., 2012).

Models created from accelerometer data are used to make assessments of physical activity levels
without direction observation (Ward et al., 2005). Thus, we do not use a direct time series approach,
because in testing, only accelerometer data and demographic information and not prior physical
activity levels, are available for making predictions. Instead, prior predictions of activity levels,
along with accelerometer information and demographic information, are used to forecast activity
levels.

In addition, each participant engages in activity, independent of every other participant and has
their own longitudinal measurements of activity levels. Thus, we build our recursive forecasting
models for each participant, and in testing we take weighted averages of predictions of each model’s
predictions, with the weights informed by variable importance and similarity in demographic vari-
ables of the testing and training observations.

4.3.1 Ordinal Forest Models with Lagging Variables

For each participant h in the training set, we fit an ordinary, ordinal forest model and ` time series
models with ordinal forest. For time series model k = 1, . . . , `, we use k lagging values of the
response variable as k additional explanatory variables. From training participant h, we denote the
ordinal forest model that uses no lagging variables by ofh,0 and the ordinal forest model that uses k
lagging periods by

ofh,k for k = 1, . . . , `.

4.3.2 Recursive Prediction by Model Voting

For participant r in the testing set and for ` lagging periods we make predictions by recursive fore-
casting. For k = 1, . . . , ` we make weighted predictions from

of1,k, . . . , ofT,k
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where T is the number of training participants. We denote the models that produce weighted pre-
dictions for test participant r as wrofk for k = 1, . . . , `. The weights that wrofk, for k = 1, . . . , `,
uses to make predictions from models of1,k, . . . , ofT,k are determined as in section 4.3.3.

To make predictions for the n observations of participant r in the testing set we proceed as
follows.

1. Add the “pseudo-lagging” variables sl1, . . . , sl` to the testing data, which will have as values
prior predictions from our models wrof0, wrof1, . . . , wrof`. We denote the jth entry of sli
by slj,i.

2. Obtain the first ` predictions from our recursive forecasting model as follows:

Step 1. Make a prediction on observation 1 from the testing set usingwrof0. Call this prediction
op1.

Step 2. Set sl2,1 equal to op1. Make a prediction on observation 2 from the testing set and sl2,1,
using wrof1. Call this prediction op2.

Step 3. Set sl3,1 equal to op2, and set sl3,2 = sl2,1. Make a prediction on observation 3, from
the testing set and sl3,1, sl3,2 using wrof2. Call this prediction op3.

...
...

...
...

Step `. Set sl`,1 equal to op`−1 and set

sl`,2 = sl`−1,1, . . . , sl`,`−1 = sl`−1,`−2.

Make a prediction on observation ` from our testing set and sl1,`, . . . , sl`,`−1 using
wrof`−1. Call this prediction op`.

3. For g = `+ 1 to n, set slg,1 = opg−1 and by set

slg,2 = slg−1,1, . . . , slg,` = slg−1,`−1.

Make a prediction on observation g of our testing set and slg,1, . . . , slg,` using wrof`. Call
this prediction opg .

In Table 5, we demonstrate the recursive forecasting process with ` = 4 lagging periods. For
each observation in the testing set, one of wrofk, for k = 1, . . . , `, makes a prediction from the
values of the explanatory variables in the corresponding row. These explanatory variables are ac-
celerometer information and values of the “psudeo-lagging” variables which are prior predictions.
Models wrofk for k = 1, . . . , ` are specified in section 4.3.3.

4.3.3 Training model weights

We first fit a full ordinal forest model, with accelerometer information and demographic variables,
to all the training data. As explained in section 4.2, this returns final prediction intervals and their
midpoints, m1, . . . ,mc, where c is the number of ordinal classes (c = 4 in our data). The ordinal
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Table 5: Recursive Prediction for Participant r in Testing with ` = 4

Obs x1 x2 . . . xp sl1 sl2 sl3 sl4 Model Prediction

1 x11 x12 . . . x1p wrof0 op1

2 x21 x22 . . . x2p op1 wrof1 op2

3 x31 x32 . . . x3p op2 op1 wrof2 op3

4 x41 x42 . . . x4p op3 op2 op1 wrof3 op4

5 x51 x52 . . . x5p op4 op3 op2 op1 wrof4 op5

6 x61 x62 . . . x6p op5 op4 op3 op2 wrof4 op6
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n xn1 xn2 . . . xnp opn−1 opn−2 opn−3 opn−4 wrof4 opn

forest package (Hornung, 2019) also returns variable importance measures for all of the explanatory
variables. Let v1, . . . , vd be these measures for our four time-invariant demographic variables.

We now compute the sample covariance matrix, S, from the time-invariant demographic vari-
ables of the training participants. These variables include the variables age, weight, height and
sex (coded as 0 or 1). For participant r in the testing set, we compute the weighted Mahalanobis
distances (Kotu and Deshpande, 2018) between the values of this participant’s demographic infor-
mation and each of the other T training participants’ demographic information using v1, . . . , vd
as weights. That is, with diagonal matrix W = diag(v1, . . . , vd), demographic values xr =

(xr,1, . . . , xr,d) for participant r and with xh = (xh,1, . . . , xh,d) for training participant h, we
compute weighted Mahalanobis distance

fr,h =
√

(xr − xh)WS−1(xr − xh)′.

Then we set

wr,h =
(fr,h + ε)−1∑T
j=1(fr,j + ε)−1

for h = 1, . . . , T with ε > 0. (4.1)

The addition of ε > 0 avoids overly large weights when the demographic information of testing
participant r is very similar to the demographic information of training participant h. A smaller ε
will give larger relative weights to similar participants, while a larger ε will incorporate weights and
information from more participants. In 3. of our recursive forecasting model of section 4.3.2, to
obtain a prediction from wrof`, using observation g from testing participant r and values of pseudo-
lagging variables sg,1, . . . , sg,`, we first obtain predictions from of1,`, . . . , ofT,`, according with the
mid-points, m1, . . . ,mc, of prediction intervals. Denoting these predictions p1,`, . . . , pT,` we take
the weighted average

Ar,` =

T∑
h=1

wr,h · ph,`.
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The prediction from wrof` is the the class associated with midpoint

argmin
j=1,...,c

|Ar,` −mj |.

Similarly, in the steps of 2. of the recursive forecasting model in section 4.3.2, to obtain a prediction
from wrofk, we take a weighted average of predictions from of1,k, . . . , ofT,k, with the weights
computed from the weighted Mahalanobis distances to the demographic information to each partic-
ipant in training set. These weights account for both the similarity between the testing participants
and the training participants and the relative importance of the demographic variables in determin-
ing activity level patterns. In Figure 2 we have a schematic that summarizes our recursive forecast
model with multiple time series.

Figure 2: Recursive Forecast with Multiple Time Series
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4.4 Measures of Performance

We assess the performance of our models with testing error rates, with weighted kappa values and
the ordinal gamma statistic.

4.4.1 Testing Error Rates

The error rate on the testing set is simply the proportion of predictions that the model classifies
incorrectly according to the actual observations of the response variable in the test set. The testing
error rate does not take into account the ordinality of the responses. For example, a classification of
SED as LPA is just as significant as a misclassification of SED as VPA even though in the former
case the prediction is “one away” from the correct observation and in latter case the prediction is
“three away” according to the order of the responses.

4.4.2 Kappa Statistic

As presented in Hossain et al. (2021), kappa values compare observed versus expected accuracies to
account for classification by chance Landis and Koch (1977). We look at linearly weighted kappa
values for four class classifications. Weighted kappa values treat misclassifications further away
from true classifications as more significant than misclassifications closer to true classifications Co-
hen (1968). For example, we want to penalize a misclassification of SED as light LPA as less
significant than a misclassification of sedentary SED as MPA or VPA. We use a linearly weighted
kappa measure to do so, with movement from the true classification from one class to another pe-
nalized equally. A scale given in Landis and Koch (1977) and often used to interpret kappa values
is presented in Table 6.

Table 6: Interpreting Kappa

Agreement Slight Fair Good Substantial Almost Perfect

Kappa Value 0.01–0.20 0.21–0.40 0.41–0.60 0.61–0.80 0.81–0.99

4.4.3 Ordinal Gamma Statistic

The ordinal gamma statistic as formulated in Agresti (2003), is another assesment of the predictive
accuracy of a decision that does take into account the order of the responses. It considers the num-
ber of concordant and discordant pairs from the confusion matrix in weighted sums, with weights
agreeing with the order of the data. The ratio of the difference of these sums from concordant pairs,
C, and discordant pairs, D is then taken to compute the gamma statistic as

γ =
C −D
C +D

.
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This measure, γ, is between −1 and 1 with a greater magnitude indicating a stronger association.
Negative numbers indicate negative association according to the order of the data (for example, if
SED was often predicted as MPA or VPA), and positive numbers indicate a positive association
according to the order of the data (for example, if SED was often predicted as SED or LPA).

5 Results
In Tables 7, 8, 9, 10 we assess our random forest, ordinal forest and recursive forecasting models
(with ` = 1, 2 and 3 lag periods) built on our training data with assessments from section 4.4. The
models are trained on the data from the participants from the first visit and tested on data from the
participants in the second visit, as specified in section 3.3. The recursive forecasting models use time
series information in training, and weighted, prior predictions with ordinal forest models in testing,
as specified in section 4.3.

Table 7: Assessment of Models on Ankle Placement

Assessment Measure

Model Error Rate W. Kappa Ord. Gamma

Random Forest 0.337 0.647 0.868

Ordinal Forest 0.329 0.661 0.881

Rec. Forecast (` = 1) 0.286 0.689 0.901

Rec. Forecast (` = 2) 0.280 0.701 0.910

Rec. Forecast (` = 3) 0.321 0.659 0.891

Table 8: Assessment of Models on Left Wrist Placement

Assessment Measure

Model Error Rate W. Kappa Ord. Gamma

Random Forest 0.351 0.610 0.842

Ordinal Forest 0.340 0.631 0.851

Rec. Forecast (` = 1) 0.290 0.695 0.897

Rec. Forecast (` = 2) 0.287 0.701 0.899

Rec. Forecast (` = 3) 0.325 0.672 0.878

In Figure 3, we see an agreement plot (Bangdiwala and Shankar, 2013) for the recursive forecast
model with ` = 1 and the ankle placement. As in Hossain et al. (2021), the width of the black
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Table 9: Assessment of Models on Right Wrist Placement

Assessment Measure

Model Error Rate W. Kappa Ord. Gamma

Random Forest 0.373 0.573 0.820

Ordinal Forest 0.369 0.596 0.839

Rec. Forecast (` = 1) 0.302 0.644 0.857

Rec. Forecast (` = 2) 0.305 0.652 0.861

Rec. Forecast (` = 3) 0.371 0.582 .819

Table 10: Assessment of Models on Hip Placement

Assessment Measure

Model Error Rate W. Kappa Ord. Gamma

Random Forest 0.365 0.609 0.828

Ordinal Forest 0.360 0.631 0.857

Rec. Forecast (` = 1) 0.295 0.691 0.869

Rec. Forecast (` = 2) 0.289 0.695 0.886

Rec. Forecast (` = 3) 0.337 0.659 0.870

inner squares in each rectangle is the number of agreements for each particular class and the the
gray shading represents misclassifications of adjacent classes. The plot illustrates that the number
of misclassifications for any class outside of classes adjacent to that class, is relatively small. This
is reflected in the substantial agreement in the linearly weighted kappa values which account for
ordinality in classification.

6 Discussion
In this paper, we incorporated the ordinality and time series nature of accelerometer data, with re-
sponses in four-activity level classes into a recursive, multiple time series forecasting model. We
used tree-based models, and ordinal forest, which takes into account the ordinality of responses, in
assigning quantitative values to the responses. A forecasting model was developed which makes re-
cursive predictions based on current raw, accelerometer summaries and on prior predictions. These
predictions take into account similarity of participants in the training set to participants in the testing
set in terms of demographic variables and measures of variable importance through the weighted
Mahalanobis distance. In our results, ordinal forest shows little difference with random forest in er-
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Figure 3: Agreement Plot: Recursive Forecasting (` = 1)

ror rates and slight improvements in linearly weight kappa values. This agrees with Hornung (2019)
and can be improved by incorporating a weighted splitting criteria in random forest such as the
weighted Gini index or the weighted entropy that takes account ordinality in assessing impurity of
splits. The recursive forecasting model shows substantial improvement in all assessment measures
for ` = 1 and ` = 2. However, including additional lagging periods with ` greater than 2, although
providing additional information about activity patterns, causes the model to perform worse in test-
ing. This can be investigated and be the subject of additional model development. Model weights
and parameters such as ε in (4.1) in section 4.3.3 can be adjusted by validation in training. Other
types of ordinal regression models, such as proportional-odds and neural network models (Cao et al.,
2020), can be incorporated into the framework provided in this paper. This approach can be applied
to financial, physiological and medical data, among others, which have multiple time series with
ordinal responses.
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