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SUMMARY

Assuming binary treatment outcomes, a covariate adjusted response adaptive (CARA) de-
sign is developed for multi-arm clinical trials assuming the presence of treatment-covariate
interaction. The proposed allocation skews the allocation dynamically according to the per-
formance of the treatments and the covariate profile of any incoming subject. Relevant de-
sign and precision based measures of the performance are further investigated empirically,
which established the usefulness of the proposed allocation design over its competitors.
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1 Introduction
With the passage of the pandemic situation, the phrases Clinical Trials, Efficacy, Effectiveness,
among others, are attracting public attention. Everyone’s concern lies in the successful development
of an effective vaccine (or a treatment) to make life normal, as earlier. Clinical trials are, therefore,
the new form of saviour for their ability to identify an effective treatment in a scientific way. Broadly,
a clinical trial identifies the best treatment through the assignment of eligible subjects to a set of
prospective treatments.

Usually Fixed Randomization is adopted for treatment assignment, where subjects are assigned
either of the treatments randomly with fixed probability. But such a randomization procedure suffers
from the subjectivity as the allocation ratio (e.g. 1:1 or 2:1) is fixed on an ad hoc basis with a view
to ensure higher allocation to the prospective treatment. But if the prospective treatment performs
poorly, more subjects are at a risk of developing adverse effects. For an example, in a recent trial
on safety and efficacy evaluation of Sputnik V (Logunov et al., 2021), the allocation ratio is kept
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fixed at 3:1 throughout the trial. Naturally adaptive allocation designs are always the better option
for their ability to update the allocation dynamically in favor of the treatment doing better for every
incoming patient.

A number of adaptive allocation designs have been developed in the last few decades assuming
homogeneous subjects. But response of a subject is always influenced by his/her covariate infor-
mation. Information on covariate is, in general, available at the time of recruitment and hence a
reasonable allocation design must be personalized, that is, covariate adjusted to decide the current
patient assignment by utilizing his/her covariate profile. Precisely, if the available response, allo-
cation and covariate data is used altogether for the allocation of incoming subjects, the resulting
allocation is termed covariate adjusted response adaptive or CARA (Hu and Rosenberger, 2006).
A brief account of different opinions on the need for incorporating the covariate information in
the design phase of clinical trials together with recommendations can be found in Rosenberger and
Sverdlov (2008). However, for the development of the current work, we consider multiple treat-
ments, binary treatment outcome and the presence of covariate information. Instances of CARA
designs with logistic regression based binary response models can be found in Basak et al. (2009),
Bandyopadhyay and Bhattacharya (2012), among others. But these designs are actually developed
to favour the better performing treatment considering some treatment specific effective measure like
failure and odds. For example, a treatment is declared better performing, if it possesses the low-
est failure rate. That is, the better treatment is decided through a comparison of treatment specific
performance measures. However, instead of comparing treatment specific performance measures, a
better option could be to use a relative performance based effective measure, where simultaneous
comparison of all the treatments under consideration is performed. In a recent work, Biswas and
Bhattacharya (2018) developed a CARA allocation design under the same framework by combining
relevant ethical and precision metrics and investigated from the viewpoint of ethics and precision.
Another CARA design can be found in the work of Villar and Rosenberger (2018), which was devel-
oped from a Bayesian viewpoint using the Gittins index solution to the classic multi-armed bandit
problem.

Existence of treatment-covariate interaction (Zhu, 2015), that is, when effectiveness of treat-
ments vary sensibly for different types of subjects, is another important concern in clinical trials.
For example, in the real clinical trial on Stroke Prevention in Atrial Fibrillation study (Hart et al.,
2003), a significant difference between aspirin and placebo in reducing the number of strokes among
patients receiving anticoagulation (a binary covariate) is observed. However, such a difference be-
comes insignificant among the patients without receiving anticoagulation. Interestingly, if we ignore
the interaction between the treatments and the covariate (i.e. anticoagulation status), aspirin would
be prescribed for every patient to reduce stroke, and naturally, leave a certain fraction of patients
missing the appropriate treatment. Thus a reasonable allocation design must be sensitive to the pres-
ence of such an interaction. However, none of the available CARA designs are assessed theoretically
from the viewpoint of treatment-covariate interaction. A full analysis from the viewpoint of making
inference for few existing CARA designs under the presence of treatment-covariate interaction is
found in the work of Zhu (2015). But, the main objective of such work was to derive large sample
results related to CARA designs rather than developing new CARA allocation designs.
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In contrast to the above, assuming binary treatment outcomes and multiple treatments, we focus
on developing a CARA allocation design, which will be sensitive to the presence of different kinds
of treatment-covariate interaction. Specifically, we start from defining an effectiveness measure for
treatments with binary outcome in the presence of covariates and subsequently derive an allocation
function. The development of an intuitive measure of relative treatment effect with the follow up
CARA allocation design and related asymptotic results are described and studied thoroughly in
Section 2. Sensitivity of few existing CARA allocation designs are further investigated in the light
of treatment-covariate interaction. Empirical investigation of the design and precision measures of
the proposed and competing allocation designs are provided in Section 3. Redesign results of a real
life clinical trial are further added in Section 4. Finally, Section 5 ends with a discussion of the
relevant and upcoming issues.

2 Developing the Covariate Adjusted Allocation

2.1 A relative treatment effectiveness measure

Consider a trial involving t(≥ 2) treatments indicated by 1, 2, . . . , t. Incoming subjects are assigned
to one of these treatments and their responses are observed. Denoting the response of the ith subject
assigned to treatment k by Yki and the associated d component vector of covariate information by
Zi, we assume the binary response model

P (Yki = 1|Zi) = pk(Zi),

where pk(Z) is the unknown success probability for the k th treatment and pk(Z) is higher for higher
Z. As a pre-phase to the development of an allocation function, we start with developing a reason-
able treatment effectiveness measure. For fixed Z, the most common measure is qk(Z) = 1−pk(Z),
the failure probability of treatment k. However, such a choice is treatment specific. That is, a lower
qk(Z) does not imply that treatment k is the best unless it is the lowest. Thus a treatment effec-
tiveness measure should consider individual as well as the relative performance among the available
treatments. Simultaneous consideration of the individual and relative performances within the same
framework for binary response clinical trials can be found in recent considerations of Yin et al.
(2012), Trippa et al. (2012) and Wason and Trippa (2014), but from a Bayesian perspective. Specif-
ically, for each experimental treatment, they derived the posterior probability that the experimental
treatment is better than a control treatment and normalized suitably to derive the randomization
probabilities.

We, therefore, consider both treatment specific and relative performance of a treatment among
the available treatments to define a meaningful treatment effectiveness measure. For the develop-
ment, we consider a hypothetical situation with t patients, each having the same covariate profile
Z and t patients are assigned to one of the t treatments exclusively. If Yk(Z) denotes the potential
outcome of the patient assigned to treatment k, k = 1, 2, . . . , t, treatment k is worst performing if
its response is lower than the lowest among the available responses. That is, treatment k is worst
performing, if Yk(Z) ≤ mins 6=kYs(Z). Naturally, treatment k can be regarded as better performing
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if the converse Yk(Z) > mins6=kYs(Z) holds. Since, the response is either 0 or 1, some responses
can be identical and hence, the event of tie Yk(Z) = mins 6=kYs(Z) occurs with positive probability.
Consequently, we use a weight 1

2 for tie and define the tie adjusted quantity

πk(Z) = P (Yk(Z) > mins( 6=k)Ys(Z)|Z) +
1

2
P (Yk(Z) = mins(6=k)Ys(Z)|Z)

to measure the effectiveness of treatment k. Further, for given Z, mins(6=k)Ys(Z) has a Bernoulli
distribution with success probability P (Ys(Z) = 1∀s 6= k|Z) =

∏
s6=k ps(Z), and hence we get the

equivalent expression

πk(Z) =
1

2
+

1

2

{
pk(Z)−

∏
s6=k

ps(Z)
}
.

Now to justify the suitability of the πk(Z) as an effectiveness measure, we evaluate it from the
viewpoints of treatment superiority and treatment-covariate interaction. First assume that treatment
k is best for fixed covariate value Z, that is, pk(Z) > pk′(Z) for all k 6= k′. Then a simple algebra
shows

πk(Z)− πk′(Z) =
1

2

{
pk(Z)− pk′(Z)

}{
1 +

∏
s6=(k,k′)

ps(Z)
}
,

and hence πk(Z) > πk′(Z) whenever pk(Z) > pk′(Z) is satisfied. Thus πk(Z) is the highest
for the best treatment and πk(Z)’s are ordered according to treatment effectiveness. Next to in-
vestigate the effect of presence of treatment-covariate interaction, we assume pk(Z) > pk′(Z)
but pk(Z′) < pk′(Z′) for some covariate Z 6= Z′. Then it is found that πk(Z) > πk′(Z) but
πk(Z′) < πk′(Z′) and hence the defined measure πk(Z) is suitably sensitive to the presence of
treatment-covariate interaction. However, the defined measure is not normalised and, therefore, we
suggest the normalised version ρk(Z) = πk(Z)∑t

s=1 πs(Z) to define the allocation probability to treatment
k in ideal situation.

Now we shall judge few existing allocation designs in the light of treatment-covariate interaction.
First of all, we consider the heuristic multi-treatment extension of the odds based allocation design
of Rosenberger et al. (2001) by Villar and Rosenberger (2018), which assigns to treatment k using
the allocation function

ρ1k(Z) =
[qk(Z)/pk(Z)]∑t
s=1 qs(Z)/ps(Z)

.

Then it is easy to observe that pk(Z) > pk′(Z) implies ρ1k(Z) > ρ1k′(Z) whereas pk(Z′) < pk′(Z′)
gives ρ1k(Z′) > ρ1k′(Z′). Thus the above allocation function lacks sensitivity when treatment-
covariate interaction is present.

Next, we consider the allocation function

ρ2k(Z) =
√
qk(Z)pk(Z)∑t

s=1

√
qs(Z)ps(Z)

,

which corresponds to Neyman optimum allocation of survey sampling. Then ρ2k(Z) > ρ2k′(Z)
whenever pk(Z) > pk′(Z) and pk(Z) + pk′(Z) < 1 holds. On the other hand ρ2k(Z′) < ρ2k′(Z′)
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under pk(Z′) < pk′(Z′) and pk(Z′)+pk′(Z′) > 1. Naturally, the above allocation design is sensitive
to treatment-covariate interaction only when some additional conditions are satisfied.

Finally, we consider the optimal allocation function of Biswas and Bhattacharya (2018)

ρ3k(Z) =
√
wk {qk(Z)pk(Z)γk(Z)}−1/2∑t

s=1

√
ws {qs(Z)ps(Z)γs(Z)}−1/2

,

where wk are positive weights based on some inferential objective and γk(> 0) are clinically rel-
evant criteria. Specifically, for the choice γk(Z) = qk(Z)

pk(Z) , the above allocation function reduces
to

ρ3k(Z) =
√
wk/qk(Z)∑t

s=1

√
ws/qs(Z)

.

Since, for any Z,
ρ3k(Z)
ρ3k′(Z)

=

√
wk′qk′(Z)√
wkqk(Z)

,

it follows that pk(Z) > pk′(Z) implies ρ3k(Z) > ρ3k′(Z) provided wk < wk′ is satisfied. Further,
pk(Z′) < pk′(Z′) together with wk > wk′ implies ρ3k(Z′) < ρ3k′(Z′). Therefore, the above
allocation design can not act sensibly in the presence of treatment-covariate interaction for arbitrary
set of weights. In fact, the same conclusion continues for most of the clinically meaningful choices
of γk.

2.2 Implementation

It is easy to observe that the defined allocation probability ρk(Z) depends on pk(Z) = pk(ηk,Z),
that is, on the unknown parameters of the response distributions (i.e. ηk) and the vector of covariate
information Z. Therefore, to assign patients according to their covariate profile using all available
response, allocation and covariate data, we suggest to replace Z by the current patient’s covariate and
substitute the estimates of ηk based on the available data. Therefore, if the (i + 1) th subject is the
current subject, we suggest to replace Z by the current patient’s covariate Zi+1 and plug in ηk by an
appropriate estimate η̂ki, based on the available data for the i previously assigned subjects. For the
purpose of estimation of the unknown parameters, we suggest to use sequentially updated maximum
likelihood estimates. If ρ̂ki(Zi+1) denotes the estimated allocation probability for treatment k based
on the relevant data on i assigned subjects at Z = Zi+1, the allocation design can be described by
the collection of conditional allocation probabilities

P (δki+1 = 1|Ysj , δsj ,Zj , j ≤ i, s = 1(1)t,Zi+1) = ρ̂ki(Zi+1), k = 1, 2, . . . , t,

where δki is the treatment indicator (=1 if treatment k is assigned and =0 otherwise) of the ith subject.
However, to get initial estimates of the parameters, we assign n0(fixed in advance) subjects to each
treatment arm using some restricted randomization procedure and calculate the relevant estimates to
start adaptive allocation from the tn0 + 1 th subject onwards.
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2.3 Limiting proportions

To facilitate the theoretical assessment of the proposed allocation procedure, we provide below the
limiting values of the observed allocation and failure proportions. The observed allocation propor-
tion to treatment k can be expressed as n−1Nkn with Nkn =

∑n
i=1 δki k = 1, 2, . . . , t and the

observed failure proportion by Fn = n−1
∑t
k=1

∑n
i=1(1−Yki). Then it follows from the results of

Zhang et al. (2007) that the limiting allocation proportion to treatment k is EZ {ρk(Z)} and that for
the observed failure proportion is EZ

{∑t
j=1 ρj(Z)qj(Z)

}
, where Z has some d variate distribution

with positive definite dispersion matrix. However, for better explanation of the role of covariate
information, we consider a categorical covariate Z and based on n assignments, define Nkn(z), the
number of subjects having covariate category z assigned to treatment k and the total number of sub-
jects with covariate z by Nn(z). Then for a given covariate category z, the conditional proportion of
subjects assigned to treatment k can be expressed as Nkn(z)

Nn(z)
, which converges (Zhang et al., 2007)

to ρk(z), provided P (Z = z) > 0.

3 Evaluating the Performance

3.1 Performance measures

For the evaluation of the proposed CARA design, we consider t = 3 treatments, a single binary
covariate Z with P (Z = z) = pz = 1

2 , z = −1, 1. Although the CARA design is developed
for a general class of response models, performance evaluation requires specification of a response
model. We, therefore, consider the popular logistic model of responses, that is,

log

{
P (Yki = 1|Zi)

1− P (Yki = 1|Zi)

}
= αk + βkZi, k = 1, 2, 3, i ≥ 1,

where Zi is the covariate associated with the ith patient and ηk = (αk, βk)
T , k = 1, 2, 3 are the

unknown parameters. For performance evaluation of the proposed CARA design, we consider the
following measures:

• The expected overall and conditional allocation proportions (denoted by EAP) to different
treatments together with the standard deviations;

• The expected overall and conditional proportions of failure (denoted by EFP) together with
the relevant standard deviations;

• The powers of the LR test at the 5% significance level for testing the homogeneity hypoth-
esis H0: α1 = α2 = α3, β1 = β2 = β3 against Ha: Atleast one pair of α′ks and/or β′ks
are different; and

• The type I error rates.

For the calculation of power, we consider the statistic λn, which is the logarithm of the LR criterion,
multiplied by −2. Naturally, we reject the null hypothesis for large values of λn. Moreover, under
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the null hypothesis, it follows from Zhang et al. (2007) that the asymptotic distribution of λn is chi
square with 4 degrees of freedom. Therefore, for the calculation of type I error rate, we simulate the
quantity PH0

(λn > χ2
4,.05), where χ2

4,.05 is the upper 5% points of a chi square distribution with 4
degrees of freedom.

In order to judge the utility of incorporating treatment-covariate interaction, we consider the
already mentioned odds ratio based CARA allocation design of Villar and Rosenberger (2018). It
is already established that such allocation design fails to assign subjects sensibly in the presence
of treatment-covariate interaction. As another competitor, we consider the popularly used complete
randomization (CR), where each treatment is assigned with equal probability 1

3 .

3.2 Simulation study

Assessing the proposed CARA design in small samples is difficult as there is no dedicated software
for the purpose. However, we have written programs in R using in-built glm function conveniently
to compute the performance measures. Specifically, we carried out a detailed simulation study
with n = 120 to extract the performance measures of the proposed CARA design empirically. We
start with assigning twelve subjects, two for each category, to each treatment arm and obtain the
initial parameter estimates through numerical methods. For the allocation, we update the estimates
after each response using numerical procedures and substitute these in the allocation function to
obtain the allocation probabilities for incoming subjects. For simulation, we have considered three
groups (i.e. groups I, II and III) of parameter configurations ensuring different types of treatment-
covariate interaction and report them in Table 1 together with the expected success rates (ESR)
EZ {pk(Z)} , k = 1, 2, 3. Configurations under I assume that β1 = β2 = β3 and ensure that
treatment 1 is most successful for each of the covariate values. On the other hand, set of parameters
under II assumes that α1 = α2 = α3 and ensures that the ESR for treatment 1 is the highest under
the alternative. However, the success probability for Z = −1 decreases and that for Z = +1

increases as we move from the null to an alternative configuration. Thus the parameter values under
II ensures qualitative interaction. Finally, we vary both sets of (α1, α2, α3) and (β1, β2, β3) to get
configurations under III. As earlier, the parameters are set to have highest expected success rate for
treatment 1 producing the least and the highest success rates for Z = −1 and Z = +1, respectively,
under the alternatives.

For any group of parameter configurations, the null hypothesis H0 together with three alterna-
tives Hai, i = 1, 2, 3 are considered. For the computation of power, we consider H0 as the null
hypothesis and calculate power considering these alternatives. But the design properties like ex-
pected allocation and failure proportions are explored only under the alternatives. The numerical
features for the proposed allocation design are explored in Table 2, whereas those for the Odds
based design are provided in Table 3. However, the observations arising out of these tables are
discussed and explained in details in the Appendix.
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Table 1: Parameter configuration with ESR for logistic response model

Hypothesis Parameters Expected Success Rates (ESR)

Configuration (α1, α2, α3, β1, β2, β3) (EZp1(Z), EZp2(Z), EZp3(Z))

H0 (-.50,-.50,-.50,-1.0,-1.0,-1.0) (.40,.40,.40)

I Ha1 (.52,.52,-.05,-1.0,-1.0,-1.0) (.60,.60,.40)

Ha2 (1.68,.52,-.50,-1.0,-1.0,-1.0) (.80,.60,.40)

Ha3 (1.68,1.68,-.50,-1.0,-1.0,-1.0) (.80,.80,.40)

H0 (1.0,1.0,1.0,.85,.85,.85) (.55,.55,.55)

II Ha1 (1.0,1.0,1.0,3.0,.85,.85) (.70,.55,.55)

Ha2 (1.0,1.0,1.0,3.0,3.0,.85) (.70,.70,.55)

Ha3 (1.0,1.0,1.0,3.0,1.51,.85) (.70,.65,.55)

H0 (-1.1,-1.1,-1.1,1.1,1.1,1.1) (.30,.30,.30)

III Ha1 (-.01,-1.1,-1.1,2.0,1.1,1.1) (.50,.30,.30)

Ha2 (.85,-.01,-1.1,.05,2.0,1.1) (.70,.50,.30)

Ha3 (.85,.85,-.01,.05,.05,2.0) (.70,.70,.50)

4 Redesigning a Real Life Clinical Trial

With a view to justify the suitability of the proposed procedure, we redesign a real clinical trial
adopting the proposed procedure. For our purpose, we use the data reported in Tamura et al. (1994),
which is a description of an Eli Lilly sponsored adaptive stratified trial of the anti-depression drug
with two treatment arms, Control and Fluoxetine. The patients in the actual trial were classified
either Shortened or Normal according to their Rapid Eye Movement Latency (REML), which is
presumed to be a marker for endogenous depression. The actual trial reported a significant difference
between the treatments for the shortened REML stratum.

The shortened REML status (i.e. whether shortened or normal) is taken as covariate in our study
and the final patient outcome (i.e. whether success or failure) is taken as the binary response. How-
ever, excluding misclassified, missing and unavailable patient responses, we have considered the
data comprising 80 patients ( i.e. excluding the data from patient numbers 4,5,56,57,63,68,73,79
and 88). Designating Fluoxetine as Treatment 1 and Control as Treatment 2, we estimate the param-
eters of the logistic regression based response model for each treatment as α̂1 = .486, β̂1 = −.034
and α̂2 = −.201, β̂2 = −.492. Moreover, for the considered data we obtain the proportion of
patients with shortened REML as 39

80 = .4875. Treating these estimates as the true parameter val-
ues and generating the binary covariate values from the Bernoulli(.4875) distribution, we
simulate the trial with 10000 repetitions, where the sequence of allocation probabilities to different
treatments are computed according to the proposed allocation rule. Based on the data thus gener-
ated, we compute estimates of EAP and EFP to different treatments and the allocation probability to
Fluoxetine for the next entering (i.e. the 81st ) patient for each covariate value.

The computation reveals the expected number of allocations to Fluoxetine as 49 ( actual trial
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Table 2: Performance measures for the proposed CARA design

Expected Allocation and Failure Proportions (SD)

Configuration (z, pz) Treatment 1 Treatment 2 Treatment 3 EFP (SD) Power (ER)

I(Ha1) (-1, 0.5 ) 0.363 ( 0.08 ) 0.361 ( 0.08 ) 0.277 ( 0.08 ) 0.234 ( 0.06 ) 0.358 (.073)

(+1 ,0.5 ) 0.353 ( 0.07 ) 0.353 ( 0.07 ) 0.294 ( 0.06 ) 0.677 ( 0.06 ) 0.386 (.057)

Overall 0.358 ( 0.05 ) 0.357 ( 0.05 ) 0.285 ( 0.05 ) 0.455 ( 0.05 )

I(Ha2) (-1, 0.5 ) 0.394 ( 0.07 ) 0.348 ( 0.08 ) 0.258 ( 0.08 ) 0.185 ( 0.05 ) 0.908 (.070)

(+1, 0.5 ) 0.407 ( 0.07 ) 0.331 ( 0.07 ) 0.263 ( 0.06 ) 0.556 ( 0.07 ) 0.921 (.054)

Overall 0.401 ( 0.05 ) 0.339 ( 0.05 ) 0.260 ( 0.05 ) 0.370 ( 0.04 )

I(Ha3) (-1, 0.5 ) 0.384 ( 0.07 ) 0.383 ( 0.07 ) 0.233 ( 0.08 ) 0.137 ( 0.04 ) 0.949 (.072)

(+1, 0.5 ) 0.389 ( 0.07 ) 0.389 ( 0.07 ) 0.223 ( 0.06 ) 0.443 ( 0.07 ) 0.968 (.062)

Overall 0.387 ( 0.05 ) 0.386 ( 0.05 ) 0.228 ( 0.05 ) 0.291 ( 0.04 )

II(Ha1) (-1, 0.5 ) 0.404 ( 0.07 ) 0.299 ( 0.06 ) 0.297 ( 0.06 ) 0.713 ( 0.06 ) 0.827 (.071)

(+1, 0.5 ) 0.289 ( 0.07 ) 0.355 ( 0.07 ) 0.356 ( 0.07 ) 0.052 ( 0.03 ) 0.861 (.054)

Overall 0.347 ( 0.05 ) 0.327 ( 0.05 ) 0.326 ( 0.05 ) 0.383 ( 0.04 )

II(Ha2) (-1 ,0.5 ) 0.376 ( 0.07 ) 0.378 ( 0.07 ) 0.245 ( 0.06 ) 0.565 ( 0.07 ) 0.878 (.075)

(+1, 0.5 ) 0.314 ( 0.08 ) 0.314 ( 0.08 ) 0.372 ( 0.07 ) 0.092 ( 0.04 ) 0.868 (.055)

Overall 0.345 ( 0.05 ) 0.346 ( 0.05 ) 0.309 ( 0.05 ) 0.328 ( 0.04 )

II(Ha3) (-1 ,0.5 ) 0.366 ( 0.07 ) 0.373 ( 0.07 ) 0.208 ( 0.06 ) 0.551 ( 0.07 ) 0.701 (.077)

(+1, 0.5 ) 0.310 ( 0.08 ) 0.308 ( 0.08 ) 0.367 ( 0.07 ) 0.088 ( 0.04 ) 0.868 (.055)

Overall 0.338 ( 0.05 ) 0.340 ( 0.05 ) 0.288 ( 0.05 ) 0.319 ( 0.04 )

III(Ha1) (-1, 0.5 ) 0.336 ( 0.06 ) 0.332 ( 0.06 ) 0.332 ( 0.06 ) 0.894 ( 0.04 ) 0.334 (.101)

(+1, 0.5 ) 0.419 ( 0.07 ) 0.291 ( 0.08 ) 0.290 ( 0.07 ) 0.341 ( 0.06 ) 0.685 (.053)

Overall 0.378 ( 0.05 ) 0.311 ( 0.05 ) 0.311 ( 0.05 ) 0.617 ( 0.04 )

III(Ha2) (-1, 0.5 ) 0.429 ( 0.07 ) 0.289 ( 0.06 ) 0.282 ( 0.06 ) 0.641 ( 0.07 ) 0.696 (.103)

(+1, 0.5 ) 0.343 ( 0.08 ) 0.404 ( 0.07 ) 0.254 ( 0.08 ) 0.274 ( 0.06 ) 0.991 (.061)

Overall 0.386 ( 0.05 ) 0.346 ( 0.05 ) 0.268 ( 0.05 ) 0.458 ( 0.05 )

III(Ha3) (-1, 0.5 ) 0.398 ( 0.07 ) 0.399 ( 0.07 ) 0.203 ( 0.06 ) 0.426 ( 0.07 ) 0.789 (.104)

(+1, 0.5 ) 0.309 ( 0.08 ) 0.311 ( 0.08 ) 0.381 ( 0.07 ) 0.224 ( 0.05 ) 0.978 (.059)

Overall 0.354 ( 0.05 ) 0.355 ( 0.05 ) 0.291 ( 0.05 ) 0.324 ( 0.05 )

Boldface figures indicate Power and Error rates (ER) for CR procedure
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Table 3: Performance measures for the Odds based CARA design

Expected Allocation and Failure Proportions (SD)

Configuration (z, pz) Treatment 1 Treatment 2 Treatment 3 EFP (SD) Power (ER)

I(Ha1) (-1, 0.5 ) 0.243 ( 0.12 ) 0.247 ( 0.12 ) 0.51 ( 0.15 ) 0.28 ( 0.07 ) 0.381 (.108)

(+1, 0.5 ) 0.231 ( 0.14 ) 0.23 ( 0.14 ) 0.539 ( 0.19 ) 0.726 ( 0.07 ) 0.386 (.057)

Overall 0.237 ( 0.09 ) 0.239 ( 0.09 ) 0.525 ( 0.12 ) 0.503 ( 0.05 )

I(Ha2) (-1, 0.5 ) 0.17 ( 0.08 ) 0.265 ( 0.13 ) 0.566 ( 0.14 ) 0.272 ( 0.07 ) 0.778 (.106)

(+1, 0.5 ) 0.116 ( 0.08 ) 0.265 ( 0.16 ) 0.619 ( 0.17 ) 0.709 ( 0.07 ) 0.921 (.054)

Overall 0.142 ( 0.05 ) 0.265 ( 0.1 ) 0.593 ( 0.11 ) 0.491 ( 0.05 )

I(Ha3) (-1, 0.5 ) 0.182 ( 0.08 ) 0.181 ( 0.08 ) 0.637 ( 0.12 ) 0.263 ( 0.07 ) 0.964 (.109)

(+1, 0.5 ) 0.13 ( 0.09 ) 0.132 ( 0.09 ) 0.738 ( 0.13 ) 0.691 ( 0.08 ) 0.968 (.062)

Overall 0.156 ( 0.06 ) 0.156 ( 0.06 ) 0.688 ( 0.09 ) 0.478 ( 0.06 )

II(Ha1) (-1, 0.5 ) 0.734 ( 0.14 ) 0.133 ( 0.1 ) 0.134 ( 0.1 ) 0.769 ( 0.08 ) 0.806 (.095)

(+1, 0.5 ) 0.211 ( 0.07 ) 0.394 ( 0.14 ) 0.394 ( 0.14 ) 0.111 ( 0.04 ) 0.861 (.054)

Overall 0.473 ( 0.08 ) 0.263 ( 0.09 ) 0.264 ( 0.09 ) 0.441 ( 0.05 )

II(Ha2) (-1 ,0.5 ) 0.453 ( 0.22 ) 0.453 ( 0.22 ) 0.094 ( 0.07 ) 0.843 ( 0.05 ) 0.514 (.094)

(+1, 0.5 ) 0.254 ( 0.08 ) 0.25 ( 0.08 ) 0.496 ( 0.12 ) 0.076 ( 0.04 ) 0.868 (.055)

Overall 0.354 ( 0.12 ) 0.351 ( 0.12 ) 0.295 ( 0.07 ) 0.46 ( 0.05 )

II(Ha3) (-1 ,0.5 ) 0.67 ( 0.17 ) 0.203 ( 0.14 ) 0.127 ( 0.09 ) 0.776 ( 0.07 ) 0.634 (.097)

(+1, 0.5 ) 0.231 ( 0.08 ) 0.321 ( 0.12 ) 0.448 ( 0.13 ) 0.089 ( 0.04 ) 0.868 (.055)

Overall 0.451 ( 0.10 ) 0.262 ( 0.09 ) 0.287 ( 0.08 ) 0.433 ( 0.05 )

III(Ha1) (-1, 0.5 ) 0.306 ( 0.19 ) 0.348 ( 0.21 ) 0.346 ( 0.21 ) 0.894 ( 0.04 ) 0.234 (.109)

(+1, 0.5 ) 0.127 ( 0.07 ) 0.437 ( 0.17 ) 0.436 ( 0.17 ) 0.452 ( 0.07 ) 0.685 (.053)

Overall 0.216 ( 0.11 ) 0.392 ( 0.13 ) 0.391 ( 0.13 ) 0.674 ( 0.04 )

III(Ha2) (-1, 0.5 ) 0.064 ( 0.05 ) 0.437 ( 0.22 ) 0.499 ( 0.22 ) 0.854 ( 0.05 ) 0.782 (.114)

(+1, 0.5 ) 0.274 ( 0.14 ) 0.154 ( 0.08 ) 0.572 ( 0.15 ) 0.384 ( 0.08 ) 0.991 (.061)

Overall 0.169 ( 0.07 ) 0.296 ( 0.12 ) 0.536 ( 0.14 ) 0.619 ( 0.05 )

III(Ha3) (-1, 0.5 ) 0.096 ( 0.07 ) 0.096 ( 0.07 ) 0.808 ( 0.12 ) 0.772 ( 0.08 ) 0.931 (.116)

(+1, 0.5 ) 0.395 ( 0.15 ) 0.397 ( 0.15 ) 0.208 ( 0.11) 0.254 ( 0.06 ) 0.978 (.059)

Overall 0.246 ( 0.09 ) 0.246 ( 0.09 ) 0.508 ( 0.08 ) 0.513 ( 0.05 )

Boldface figures indicate Power and Error rates (ER) for CR procedure.
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figure 40) and expected number of treatment failures as 37 ( actual trial figure 40), respectively.
Naturally an increase in the expected number of assignments to Fluoxetine (i.e. better treatment)
and a decrease in the expected number of failures are observed. Further, we project the allocation
probability for the hypothetical 81st subject to Fluoxetine as 0.64 and 0.58 for the shortened and
normal REML stratum, respectively. As the actual trial reported superiority of Fluoxetine for the
shortened REML stratum patients, presence of treatment-covariate interaction is pertinent and there-
fore, higher allocation probabilities to Fluoxetine for such patients are expected. Thus the proposed
procedure not only assigns sensibly to different treatments but also takes into account the presence
of treatment-covariate interaction. Consequently, the proposed allocation design has the potential
to produce reasonable outcomes considering available data and hence can be a suitable candidate in
real life trials.

5 Discussion

A CARA design is developed for binary response multi-treatment clinical trials considering the
presence of treatment-covariate interaction. We have investigated different features of the proposed
design empirically considering a single binary covariate and compared with relevant competitors. A
real clinical trial is further redesigned using the proposed design to assess the design from practi-
tioner’s point of view.

Although the assessment of the proposed design used a single binary categorical covariate, the
allocation design can be used for continuous covariates or mixed covariates. Moreover, the proposed
design is best suited for instantaneous responses. But delay in getting the response is natural in any
clinical trial and in such a situation we suggest to update the allocation probabilities based on the
available data. Although such a modification makes the adaptive mechanism weak, we presume that
moderate delay does not affect the limiting properties. Details in these regards are intended for a
future work.
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A Appendix

Discussion on the findings in Table 2 and Table 3 The numerical figures of Table 2, depicting the
design as well as precision measures, came from a simulation study with 20000 iterations of the
allocation procedures under consideration. However, in the absence of any package for CARA de-
signs, programs were written in R to compute the performance measures empirically. The expected
allocation and failure proportions given for each covariate category (i.e. Z = −1 or Z = +1) repre-
sent the expected conditional proportions or covariate specific values. After a close examination of
Table 2, we observe that the performance measuring figures of Table 2 are in well agreement with



32 Bhattacharya and Biswas

the assumed parameter configuration. The expected overall allocation proportions vary according
to the treatment effectiveness, that is, highest allocation to the best treatment (i.e. treatment 1 in
this computation) and less allocation to the less effective treatments (i.e. treatments 2 and 3). The
expected overall failure proportion also decreases with increasing treatment effectiveness.

Now, we examine the performance of the proposed CARA design for different covariate cate-
gories. As indicated earlier, the figures in Table 2 under the configuration I are computed in the
presence of quantitative treatment-covariate interaction, that is, for the computation, treatment 1 is
assumed best for every covariate category. The corresponding figures (i.e. under configuration I)
of Table 2 reveal the same, that is, the highest allocation proportion to treatment 1, on an average.
We further observe that the expected conditional proportion of failures is always the minimum for
Z = −1, which is expected as the treatments are set to be most effective for Z = −1. The same, that
is, variation according to treatment effectiveness is observed for other sets of parameters. In addi-
tion, the type I error rate is consistently maintained in the range 7-10%, which is slightly higher than
the nominal 5%. However, such inflation is common in response adaptive procedures. Moreover,
apart from minor exceptions, higher powers are observed, which shows the ability of the proposed
allocation design to capture a little departure from equality of treatment effects.

Regarding the odds based competitor, the consideration of treatment-covariate interaction is not
observed in the figures of Table 3 (e.g. figures corresponding to Ha3 for configuration II). In addi-
tion, significantly higher expected failures are observed. However, the precision level for both the
designs are more or less the same with the complete randomization (CR) procedure, where each
treatment is assigned with equal probability without considering the performance of the treatments
and incoming patients’ covariate. Thus, the derived class of CARA allocation designs uses all
available information, even the covariate information of the incoming subject and assigns subjects
according to the prevailing effectiveness of treatments without a significant compromise in preci-
sion level. A high level of precision translates into a relatively small trial and consequently produces
lower number of allocations to the inferior treatment to make the design ethically appealing from
the viewpoint of a real practitioner of clinical trial.
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