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SUMMARY

The primary objective of the study was to assess the impact of missing values on the analy-
sis of binary repeated measures data with an additional hierarchical structure. One motivat-
ing example for the present study was records of high somatic cell counts in milk samples
obtained by approximately monthly sampling throughout the lactations of cows in dairy
herds. Random effects models with autocorrelated (ρ = 1, 0.9 or 0.5) subject-level ran-
dom effects were behind the simulated data. In general, the settings of the simulation were
chosen to reflect a real somatic cell count dataset (scc40), except that the within-cow time
series length was set to 8-time points for each cow. The estimation procedures consid-
ered were: Ordinary Logistic Regression (OLR), Alternating Logistic Regression (ALR),
Weighted Generalized Estimating Equations (WGEE), Penalized Quasi Likelihood (PQL),
Maximum likelihood via numerical integration (ML) and Bayesian Markov chain Monte
Carlo (MCMC). Multiple scenarios of simulated incomplete datasets were considered and
include: a scenario corresponded to a combination of missingness patterns present in the
scc40 dataset (scc40 scenario) The remaining scenarios involved only drop-outs, and corre-
sponded to either moderate or high percentages of values either missing at random (MAR)
or not missing at random (NMAR), respectively. In the scc40 scenario, all estimation
procedures except OLR performed well and produced estimates with small relative bias
(generally less than 5%) for levels of missingness that roughly corresponded to the scc40
data. In MAR missingness scenarios, some biases were found for ALR, WGEE and PQL
procedures, whereas the likelihood-based procedures were largely unaffected by the miss-
ing values. In NMAR scenarios, all procedures experienced similar and strong biases in
the time coefficient; however, fixed effects estimates at the subject and cluster levels were
relatively unaffected.
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1 Introduction

Missing values in binary repeated measures data with an additional hierarchical structure refers to
data with incomplete records over time on the same subjects (e.g., patients, animals or farms), which
in addition are nested within some (physical) clusters (e.g., hospitals, herds, provinces). Missing
data usually arise when some subjects are not available for certain measurements. Subjects may
leave the study at some point in time before completing their measurements (drop-outs), subjects
may miss some measurements and reappear again for later measurements (intermittent missing val-
ues), or subjects may join the study at different times (delayed entry). Our motivating example was
a literature scc40 dataset of (Dohoo et al., 2009, Chapter 31) on incomplete records of presence or
absence of high somatic cell counts in milk samples from cows housed in multiple herds. Thus, the
hierarchical structure is the clustering of cows in herds, the repeated measures are the monthly test
records based on the milk samples, and the missing values are the incomplete records on each cow.
A previous study by (Masaoud and Stryhn, 2020) targeted the added complexity of the additional
hierarchical structure in a balanced full datasets setting, whereas the present study is focused on the
missing values part. Generally, missingness in longitudinal data presents a potential source of bias.
In part, the bias could be due to the change in data structure from being balanced to unbalanced,
which in turn may raise technical difficulties, especially for those statistical methods that can only
cope with balanced data. If the process of the observations being missing (the missingness mecha-
nism) varies from subject to subject, the distribution of the observed outcome values may not be the
same as for the full dataset.

Despite the large body of literature on missing data (Little and Rubin, 2002; Laird, 1988; Diggle
and Kenward, 1994; Fitzmaurice, 2003; Little, 1995; Heyting et al., 1992; Hogan et al., 2004),
listed in order of relevance to the present study, most authors agree that handling missing values
is not a trivial task and that in many instances there is a need for sensitivity analysis (Kenward et
al., 2001). Thus, additional information about the missingness mechanism is required. Missing
data mechanisms have been classified into different categories (Little and Rubin, 2002) according
to their randomness process. They include, missing completely at random where the probability
of an observation being missing does not depend on the prior observed nor the future unobserved
values of the outcome; missing at random where the probability of an observation being missing
depends only on the prior observed outcome; and not missing at random where the probability of an
observation being missing depends directly on the unobserved outcome(s).

Several procedures (models) have been proposed for the analysis of binary repeated measures
data; a basic distinction is between marginal (population–averaged, or PA) and random effects
(subject-specific, or SS) models (Neuhaus, 1992; Diggle et al., 2002, Chapters 8-9). Many articles
have discussed the choice between the two models (PA vs. SS) (e.g., (Diggle et al., 2002, Chapters
8-9) or for balanced data (Masaoud and Stryhn, 2010, 2020)). However, the presence of missing val-
ues poses problems for procedures of both types, and to our knowledge the performance of statistical
procedures for the analysis of binary repeated measures data with additional hierarchical structure
in the presence of missing values has not yet been described.

Previous studies on missing values include assessments of the impact of drop-out missing data
on different statistical methods (Ali and Talukder, 2005; Touloumi et al., 2001). Fitzmaurice (2004)
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recommends performing analysis of incomplete data using methods to handle various types of miss-
ing data mechanisms, in order to obtain insight into the actual type of missing data present. This
approach may be difficult to employ and justify if there is a combination of different types of missing
values within the same dataset. The analytical approach taken for the present study was simulation.
Simulation studies can be targeted towards a specific data structure by incorporating as much of that
structure as possible in the simulated datasets (Stryhn et al., 2000). This idea can be extended to
incomplete data by matching also the missing data values.

In order to realistically reflect the choice an applied researcher faces when it comes to data
analysis, only estimation procedures implemented in broadly accessible statistical software were
considered for the study. Specifically, the following procedures previously studied for hierarchically
structured binary repeated measures data (Masaoud and Stryhn, 2020) were included: maximum
likelihood via numerical integration (ML), Bayesian Markov chain Monte Carlo (MCMC), penal-
ized quasi-likelihood with binomial dispersion (PQL) and an extra-binomial dispersion (PQLx),
ordinary logistic regression (OLR), alternating logistic regression (ALR), and weighted general-
ized estimating equations (WGEE). The adapted ALR macro for 3-level of clustering (Kunthel et
al., 2014) is recently available when estimation of the association structure is of primary interest,
though was not included in the present simulation study.

The primary objective of this study was to assess the impact of missing values on the perfor-
mance of different statistical estimation procedures for the analysis of binary repeated measures
data with an additional hierarchical structure. A secondary goal of this study was to demonstrate a
simple simulation approach to assess the impact of missing values in an actual dataset.

2 Missing Values

Within the context of binary repeated measures data, let yij refer to complete binary records on each
of n subjects (i = 1, . . . , n) at t time points (j = 1, . . . , t). Furthermore, let rij be the indicator
of yij being missing. In this notation, a subject i drops out from the study at time d, if rid−1 = 0

and rij = 1 for all j ≥ d. Little and Rubin (2002) (for a longitudinal data context, see e.g., (Laird,
1988)) classified missingness mechanisms in terms of the conditional distribution of (rij) given
(yij). Note that in the following we also use rij as an indicator for a missing value of a particular
type, which should be evident from the context.

2.1 Classification of missing data

Missing completely at random (MCAR) (Little and Rubin, 2002; Laird, 1988) refers to a missingness
mechanism (or missing data process) that does not depend on prior observed outcome values or on
intended measurement values of the outcome (unobserved outcome values), but may depend on
covariates such as time. Little and Rubin (2002) showed that in the presence of an MCAR process,
the estimated parameters are not biased by the absence of data, thus the missing data can be ignored.
Diggle and Kenward (1994) introduced a completely random drop-out (CRD) process that assumes
MCAR. One implication of the MCAR assumption is that the distribution of the prior observed
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outcome values at time j is the same regardless of whether a subject drops out or remains in the
study after that particular time point. Also, the distribution of the unobserved outcome values is
unaffected by the drop-out. Missing at random (MAR) (Little and Rubin, 2002; Laird, 1988) and
random drop-out (RD) (Diggle and Kenward, 1994) refer to a missing data (drop-out) process that
depends on the prior observed values of the outcome only. Not missing at random (NMAR) (Little
and Rubin, 2002; Laird, 1988) and informative drop-out (ID) (Diggle and Kenward, 1994) refer to
a missingness mechanism that depends on the unobserved outcome (current or future unobserved
values).

2.2 Approaches to handle missing data

Several approaches have been proposed to assess and account for missing values (Fitzmaurice,
2003), including the complete case method (also termed “listwise deletion” (McKnight et al., 2007,
Chapter 5)). By this method, subjects with at least one missing value are dropped from the anal-
ysis. Fitzmaurice (2003) and Little and Rubin (2002) showed that this method is valid only under
the MCAR missing data process. Another approach is based on the observed data and called the
available case method (also termed “pairwise deletion” (Little and Rubin, 2002; Fitzmaurice, 2003;
McKnight et al., 2007, Chapter 5)). Fitzmaurice (2003) argued that WGEE falls under this approach.
Kim and Curry (1977) showed that for an MCAR process, methods based on the available cases are
considered more efficient than complete case methods, as one would expect because all the avail-
able data is used. Little (1988) and Little and Rubin (2002) explained that these methods assume the
strong MCAR assumption. Little and Rubin (2002) argued that neither the complete case method
nor the available case method are generally satisfactory. Little and Rubin (2002) showed that an
MAR process can be ignored when using likelihood-based inference. Robins et al. (1995) showed
that ordinary GEE does not allow an MAR process to be ignored, and outlined a weighting scheme
(WGEE) to achieve valid inference under the MAR assumption. Its implementation for drop-out
missing data is detailed by Jansen et al. (2006). Hogan et al. (2004) defined ignorability as the
situation where “the missing data model can be left unspecified or ignored”. For NMAR processes,
both likelihood and GEE approaches can be extended to model the missing data (Molenberghs and
Verbeke, 2005, Chapter 27). However, these approaches (Roy, 2003) fall beyond the present scope
of this study.

2.3 Assessing the impact of missing data by simulation

A theoretical knowledge of which procedures under certain assumptions would provide biased or
unbiased estimates is valuable, but does not give the analyst a quantitative sense of the impact of
missing data in an actual dataset. The question posed is what biases might arise from the missing
data under different assumptions about the missingness mechanisms. Here the impact of missing
data means the difference between results for the incomplete dataset and those for the corresponding
full dataset. Given an actual (incomplete) dataset this approach is counterfactual because the full
dataset is not available. However, it lends itself to simulation if realistic models for the full dataset
as well as the missingness mechanism can be established. We outline briefly how the MCAR and
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the MAR processes may be adapted to an actual dataset.
A first step is to discriminate between drop-outs, intermittent missing data and any other types of

missing data. For each type of missing data, a binary matrix of indicators of missing values (termed
a “shadow matrix” (Cook and Swayne, 2007)) with rows corresponding to subjects and columns
corresponding to possible instances of “events” of missing values is created. For example, each
row in the shadow matrix for drop-outs consists of a series of zeros until either the occurrence of
a drop-out (represented by a 1 and followed by missing values) or the last time point in the series.
This structure is similar to that of discrete time single event data (Singer and Willett, 1993). For
intermittent missing values, each subject could have multiple events corresponding to a standard
two-level (repeated measures) data structure.

Under an MCAR assumption, shadow matrix data would most naturally be analyzed by logistic
regression models that may incorporate covariates such as subject characteristics or time. Parameter
estimates from the actual dataset are then used to generate missing data values for the simulation.
Under an MAR assumption, the logistic regression models may be extended to include outcomes at
one or several previous time points, for example the model proposed by Diggle and Kenward (1994)

logit(Pr(rij = 1)) = β0 + β1timej + β2yij−1. (2.1)

Thus, the probability that subject i drops out at time j given that it was observed at time j − 1 is
modelled as a function of the time and the previous measurement through the logit link function.

2.4 Hierarchically structured data

The presence of missing values in multilevel data structures has been discussed in the literature
(Gibson and Olejnik, 2003). In multilevel datasets, it is possible to have data missing at more than
one level (Gibson and Olejnik, 2003). However, it is more problematic for data analysis, when a unit
is missing at a higher level, because it implies that the data at lower level is also missing. Snijders
and Bosker (1993) argued that even a small proportion of missing values at a higher level may lead
to a loss of a lot of information on individuals at the lower level. Gibson and Olejnik (2003) added
that methods for treating these missing data could alleviate the problem. Although the focus here is
on missing values for the repeated measures data structure and less on missing data at higher levels,
the basic definitions are unaffected by subjects being attributed to clusters. Models for missing data
such as (2.1) can be extended to clustered data by adding random effects to represent heterogeneity
between clusters.

3 Example: Somatic Cell Count Data

The scc40 dataset of Dohoo et al. (2009, Chapter 31) is a small subset of a large mastitis dataset
collected by Jens Agger and the Danish Cattle Organization in 1993-94. It contains 13,487 non-
missing observations at the first 10 time points (of the lactation) for 2,172 cows from 40 herds. Milk
samples from each lactating cow were collected approximately monthly within the regular milk
control scheme. Only records from a single lactation for each cow were included, and when the
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study period spanned parts of two lactations for a cow, the longer period of the two was selected. A
binary indicator of intra-mammary infection or mastitis was obtained by dichotomizing the somatic
cell counts at 200 000 cells/ml.

The scc40 dataset contains three types of missingness pattern: delayed entry, drop-outs and in-
termittent missing values. In general, a delayed entry occurs if a subject enters the study or becomes
under observation after the start time of the study. For example, if time is measured relative to a
fixed time point, subjects physically arriving after that point to an open study cohort (Dohoo et al.,
2009, Chapter 8) are delayed in their entry. For the scc40 data, each cow’s time refers to the days
since calving (“days in risk”). In this situation, a delayed entry occurs if the calving event took
place outside (before) the study period, and the time points within a cow prior to study onset were
considered as missing values. A drop-out occurs when a cow exited from the study before ending
its intended measurements, whereas, intermittent missing values are occasions where a cow missed
some measurements but reappeared again for later measurements in the study.

3.1 Analysis of the missing data in the scc40 dataset

In the context of the scc40 dataset, let yijk refer to complete binary records on each of n cows (i =
1, . . . , n) distributed on m herds (k = 1, . . . ,m) at t time points (j = 1, . . . , t). Furthermore, let
rijk be the indicator of yijk being missing. A shadow matrix was constructed for the corresponding
full dataset, and the distribution of the missing values was explored. The total percentage of missing
values in the constructed shadow matrix was about 31%, distributed as 17% delayed entry, 14%
drop-out and 0.3% intermittent missing values. We will now detail the modelling for each type of
missing values.

3.1.1 Missing values caused by drop-outs

A matrix of binary indicators of drop-outs was constructed according to the approach described
earlier (2.3). Subjects with delayed entry were included only from their point of entry. Conditional
on herd random effects, the probability that cow i in herd k drops out at time j was modelled by the
random effects extension of Equation (2.1) based on an MAR process

logit(Pr(rijk = 1|vk)) = β0 + β1timej + β2yij−1k + vk, (3.1)

where (v1, . . . , vm) are normally distributed independent random variables, say vk ∼ N(0, σ2
h)

where σ2
h represents the heterogeneity (variance) between herds. Inclusion of a second order time

lag (yij−2k) as well as a quadratic term for the effect of time were explored, but not considered of
significance for the modelling.

3.1.2 Missing values caused by delayed entry

A matrix of binary indicators of missing values prior to entry was constructed from the shadow
matrix. Each row consists of a series of 1’s until the subject is observed (represented by a 0) for the
first time in the study. Subsequent observations for the subject are not included. This data structure
is similar to the structure for drop-outs, except that 0’s and 1’s are reversed.
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This type of missing values is most likely a result of issues not related to the observed (or unob-
served) values. Therefore it was modelled by an MCAR process. Then, the conditional probabilities
were modelled by a random effects logistic regression model incorporating only time effects (by
linear and quadratic terms)

logit(Pr(rijk = 1|vk)) = β0 + β1timej + β12time
2
j + vk, (3.2)

with similar random effects assumptions as above. Note that the fixed and random terms in model
(3.2) are different from those in model (3.1) as well as the forthcoming model (3.3); for simplicity
of notation we retain the same symbols.

3.1.3 Intermittent missing values

The times of the first and last observation for each subject were excluded in the data for intermittent
missing values. Each subject could have multiple missing values, either following each other or at
isolated time points. Therefore, the MAR process model in Equation (3.1) was further extended
to include cow random effects. In addition, the observed value at the previous time point could
legitimately be missing, leading to the inclusion of an extra parameter in the model. In summary,
the conditional probability that cow i in herd k has an intermittent missing value at time j given the
cow and herd random effects (uik) and (vk), respectively, was modeled by a random effects logistic
regression model of the form

logit(Pr(rijk = 1|vk, uijk)) = β0 + β1timej + β2yij−1k + β3rij−1k + uijk + vk, (3.3)

for independent random variables uijk ∼ N(0, σ2
c ) and vk ∼ N(0, σ2

h) with the variances σ2
c and

σ2
h representing the heterogeneity (variance) between cows and herds, respectively.

4 Statistical Methods

4.1 Estimation procedures

Random effects and marginal estimation procedures were selected based on their performance in
the full and balanced simulated datasets (Masaoud and Stryhn, 2020). Random effects estimation
procedures included several approximation algorithms, aimed at producing estimates close to the
global ML estimate without actually computing the likelihood function (Breslow, 2003). These
algorithms carry a number of different names and acronyms typically involving “weighted least
squares” and “quasi”- or “pseudo-likelihood”.

Estimation in the forthcoming model (4.1) by numerical approximation most commonly em-
ploys the Gauss-Hermite quadrature procedure. Adaptive quadrature (Rabe-Hasketh et al., 2002)
is preferable for normally distributed random effects. In adaptive quadrature, the quadrature points
are rescaled and shifted to the shape of the log likelihood function. In model (4.1), however, the
added random effects at the cluster level pose some challenges for the direct maximization of the
log likelihood (ML) and the integration becomes difficult (Diggle et al., 2002) and may substantially
increase computation time.
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Estimation by Markov chain Monte Carlo (MCMC) techniques in a Bayesian framework, may
be viewed as a numerical approach to avoid the computational difficulties of the log likelihood. In
this study MCMC techniques are used as an estimation algorithm for the frequentist model rather
than for exploring the genuine Bayesian models with informative prior distributions. The MCMC
approach has been shown to perform well across a range of settings (Browne and Draper, 2006)
and (Masaoud and Stryhn, 2010). Breslow and Clayton (1993) presented two estimation procedures
based on quasi-likelihood function called penalized quasi-likelihood (PQL) and marginal quasi-
likelihood (MQL). Both estimation procedures allow for an extra binomial dispersion parameter
(φ), see (Skrondal and Rabe-Hesketh, 2007) for discussion of φ in PQL. MQL estimates are derived
under random effects model assumptions (Goldstein, 1991). Both procedures iteratively employ
linear mixed model estimation to an “adjusted” variate obtained by Taylor approximation of the out-
come around its current estimated mean, until convergence, using either maximum likelihood (ML)
or restricted maximum likelihood (REML), thus results in iterative generalized least squares (IGLS)
or restricted iterative generalized least squares (RIGLS), respectively. One major difference between
the two algorithms is that MQL does not incorporate the random effects ui in the linearization of the
mean (Molenberghs and Verbeke, 2005, Chapter 9) whereas PQL does. It has been also suggested
to refine the approximations by including a second-order term in the Taylor expansions, usually de-
noted as second order PQL and MQL procedures (Goldstein and Rasbash, 1996) and (Rodriguez
and Goldman, 1995). It is well-known that caution should be exercised in using these algorithms
because under certain conditions they are prone to bias towards the null (e.g., (Rodriguez and Gold-
man, 1995) and (Rodriguez and Goldman, 2001)). The random effects procedures used the first
order MQL and second order PQL procedures, with REML (RIGLS) option and implemented in the
MLwiN software (version 2.02), and additionally we included version of PQL procedures with an
extra binomial dispersion parameter, denoted as PQLx. The Bayesian estimation procedures were
implemented in WinBUGS version 1.4 called from the R software using the R2WinBUGS
package (Sturtz et al., 2005). Vague (“non-informative”) prior distributions (i.e. N(0, 106)) were
used for all fixed effects parameters. The uniform distribution for inverse variances, or precisions
(τ ∼ uniform(0,100)) was used (Lambert et al., 2005) and (Gelman, 2006). The Markov chains were
run with 500 burn-in samples (Browne and Draper, 2006), and the subsequent estimates (posterior
distribution medians) were based on 2000 samples. These burn-in and estimation sample sizes were
arrived at after inspecting MCMC diagnostics for selected datasets.

Marginal estimation procedures included GEE, generalized estimating equations, and some of
its variants; for more details, see (Masaoud and Stryhn, 2020). For missing data scenarios involving
drop-outs by an MAR process, a weighted generalized estimating equation (WGEE) procedure was
employed to account for the bias induced by the MAR mechanism. A GEE procedure may allow
an MAR process to be ignored if the working correlation structure is specified correctly (Liang and
Zeger, 1986; Jansen et al., 2006); see however (Preisser et al., 2002) for examples where this does
not hold. The GEE procedure was set up with either an independence or exchangeable working
correlation structure at the cluster (herd) level; results from (Masaoud and Stryhn, 2020) showed
that GEE with these correlations at the cluster level performed well for balanced repeated measures
data with an additional hierarchical structure. The calculations involved in the weighting scheme
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have been detailed elsewhere (Jansen et al., 2006; Molenberghs and Verbeke, 2005, Chapter 27).
In brief, the weight for each subject was calculated by fitting a marginal logistic regression for
the binary indicators of drop-outs similar to (3.1). The differences were: time being modelled as
a categorical predictor instead of a linear term, all fixed effects predictors being included, and the
random effects being replaced by an exchangeable GEE working correlation structure. The predicted
values from this model were used to compute weights for each subject and time point for the actual
WGEE analysis, as the inverse probabilities of not dropping out up to the current time point. The
weighting procedure and analysis were implemented using SAS software, by modifying the SAS
code of Jansen et al. (2006) to facilitate looping across the simulated datasets. An ordinary logistic
regression (OLR) with robust (“sandwich”) variance estimates is included, that has been reported
to work well for data comprising at least 30 subjects (Ziegler et al., 1998). An alternative variant
of the GEE procedure is alternating logistic regression (ALR). It uses the same estimating equation
for the fixed effects as GEE, but differs from GEE by modeling the association among responses
(e.g., within subjects) in terms of odds ratios. ALR is numerically more efficient than GEE for large
clusters (Carey et al., 1993). The ALR procedure has the advantage of providing standard errors for
the association parameters. Furthermore, ALR allows one to distinguish between odds-ratios within
clusters and within subclusters (in the current case subjects); however, the within–subject correlation
must be modelled as exchangeable. An adapted ALR macro for 3-level of clustering (Kunthel et al.,
2014) is available when estimation of the association structure is of primary interest, though it was
not included in our simulation study. For two-level binary repeated measures data, both GEE with
an exchangeable correlation structure and ALR yield asymptotically unbiased estimates, which can
be nearly efficient relative to GEE with a correctly specified working correlation structure (Masaoud
and Stryhn, 2010) and to maximum-likelihood estimates in a fully and correctly specified model
(Diggle et al., 2002, Chapter 8).

4.2 Simulation procedures

In this simulation approach, the balanced full datasets were generated first. Then the desired missing
data values were generated from a specified model, and the actual outcome values were replaced by
their counterpart missing values. The whole process was repeatedN = 1000 times. All full datasets
were balanced with 8 time points, 20 subjects per cluster and 30 clusters. A total of five scenarios
of missingness datasets were included. The scc40 scenario included all types of missing values
present in the scc40 dataset. As described previously, about half of the missing values were due
to delayed entry which could be argued to be assumed missing completely at random. In order to
study the impact of scenarios with higher proportions of values missing that were not as a result
of an MCAR process, missing values consisting exclusively of drop-outs were constructed. The
drop-out missing values were modelled by either MAR or NMAR processes and were adjusted to
either low (L) (approx. 31%) or high (H) (approx. 52%) proportions of missing values (designated
as MARL/MARH and NMARL/NMARH).
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4.2.1 Simulated balanced full datasets

The following random effects true models with autocorrelated (ρ = 1, 0.9 or 0.5) subject-specific
random effects were used to generate the balanced full datasets.

logit(Pr(yijk = 1|vk, uijk)) = β0 + β1x1ijk + . . .+ βpxpijk + uijk + vk, (4.1)

where yijk is a binary records on each of n subjects (i = 1, . . . , n) distributed on m clusters (k =

1, . . . ,m) at t time points (j = 1, . . . , t), as well as a set x1, . . . , xp of explanatory variables at
different hierarchical levels recorded at every time point. The (v1, . . . , vm) are independent random
variables with the same distribution and (ui1k, . . . , uitk) are a series of autocorrelated random effects
with ρ(uijk, uij′k) = ρ|j−j

′|. The most commonly assumed distribution is the Gaussian (normal),
say uijk ∼ N(0, σ2

2) where σ2
2 represents the heterogeneity (variance) between subjects and vk ∼

N(0, σ2
3) where σ2

3 represents the heterogeneity (variance) between clusters. Model (4.1) is for the
conditional probability of an “event” given the random effects vk and uijk of the kth cluster and of
the ith subject at jth time point, respectively.

The simulation settings of the balanced full datasets were motivated by the scc40 dataset of
(Dohoo et al., 2009, Chapter 8) for repeated measures of binary records of intra-mammary infection
or mastitis in milk samples from cows housed in multiple herds. In the scc40 context, predictors
of interest existed at both the herd and cow levels; thus, the simulation design included binary
covariates at the cluster and subject levels. Including also (for simplicity) a linear time effect but
no interactions with time, the linear predictor included the following parameters set at the indicated
true values: the intercept centered at first time point (β0) = −1; the slope for time = 0, . . . , t − 1

(β1) = 0.15; the coefficient for subject level covariates (β2) = −1 and the coefficient for cluster
level covariate (β3) = 1.

The random part of the model included normally distributed subject and cluster level random
effects with standard deviations set at σ2 = 1.5 and σ3 = 0.75, respectively. These values ap-
proximated the estimates in a random intercept model for a binary outcome in the scc40 dataset, as
described in section 3.

By the latent variable approximation to the variance partition coefficient (Goldstein et al., 2002),
this corresponds to 37% and 9% of the unexplained variance residing at the subject and cluster levels,
respectively. Simulated datasets were generated for highly and moderately autocorrelated subject-
specific random effects (ρ = 0.9 and ρ = 0.5) as well as for a random intercept model (ρ = 1).
Note that the correlation between binary outcomes is different than the correlation between the
random effects. In particular, the latent variable approximation with an observation-level variance
component of π2/3 (Snijders and Bosker, 2012, Chapter 14) yields an intra-class correlation of
σ2/(σ2 + π2/3) = 0.46, where σ2 = σ2

2 + σ2
3 , and a first-order correlation of ρσ2/(σ2 + π2/3),

and the values 0.42 and 0.23 for ρ = 0.9, 0.5, respectively.
The autocorrelated random effects of each subject were generated by multiplying a vector of t

independent variables by the upper triangular factor of the Cholesky decomposition of the correla-
tion matrix (as described in Congdon (2003, Chapter 1)). Generation of the binary outcomes then
followed the usual scheme for random effects logistic regrssion models (Stryhn et al., 2000). A
comprehensive and detailed analysis of the full datasets appeared in (Masaoud and Stryhn, 2020).
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4.2.2 Missing values: scc40 scenario

The three types of missing values were simulated in the following order: delayed entry based on
model (3.2), drop-outs based on model (3.1), and intermittent missing values based on model (3.3).
The parameter estimates of these models for the scc40 data (Table 1) were taken as true values for
the simulations of the missing value patterns.

4.2.3 Missing at random scenarios: MARL and MARH

The scc40 regression estimates (Table 1) for the drop-out coefficients in model (3.1) were retained
except that a stronger dependence on the previous value was imposed. Specifically, we used β0 =

−4.7, β1 = 0.35 and σh = 0.068, and the coefficient for the previous value was set at either β2 = 2

(MARL) or β2 = 4 (MARH). Overall, this produced expected percentages of missing values of
approximately 31% (about the same overall level as the scc40 data) and 52%, respectively. The
expected percentages of missing values ranged from 6% and 19% at the second time point to 70%
and 85% at the last time point, for MARL and MARH respectively.

4.2.4 Not missing at random scenarios: NMARL and NMARH

Although this study does not include methods to estimate NMAR models, data could be generated
from a NMAR scenario by directly allowing the probability of a missing value to depend on the
actual value from the full dataset. For simplicity, we used model (3.1) with the previous outcome
replaced by the current outcome and the same parameters as for the MAR scenarios. This resulted
in overall percentages of missing values of 31% and 52% and similar ranges of percentages at
individual time points as for MAR.

4.3 Analysis of results for simulated data

The estimates of marginal or random effects estimation procedures under different scenarios were
compared both to the true values of the simulation and to the estimates obtained from the full sim-
ulated datasets. The latter comparison was of interest for studying the impact of missing data on
the performance of the estimation procedures, whereas the former comparison would be used for an
overall assessment of each procedure under specific scenarios. The comparison of estimates to the
true values used the same formulae and methods as the analysis of the balanced full data (Masaoud
and Stryhn, 2020). In brief, the relative bias was defined as difference between the average esti-
mate among simulations (β̂) and the, marginal or subject-specific, true value (β), divided by the true
value,

relative bias to true value (RBT) =
β̂M − β

β
× 100%. (4.2)

Note that β̂M refers to the estimate based on the incomplete data. The scaling by the true value was
useful because the parameters were not standardized to a uniform scale. In a similar fashion, the
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relative bias to the average estimate based on the full data (β̂F ) was defined as

relative bias to full data (RBF) =
β̂M − β̂F

β
× 100%. (4.3)

One could also use β̂F in the dominator of (4.3); one advantage of our simpler form is that the RBF
is obtained as the difference of the RBTs for the full and incomplete data. Only datasets where valid
estimates were obtained by both full and incomplete data were included. For any of the estimates (of
both fixed effects and variance parameters), the presence of statistically significant bias compared
with the full data was assessed by a t-test based on the differences between estimates obtained from
the full and incomplete datasets among the simulations.

5 Results

After a brief review of the parameter estimates (Table 1) obtained from analyses of the three different
types of missing values (see section 3.1) in the scc40 dataset, the results are presented subdivided
by the true model data (random intercept or autocorrelated random effects model) and the missing
value scenarios. As the main interest is in the impact of the missing values, the focus here is on
the relative bias to the full data (RBF) in Tables 2–5, and we defer relative biases and standard
errors to the true values (RBT) to an appendix (Appendix A, Tables A1–A5). The coverages of
confidence intervals are shown in Figures 1–3; these must necessarily refer to the true values. The
performance of estimation procedures for the corresponding full datasets was discussed previously
(Masaoud and Stryhn, 2020) and includes, briefly, minor attenuation of variance estimates at the
cluster level for random effects procedures in random intercept model data and strong downwards
biases for all random effects procedures in autocorrelated data, as well as a small negative relative
bias by marginal estimation procedures in both data settings

5.1 Missingness types for scc40 data

The strongest effects on patterns of missingness in the scc40 data were found for drop-outs (Table
1). The likelihood of a subject dropping out increased significantly both with time (OR = 1.42 per
month) and with the previous value being an event (OR = 1.25). The estimated probabilities of a
subject with no events to drop out increased from 1.5% at the second time point to 15% at the last
time point (t = 9). There was little between-herd variation in the occurrence of drop-outs.

The probability of a delayed entry also depended strongly on time, but in a non-linear fashion
(Table 1). The negative quadratic term ensures the likelihood of a delayed entry missing value to
decrease as time progresses; in the data, all missing value series eventually stop because otherwise
the subject would not be part of the dataset. The estimated proportion of non-delayed subjects (with
ri1k = 0) was 46.6%, slightly above the 42.4% in the scc40 data. The herd-level variation in delayed
entries was very small, but statistically significant.

The probability of intermittent values declined with time (OR = 0.82 per month) and depended
on the previous observation being an event (OR = 0.50); both of these associations were quite
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uncertain (Table 1), a consequence of the small number (0.3%) of intermittent values in the scc40
dataset. Variances at the cow and herd levels were estimated at moderate values but were however
not statistically significant.

Table 1: Random effects logistic regression estimates of fixed effects and variances, with standard
errors, from analyses for three different types of missing values in the scc40 dataset; interpretation
of parameters: β0 = intercept, β1 = time coefficient, β12 = quadratic term for time coefficient,
β2 = previous outcome, β3 = previous outcome missing, σ2

h = herd-level variance, σ2
c = cow-level

variance.

Type of missing values

Delayed entry Drop-out Intermittent

Parameter Est. SE Est. SE Est. SE

β0 −0.444 0.083 −4.850 0.143 −4.582 0.604

β1 0.666 0.055 0.350 0.019 −0.196 0.075

β12 −0.084 0.007

β2 0.224 0.072 −0.698 0.347

β3 1.421 0.999

σ2
h 0.017 0.011 0.068 0.026 0.295 0.257

σ2
c 0.938 1.008

5.2 Random intercept model data (ρ = 1)
5.2.1 Missing values: scc40 scenario

All estimation procedures gave estimates in fairly close agreement with those of the full datasets
(Table 2). Small but significant negative biases for the time coefficient (β1) were found for OLR
and PQL. The variance estimates from PQL, PQLx and MCMC showed some minor negative and
positive biases that in all cases were in the same direction as the bias in the estimates of the full data
(Appendix A, Table A1)
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Table 2: Relative bias of estimates to the full data (RBF) with a significance indication and standard error in parenthesis,
based on analyses of 1000 simulated datasets generated by random intercept model (ρ = 1) in five simulated scenarios
of missing values: scc40 (missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of
missing values at random due to drop-outs), NMARL, NMARH (low (31%) and high (52%) proportion of missing values not
at random). Parameters: β0 (intercept), β1 (time coefficient), β2 (subject level factor), β3 (cluster level factor), σ2

2 (variance
at subject level), σ2

3 (variance at cluster level), φ (extra-binomial dispersion). Estimation procedures: OLR (ordinary logistic
regression), ALR (alternating logistic regression), PQL (2nd order penalized quasi-likelihood), PQLx (2nd order penalized
quasi-likelihood with extra-binomial dispersion), ML (maximum likelihood), MCMC (Bayesian Markov chain Monte Carlo).

Scen- Param- Statistical Methods

ario eter OLR ALR PQL PQLx ML MCMC

scc40 β0 −1.7 (1.2) −0.9 (1.2) −1.4 (1.2) 0.0 (1.3) −0.8 (1.3) −0.6 (1.3)

β1 −2.9‡(0.4) −0.6 (0.4) −1.7‡(0.6) 0.0 (0.6) −0.8 (0.6) −0.8 (0.6)

β2 −0.6 (0.7) −0.6 (0.6) −1.1 (0.6) −0.2 (0.7) −0.5 (0.7) −0.4 (0.7)

β3 0.1 (1.4) 0.3 (1.3) −0.2 (1.4) 0.9 (1.4) 0.5 (1.4) 0.7 (1.4)

σ2
2 −2.2‡(0.4) 4.8‡(0.5) 1.0 (0.5) 1.5†(0.5)

σ2
3 −3.8‡(1.4) −2.2 (1.5) −2.9 (1.5) −3.3 (1.7)

φ −2.9‡(0.1)

MARL β0 −8.0‡(1.3) −0.3 (1.3) −1.0 (1.3) 1.9 (1.3) 0.2 (1.3) 2.5 (1.7)

β1 −52.1‡(0.5) 0.1 (0.4) −2.9‡(0.6) 10.1‡(0.7) 0.1 (0.6) 1.2 (0.7)

β2 −3.4‡(0.7) −0.7 (0.7) −1.4†(0.7) 0.6 (0.7) −1.0 (0.7) −0.4 (0.8)

β3 −3.6‡(1.4) −0.9 (1.4) −1.3 (1.4) 0.8 (1.5) −0.8 (1.4) 1.2 (1.7)

σ2
2 −3.5‡(0.4) 8.0‡(0.5) 0.8 (0.5) 2.6‡(0.6)

σ2
3 −2.4 (1.4) 1.5 (1.5) −1.4 (1.5) −1.4 (2.0)

φ −5.0‡(0.1)

MARH β0 −1.5 (1.2) −5.3‡(1.3) −3.3‡(1.3) 10.9‡(1.5) 0.4 (1.4) 1.0 (1.4)

β1 −140.1‡(0.6) 23.0‡(0.5) −22.6‡(0.8) 89.2‡(1.2) 0.5 (0.9) 3.5‡(0.9)

β2 −11.6‡(0.7) 0.0 (0.7) −4.1‡(0.7) 11.6‡(0.8) −1.0 (0.7) −0.4 (0.8)

β3 −11.4‡(1.3) 0.0 (1.4) −3.6‡(1.4) 12.4‡(1.6) −0.6 (1.5) 0.3 (1.5)

σ2
2 −17.4‡(0.5) 64.0‡(1.0) 1.5†(0.7) 4.0‡(0.7)

σ2
3 −7.5‡(1.4) 22.8‡(1.8) −1.9 (1.6) −1.6 (1.7)

φ −20.4‡(0.2)

NMARL β0 −7.7‡(1.3) −0.5 (1.3) −2.6†(1.3) −0.1 (1.3) −0.7 (1.3) −0.1 (1.4)

β1 −88.2‡(0.5) −53.0‡(0.4) −79.6‡(0.6) −75.0‡(0.6) −78.4‡(0.6) −78.2‡(0.6)

β2 −2.0‡(0.7) −0.4 (0.7) −1.8‡(0.7) 0.0 (0.7) −1.5†(0.7) −1.4 (0.7)

β3 −2.1 (1.4) −0.5 (1.4) −1.4 (1.4) 0.5 (1.5) −1.2 (1.5) −0.6 (1.5)

σ2
2 −2.6‡(0.4) 8.5‡(0.5) 0.3 (0.5) 0.9 (0.5)

σ2
3 −2.4 (1.4) 1.0 (1.5) −2.2 (1.5) −2.5 (1.7)

φ −6.5‡(0.1)

NMARH β0 11.0‡(1.3) 16.1‡(1.3) 11.5‡(1.3) 23.5‡(1.5) 13.8‡(1.4) 14.5‡(1.4)

β1 −317.8‡(0.9) −223.5‡(0.9) −318.3‡(1.1) −300.2‡(1.2) −318.6‡(1.1) −319.0‡(1.1)

β2 −4.3‡(0.8) 0.9 (0.8) −5.6‡(0.7) 5.0‡(0.8) −6.2‡(0.8) −5.7‡(0.8)

β3 −4.9‡(1.4) 0.4 (1.5) −5.4‡(1.4) 5.7‡(1.6) −6.4‡(1.5) −5.7‡(1.5)

σ2
2 −14.4‡(0.6) 50.4‡(1.0) −11.2‡(0.7) −9.6‡(0.7)

σ2
3 −8.3‡(1.4) 12.5‡(1.7) −10.1‡(1.5) −11.1‡(1.7)

φ −21.5‡(0.3)
† significant bias at P < 0.05; ‡ significant bias at P < 0.01
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Table 3: Relative bias of estimates to the full data (RBF) with a significance indication and standard error in parenthesis,
based on analyses of 1000 simulated datasets generated by autoregressive random effects model with (ρ = 0.9) in five
simulated scenarios of missing values: scc40 (missing values as in scc40 dataset), MARL, MARH (low (31%) and high
(52%) proportion of missing values at random due to drop-outs), NMARL, NMARH (low (31%) and high (52%) proportion
of missing values not at random). Parameters: β0 (intercept), β1 (time coefficient), β2 (subject level factor), β3 (cluster level
factor), σ2

2 (variance at subject level), σ2
3 (variance at cluster level), φ (extra-binomial dispersion). See Table 2 for coding of

estimation procedures.

Scen- Param- Statistical Methods

ario eter OLR ALR PQL PQLx ML MCMC

scc40 β0 −2.2†(1.2) −1.5 (1.2) 3.3†(1.2) 4.9‡(1.2) 4.2‡(1.2) 4.1‡(1.2)

β1 −3.2‡(0.5) −1.0†(0.4) 3.5‡(0.6) 5.5‡(0.6) 4.3‡(0.6) 4.4‡(0.6)

β2 0.0 (0.7) −0.1 (0.6) 4.0‡(0.6) −3.0‡(0.6) 5.5‡(0.6) 5.7‡(0.6)

β3 −0.9 (1.3) −1.0 (1.4) 3.2†(1.3) 4.5‡(1.3) 4.6‡(1.3) 4.5‡(1.3)

σ2
2 17.8‡(0.3) 25.9‡(0.4) 22.8‡(0.4) 23.4‡(0.4)

σ2
3 5.4‡(1.3) 7.8‡(1.3) 8.0‡(1.3) 8.6‡(1.5)

φ −6.9‡(0.1)

MARL β0 −8.6‡(1.2) −1.4 (1.2) 2.9†(1.2) 5.9‡(1.2) 4.3‡(1.2) 4.0‡(1.2)

β1 −47.5‡(0.5) 0.0 (0.4) 2.5‡(0.6) 14.4‡(0.7) 5.2‡(0.6) 5.7‡(0.6)

β2 −2.2‡(0.6) 0.0 (0.6) 3.9‡(0.6) −2.2‡(0.6) 5.3‡(0.6) 5.6‡(0.6)

β3 −4.0‡(1.3) −1.7 (1.4) 2.3 (1.3) 4.6‡(1.3) 3.8‡(1.3) 3.5‡(1.3)

σ2
2 16.4‡(0.4) 28.2‡(0.4) 22.4‡(0.4) 23.1‡(0.4)

σ2
3 6.1‡(1.2) 10.3‡(1.3) 8.8‡(1.3) 9.4‡(1.4)

φ −8.8‡(0.1)

MARH β0 −0.4 (1.2) −3.3‡(1.2) 1.0 (1.2) 11.6‡(1.3) 3.8‡(1.2) 3.8‡(1.2)

β1 −113.1‡(0.6) 32.8‡(0.6) −6.4‡(0.9) 84.8‡(1.3) 13.9‡(1.0) 16.6‡(1.0)

β2 −8.8‡(0.6) 1.7‡(0.6) 0.0 (0.6) 6.0‡(0.7) 3.4‡(0.6) 3.9‡(0.6)

β3 −10.3‡(1.3) 0.0 (1.4) −1.5 (1.3) 12.7‡(1.4) 1.8 (1.3) 1.8 (1.3)

σ2
2 −3.4‡(0.4) 54.0‡(0.9) 11.6‡(0.6) 13.4‡(0.6)

σ2
3 −1.5 (1.2) 24.1‡(1.5) 4.2‡(1.3) 4.8‡(1.4)

φ −18.1‡(0.2)

NMARL β0 −7.0‡(1.2) −2.1 (1.2) −2.1 (1.1) −0.2 (1.2) −1.2 (1.1) −1.3 (1.2)

β1 −80.6‡(0.5) −56.0‡(0.5) −75.2‡(0.6) −72.4‡(0.7) −74.1‡(0.6) −74.0‡(0.6)

β2 −0.6 (0.6) 0.5 (0.6) 0.4 (0.6) −6.4‡(0.6) 0.7 (0.6) 0.9 (0.6)

β3 −2.4 (1.3) −1.3 (1.3) −1.1 (1.3) 0.5 (1.3) −0.9 (1.3) −1.1 (1.3)

σ2
2 2.1‡(0.3) 9.9‡(0.4) 4.6‡(0.4) 4.9‡(0.4)

σ2
3 0.5 (1.2) 3.1†(1.2) 0.9 (1.2) 0.9 (1.3)

φ −6.1‡(0.1)

NMARH β0 13.0‡(1.3) 16.0‡(1.3) 14.9‡(1.2) 25.7‡(1.3) 16.3‡(1.2) 16.4‡(1.2)

β1 −299.6‡(0.9) −232.1‡(0.9) −301.1‡(1.0) −291.2‡(1.1) −300.7‡(1.0) −301.0‡(1.0)

β2 −3.3‡(0.7) 1.0 (0.7) −2.5‡(0.6) −1.3 (0.7) −2.0‡(0.6) −1.6†(0.6)

β3 −4.4‡(1.4) −0.3 (1.4) −3.2‡(1.3) 6.6‡(1.4) −3.1†(1.3) −3.2†(1.3)

σ2
2 −1.4‡(0.5) 46.1‡(0.8) 3.0‡(0.5) 3.9‡(0.5)

σ2
3 −1.9 (1.2) 15.6‡(1.5) −1.6 (1.2) −1.9 (1.4)

φ −19.6‡(0.3)
† significant bias at P < 0.05; ‡ significant bias at P < 0.01
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Table 4: Relative bias of estimates to the full data (RBF) with a significance indication and standard error in parenthesis,
based on analyses of 1000 simulated datasets generated by autoregressive random effects model with (ρ = 0.5) in five
simulated scenarios of missing values: scc40 (missing values as in scc40 dataset), MARL, MARH (low (31%) and high
(52%) proportion of missing values at random due to drop-outs), NMARL, NMARH (low (31%) and high (52%) proportion
of missing values not at random). Parameters: β0 (intercept), β1 (time coefficient), β2 (subject level factor), β3 (cluster level
factor), σ2

2 (variance at subject level), σ2
3 (variance at cluster level), φ (extra-binomial dispersion). See Table 2 for coding of

estimation procedures.

Scen- Param- Statistical Methods

ario eter OLR ALR PQL PQLx ML MCMC

scc40 β0 −1.3 (1.2) −0.8 (1.2) 5.9‡(1.0) 7.2‡(1.0) 6.0‡(1.0) 6.1‡(1.0)

β1 −1.9‡(0.5) −0.5 (0.5) 6.1‡(0.5) 7.5‡(0.5) 6.2‡(0.5) 6.4‡(0.5)

β2 0.6 (0.5) 0.7 (0.5) 7.0‡(0.4) 8.1‡(0.4) 7.4‡(0.4) 7.5‡(0.4)

β3 −0.5 (1.4) −0.4 (1.3) 6.0‡(1.1) 7.2‡(1.1) 6.4‡(1.1) 6.4‡(1.1)

σ2
2 19.9‡(0.2) 24.5‡(0.2) 21.9‡(0.2) 22.2‡(0.2)

σ2
3 9.2‡(0.9) 11.0‡(0.9) 9.6‡(0.9) 10.8‡(1.0)

φ −8.5‡(0.1)

MARL β0 −6.0‡(1.2) −1.0 (1.2) 5.8‡(1.0) 7.7‡(1.0) 6.1‡(1.0) 6.2‡(1.0)

β1 −31.6‡(0.5) −0.5 (0.5) 5.3‡(0.6) 11.1‡(0.6) 5.7‡(0.6) 6.0‡(0.6)

β2 −1.0 (0.5) 0.6 (0.5) 7.1‡(0.4) 8.5‡(0.4) 7.3‡(0.4) 7.4‡(0.4)

β3 −1.0 (1.3) 0.6 (1.3) 7.2‡(1.1) 8.6‡(1.1) 7.3‡(1.1) 7.4‡(1.1)

σ2
2 23.0‡(0.2) 25.6‡(0.2) 22.1‡(0.2) 22.5‡(0.2)

σ2
3 10.5‡(0.9) 13.0‡(0.9) 10.8‡(0.9) 12.1‡(1.0)

φ −9.7‡(0.1)

MARH β0 1.5 (1.2) 2.2 (1.2) 4.2‡(1.0) 9.4‡(1.0) 5.4‡(1.0) 5.4‡(1.0)

β1 −56.9‡(0.7) 40.1‡(0.7) 4.1‡(0.8) 42.9‡(1.2) 14.0‡(0.9) 12.8‡(0.9)

β2 −4.5‡(0.5) 2.8‡(0.6) 1.6‡(0.4) 8.1‡(0.5) 3.2‡(0.5) 3.0‡(0.5)

β3 −4.3‡(1.3) 2.9†(1.3) 1.7 (1.1) 8.3‡(1.1) 3.2‡(1.1) 3.2‡(1.1)

σ2
2 2.8‡(0.2) 17.4‡(0.4) 6.9‡(0.3) 6.2‡(0.3)

σ2
3 2.2‡(0.8) 12.4‡(1.0) 4.6‡(0.9) 4.9‡(1.0)

φ −10.3‡(0.2)

NMARL β0 −2.8†(1.2) −1.0 (1.2) −0.1 (0.9) 0.7 (1.0) 0.1 (1.0) 0.1 (0.9)

β1 −65.7‡(0.5) −55.4‡(0.5) −62.6‡(0.6) −62.2‡(0.6) −62.1‡(0.6) −62.0‡(0.6)

β2 0.4 (0.5) 0.8 (0.5) 1.2‡(0.4) 1.9‡(0.4) 1.3‡(0.4) 1.4‡(0.4)

β3 0.6 (1.3) 1.0 (1.3) 1.3 (1.0) 2.1 (1.1) 1.4 (1.1) 1.5 (1.1)

σ2
2 2.2‡(0.1) 4.4‡(0.2) 2.9‡(0.2) 2.8‡(0.2)

σ2
3 1.7‡(0.8) 2.8‡(0.8) 1.9†(0.8) 2.2†(0.9)

φ −3.4‡(0.1)

NMARH β0 18.7‡(1.2) 19.8‡(1.2) 17.8‡(1.0) 23.3‡(1.0) 18.0‡(1.0) 18.0‡(1.0)

β1 −254.2‡(0.9) −225.5‡(0.9) −251.9‡(1.0) −253.8‡(1.0) −251.3‡(1.0) −251.5‡(1.0)

β2 −1.2†(0.6) 0.7 (0.6) 0.1 (0.5) 4.2‡(0.5) 0.6 (0.5) 0.5 (0.5)

β3 −1.4 (1.3) 1.0 (1.3) 0.3 (1.1) 4.7‡(1.1) 0.7 (1.1) 0.7 (1.1)

σ2
2 4.2‡(0.2) 17.8‡(0.4) 5.6‡(0.3) 4.4‡(0.3)

σ2
3 0.9 (0.9) 7.4‡(1.0) 1.5 (0.9) 1.7 (1.0)

φ −11.4‡(0.2)
† significant bias at P < 0.05;‡ significant bias at P < 0.01
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5.2.2 Missing values: MAR scenarios

The positive dependence of the drop-out probability on a preceding event resulted in datasets with
fewer events at the end of the time series than in the full dataset. For example, at t = 8 the full
and MARH datasets had a proportion of events of 53% and 11%, respectively. Consequently, the
strongest impact of the missing values for the simple OLR analysis was a negative bias for β1,
ranging down below -100%, and thus amounting to a sign switch in the coefficient (Table 2). The
other coefficients showed a negative bias as well, and the confidence interval (CI) coverage was far
below nominal (Figure 1).

The two likelihood-based procedures (ML, MCMC) were only slightly affected by the missing
values, the only consistent significant changes being some increased estimates for σ2

2 (Table 2).
Overall, the proportion of missing values had no impact, except that the MARH scenario produced
an additional small positive bias for β1 for MCMC. CI coverages were close to but mostly below
nominal (Figure 1).

The PQL procedure showed some negative biases, in particular for the time coefficient and
variances parameters, and increasing with the severity of missing values. The bias of the time
coefficient was substantial (≈ 20%) and in the same direction as for OLR but less pronounced.
Addition of an extra-binomial dispersion parameter (PQLx) altered the performance of the procedure
dramatically. Biases for all parameters (except the dispersion parameter) were positive and of a
larger magnitude (up to approx. 90% for β1) than for PQL (Table 2). The extra-binomial parameter
estimates of PQLx were centered at 0.72 for MARH setting only. However, except for β1, the
coverage of fixed effects CIs was fairly close to nominal for both PQL procedures (Figure 1).

The ALR procedure performed well in the MARL scenario, but produced a substantially inflated
estimate of β1 for MARH. The two weighted GEE (WGEE) procedures showed minor biases for
MARL and substantial biases for MARH, in particular in the estimates of β1 (Table 5). The direction
of the biases varied across the two WGEE versions and the two data settings. The exchangeable
correlation structure produced biases away from zero for MARL and towards zero for MARH. For
MARH, all estimates from both versions of WGEE were associated with too small standard errors
relative to the true values (Appendix A, Table A5), leading to substantial to strong undercoverage of
CIs (Figure 1).

5.2.3 Missing values: NMAR scenarios

All estimation procedures included in the NMAR scenarios showed strong, negative relative biases
(RBF range 53 - 320%) for the time coefficient (Table 2). Estimation of subject- and cluster-level
fixed effects was relatively unaffected, with only minor biases (up to 6.4%) of which only few were
significant for NMARL, but all except ALR were significant for NMARH. All significant biases
were negative, except for PQLx. Subject- and cluster level variances showed similar patterns, with
RBF values up to 14.4% (except for 50.4% for σ2

2 and PQLx). Confidence intervals were strongly
affected for β1 and OLR but otherwise had coverages fairly close to nominal (Figure 1).
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5.3 Autocorrelated data (ρ < 1)

Generally, the impact of the missing values was more affected by the amount of autocorrelation
present in the data for random effects than marginal procedures. This finding is plausibly linked
to the strong direct impact of the autocorrelation on the random effects estimates in the balanced
full data (Masaoud and Stryhn, 2020). Specifically, when autocorrelation was present, estimates
from random effects procedures tended to be less shrunk towards zero (i.e., inflated) in datasets
with missing values than in the full data. Thus, the missing values to some extent counteracted the
shrinkage caused by the autocorrelation.

5.3.1 Missing values: scc40 scenario

All random effects estimation procedures showed inflated estimates across almost all parameters
relative to the estimates from the full data (Tables 3–4). The extra-binomial dispersion parameter
for PQLx was downwards biased away from nominal dispersion (φ = 1). The inflation was in most
cases more pronounced at ρ = 0.5 than ρ = 0.9, except for the subject-level variance. Despite
the inflation, the estimates were still clearly attenuated towards zero, although less so than in the
full data (Appendix A, Tables A2–A3, and the CIs suffered from strong undercoverage for some
parameters, in particular for ρ = 0.5 (Figures 2–3). For the marginal procedures (OLR and ALR),
the impact of the missing values was still minor and almost unchanged from the random intercept
model data.

5.3.2 Missing values: MAR and NMAR scenarios

For random effects procedures, the impacts of missing data were similar to those described above
for the scc40 scenario. Some notable exceptions were that the extra binomial dispersion parameter
for PQLx moved towards 1 in the MARH scenario, and some fixed effects estimates for ML and
MCMC were similar at ρ = 0.9 and ρ = 0.5, or even closer to zero at the latter.

The marginal procedures showed different bias patterns with decreasing values of ρ (Table 5).
For example, OLR biases generally decreased, whereas ALR biases were stable around zero for
MARL, but for MARH the previously observed positive bias for β1 increased in magnitude. In
MARL data, the two weighted GEE procedures performed roughly on par with the random intercept
data. Some bias reduction could be seen for MARH with decreasing ρ, but the bias in standard errors
and resulting poor coverage of CIs remained (Table 4 and Figures 2–3).

In NMAR scenarios, the introduction of autocorrelation had similar impacts on the biases of the
different estimation procedures as in the MAR scenarios. However, from a practical point of view it
did not alter the magnitude and severity of the biases described for the random intercept model data
substantially (Tables 3–5). The CI coverages for random effects procedures dropped substantially
below nominal with decreasing ρ (Figures 2–3), but this was attributable to the autocorrelation itself
and not a result of the missing values.
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6 Discussion

6.1 Modelling of missing values in a dataset

When an (applied) researcher is confronted with a dataset containing missing values, they face a
crucial decision (among many others) regarding the analysis: whether to ignore or model the missing
values. A quick glance through scientific journals publishing studies involving statistical analyses
will show that in most cases the missingness is ignored, despite the good statistical understanding of
procedures to model missing data (e.g., Little and Rubin, 2002; McKnight et al., 2007, Chapter 5).
Among the reasons for this apparent negligence in the statistical analysis would be beliefs that (i) the
statistical methods actually used were robust to missing values, and (ii) statistical methods to deal
with missing values would be difficult to employ and assess. While focusing on the quantification of
assumption (i), the present paper also puts forward the idea of modelling the occurrence of missing
values by simple models, in order to gain insight into the types of missing values in a dataset before
deciding whether the missing values should be modelled or not.

Our example dataset (scc40) contained a total of 31% missing values relative to a dataset with
complete series on all subjects, intuitively a relatively large proportion. However, more than half
of the missing values were due to a type of missing values (delayed entry) that could reasonably be
assumed to have arisen by the least serious missing value process (MCAR). Delayed entry can be
thought of as a left truncation of the time series on a subject, whereas a drop-out can be thought of
as a right truncation of the series. Little attention seems to have been paid in the literature to delayed
entry as a source of missing values, but in our view it may occur commonly for data collected
retrospectively from databases.

It is critically important to model missing values in a single dataset appropriately. We modelled
the different types of missing values by variants of the logistic regression model proposed by Dig-
gle and Kenward (1994). Possible extensions of the approach can easily be suggested. For data
including treatment factors of key interest, it would be natural to include these as fixed effects in
the models. Also, if NMAR processes are suspected for some of the missingness types, one could
consider specific NMAR models, such as pattern-mixture models (Molenberghs et al., 2001), even
though they may be more difficult to fit to the missingness values. We considered intermittent miss-
ing values as the type most likely to involve NMAR missingness, and by the very low proportion of
such missing values in the data, NMAR modelling was considered unnecessary in our example.

The simulation results for the scc40 scenario showed almost no impact of the combination of
missing patterns on the estimation procedures. Obvious reasons for this perhaps somewhat surpris-
ing finding, given the relatively large proportion of missing values, are that delayed entry accounted
for a substantial part of the missing values, and that the missing value mechanisms studied did not
include NMAR.

6.2 Impact of missing values

Evidently, the impact of missing values in a dataset depends on the types and probabilistic mecha-
nisms of the missing values as well as their proportions. Our simulation studies gave a sense of the
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required level of missingness needed to substantially affect results (of different procedures), and the
extent to which individual parameters were affected. As discussed above, estimation in the scc40
data seemed hardly affected at all despite a sizeable proportion of missing values. With the most
severe missingness mechanism (NMAR) at the same level of missing values, the picture changed
completely. The strong biases for the time coefficient across all procedures agrees with findings
reported by Little and Rubin (2002); Laird (1988) that ignoring the NMAR missing process leads to
biased estimates, even when only a small proportion of the sample is missing (Choi and Lu, 1995).
It is notable that subject- and cluster-level parameters could be relatively little affected even in the
most extreme scenarios, indicating that without a direct link to the missingness mechanism results
could be relatively robust. Specific comments for some of the procedures follow.

6.2.1 Weighted generalized estimating equations (WGEE)

The GEE procedures of interest for the present 3-level structure involved either independent or
exchangeable correlations at the cluster level. As these structures ignore the within-subject corre-
lations, they seem unlikely to capture the true correlation structure. The strong biases for OLR in
MAR scenarios, whose estimates may be interpreted as of an unweighted GEE with independent
correlation structure, confirmed our suspicion.

The WGEE procedures performed fairly well relative to the full data for MARL regardless of
the correlation structure in the data, in agreement with findings reported by Jansen et al. (2006) and
Molenberghs and Verbeke (2005, Chapter 27). Small biases have also been reported (Preisser et al.,
2002), which could substantiate the small bias we found for the time coefficient. For MARH, the
same parameter exhibited substantial biases which seem to contradict its theoretical (asymptotic)
properties (Robins et al., 1995), but has also been reported previously for two-level data (Preisser et
al., 2002). One possible source of the bias is fluctuations in estimating the weights as the number of
measurements per subject becomes small, if not very small.

6.2.2 Alternating logistic regression (ALR)

Overall, we found ALR estimates to be in close agreement with those of the full data (except for the
time coefficient in MARH and NMAR scenarios), regardless of the correlation structure in the data.
The bias in the MARH data was somewhat surprisingly in the opposite direction of biases for OLR
and WGEE. As ALR is based on similar estimating equations as GEE, one may speculate that a
weighting scheme akin to WGEE could be developed for ALR processes; in any case, the properties
of ALR under MAR processes warrant further study.

6.2.3 Penalized quasi-likelihood procedures (PQL, PQLx)

Drawbacks and caveats of iterative reweighting algorithms such as PQL for estimation in random
effects models have been discussed extensively in the literature (Breslow, 2003). However, we are
not aware of published work discussing any inferior performance of quasi-likelihood procedures
under MAR processes. Our results for PQL demonstrated a bias in the time coefficient that we think
is not attributable to the well-known attenuation of variance parameters in certain settings, because
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it does not affect all fixed effects parameters equally nor has the same direction as for OLR. As for
ALR, a suitable weighting scheme for PQL under MAR processes could be hypothesized. Allowing
for an extra-binomial dispersion (PQLx) produced stronger biases and in the opposite direction,
adding to the evidence from previous work (Masaoud and Stryhn, 2020) that the inclusion of the
extra-binomial parameter has more profound impacts on the performance of the procedure than one
might intuitively expect. Based on our findings, the inclusion of the extra-binomial parameter in the
presence of substantial missing data is not to be recommended.

6.2.4 Likelihood-based procedures (ML, MCMC)

Strictly speaking, both ML and MCMC are based on likelihood approximations, either by quadrature
or MCMC sampling. From this perspective, our results for these procedures demonstrated that the
accuracy of the approximations were sufficient to, by and large, ensure the ignorability of MCAR
and MAR processes predicted from theory (Little, 1988). However, slight increases in MCMC
estimates for the time coefficient and cluster level variance remained unexplained. On the other
hand, NMAR processes affected the likelihood-based procedures to roughly the same extent as the
other procedures, so their advantage in this context is essentially linked to the MAR assumption.
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A Appendix

Table A1: Relative bias of estimates and standard errors to the true values with a significance indication, based on analyses
of 1000 simulated datasets generated by random intercept model (ρ = 1) in five simulated scenarios of missing values: scc40
(missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values at random
due to drop-outs), MNARL, MNARH (low (31%) and high (52%) proportion of missing values not at random). Parameters:
β0 (intercept), β1 (time coefficient), β2 (subject level factor), β3 (cluster level factor), σ2

2 (variance at subject level), σ2
3

(variance at cluster level), φ (extra-binomial dispersion). Estimation procedures: PQL (2nd order penalized quasi-likelihood),
PQLx (2nd order penalized quasi-likelihood with extra-binomial dispersion), ML (maximum likelihood), MCMC (Bayesian
Markov chain Monte Carlo).

PQL PQLx ML MCMC

Scenario Parameter Est. SE Est. SE Est. SE Est. SE

scc40 β0 −1.3 −4.9∗ 2.7‡ −5.9∗ 0.1 −4.3∗ 0.0 −3.1

β1 −0.7‡ −8.7∗ 4.0‡ −16.7∗ 0.0 −4.3 0.0 −4.3

β2 −4.2† −0.6 −4.2 −0.6 −0.5 0.0 −0.1 0.0

β3 −2.0 −4.3∗ 1.5 −4.1 1.5 −4.1 1.7 −1.3

σ2
2 −10.8‡ −15.1∗ 7.5‡ −23.2∗ 0.8† −2.8 2.5‡ −2.0

σ2
3 −15.4‡ −5.1∗ −9.2‡ −5.2∗ −9.2‡ −3.1 0.1 8.8∗

φ −17.8‡ 37.5∗

MARL β0 −1.0 −2.4 4.6‡ −3.4 1.1 −1.1 3.2† −5.2∗

β1 −2.1‡ −5.0∗ 13.8‡ −17.0∗ 0.8 0.1 2.1‡ −1.7

β2 −4.5‡ −2.0 0.0 −1.2 −1.0 0.1 −0.1 −1.0

β3 −3.2‡ −5.2∗ 1.4 −5.3∗ 0.2 −4.4∗ 2.2 −3.4

σ2
2 −12.1‡ −12.4∗ 10.7‡ −23.2∗ 0.7 2.4 3.5‡ −0.7

σ2
3 −14.0‡ −6.4∗ −5.5‡ −6.2∗ −7.6‡ −3.8∗ 2.0 11.0∗

φ −19.0‡ 25.6∗

MARH β0 −3.2‡ −5.3∗ 13.6‡ −6.3∗ 1.3 −2.1 1.6 −0.4

β1 −21.7‡ −15.7∗ 92.9‡ −45.6∗ 1.2 2.0 4.4‡ −0.3

β2 −7.1‡ −7.7∗ 11.0‡ −3.1 −1.0 −0.6 −0.2 −0.7

β3 −5.5‡ −8.0∗ 12.9‡ −7.3∗ 0.5 −5.4∗ 1.3 −3.5

σ2
2 −26.0‡ −26.7∗ 66.7‡ −49.3∗ 1.4† 3.6 5.0‡ 1.3

σ2
3 −19.0‡ −9.5∗ 15.8‡ −6.0∗ −8.1‡ −3.4 1.7 8.4∗

φ −27.6‡ −26.7∗

NMARL β0 −2.6‡ −1.6 2.7‡ −2.5 0.2 −0.7 0.6 −1.8

β1 −78.8‡ −3.8 −71.3‡ −14.7∗ −77.7‡ −1.8 −77.4‡ −2.4

β2 −4.8‡ −0.4 −0.6 0.4 −1.5‡ 0.7 −1.1† −0.4

β3 −3.3‡ −4.6∗ 1.1 −4.6∗ −0.2 −4.1 0.4 −3.2

σ2
2 −11.2‡ −11.9∗ 11.2‡ −22.0∗ 0.2 1.3 1.9‡ 1.1

σ2
3 −13.9‡ −6.5∗ −6.0‡ −6.5∗ −8.4‡ −4.8∗ 0.8 7.8∗

φ −19.8‡ 16.4∗

NMARH β0 11.5‡ −6.3∗ 26.2‡ −5.7∗ 14.7‡ −3.1 15.1‡ −1.0

β1 −317.4‡ −5.7∗ −296.5‡ −22.8∗ −318.0‡ −10.3∗ −318.1‡ −10.9∗

β2 −8.7‡ −4.0 4.4‡ 1.4 −6.2‡ −2.2 −5.5‡ −2.2

β3 −7.3‡ −7.7∗ 6.3‡ −6.2∗ −5.3‡ −6.5∗ −4.7‡ −4.3∗

σ2
2 −23.0‡ −24.8∗ 53.1‡ −40.9∗ −11.3‡ 0.8 −8.7‡ 0.3

σ2
3 −19.8‡ −7.9∗ 5.5‡ −3.6 −16.3‡ −4.3∗ −7.8‡ 7.0∗

φ −28.3‡ −47.3∗

† significant bias in estimate at P < 0.05; ‡ significant bias in estimate at P < 0.01; ∗ significant bias in standard error at P < 0.05
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Table A2: Relative bias of estimates and standard errors to the true values with a significance indication, based on analyses
of 1000 simulated datasets generated by autoregressive random effects model with (ρ = 0.9) in five simulated scenarios
of missing values: scc40 (missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of
missing values at random due to drop-outs), MNARL, MNARH (low (31%) and high (52%) proportion of missing values
not at random). Parameters: β0 (intercept), β1 (time coefficient), β2 (subject level factor), β3 (cluster level factor), σ2

2
(variance at subject level), σ2

3 (variance at cluster level), φ (extra-binomial dispersion). see Table A1 for coding of estimation
procedures.

Statistical Methods

Scen- Parm- PQL PQLx ML MCMC

ario eter Est. SE Est. SE Est. SE Est. SE

scc40 β0 −6.1‡ −1.3 −2.7‡ −2.1 −5.3‡ −0.9 −5.1‡ −1.3

β1 −6.5‡ −9.1∗ −1.3‡ −13.6∗ −4.7‡ −4.5∗ −4.7‡ −4.5∗

β2 −6.4‡ −1.4 −3.4‡ −0.7 −3.9‡ 0.7 −3.7‡ 0.0

β3 −6.5‡ −3.8 −3.5† −3.7 −4.2† −3.4 −3.9‡ −2.0

σ2
2 −25.2‡ −16.6∗ −10.3‡ −24.7∗ −16.8‡ −2.9 −15.6‡ −2.8

σ2
3 −20.7‡ −12.5∗ −15.4‡ −12.2∗ −16.6‡ −9.7∗ −8.3‡ 2.4

φ −16.0‡ 46.7∗

MARL β0 −6.5‡ −5.7∗ −1.7 −6.5∗ −5.2‡ −4.1 −5.2‡ −3.7

β1 −6.1‡ −11.1∗ 7.7‡ −21.6∗ −3.8‡ −5.9∗ −3.2‡ −6.2∗

β2 −6.5‡ −0.4 −2.5‡ −0.5 −4.1‡ 2.3 −3.8‡ 2.2

β3 −7.4‡ −5.4∗ −3.4‡ −5.4∗ −5.1‡ −4.1 −5.0‡ −2.6

σ2
2 −26.7‡ −20.2∗ −8.0‡ −29.8∗ −17.2‡ −4.7∗ −15.9‡ −4.6∗

σ2
3 −20.0‡ −5.7∗ −12.8‡ −6.0∗ −15.9‡ −2.7 −7.4‡ 10.8∗

φ −17.1‡ 40.7∗

MARH β0 −8.4‡ −8.4∗ 4.0‡ −9.7∗ −5.7‡ −4.9∗ −5.4‡ −3.5

β1 −15.0‡ −25.8∗ 78.1‡ −50.7∗ 4.9‡ −9.0∗ 7.7‡ −10.6∗

β2 −10.4‡ −4.1 5.6‡ −3.2 −6.1‡ 2.8 −5.5‡ 2.8

β3 −11.2‡ −6.0∗ 4.7‡ −6.2∗ −7.1‡ −3.3 −6.6‡ −1.6

σ2
2 −46.5‡ −35.0∗ 17.8‡ −57.7∗ −27.9‡ −8.7∗ −25.6‡ −10.0∗

σ2
3 −27.6‡ −9.3∗ 1.0 −9.2∗ −20.4‡ −2.5 −12.0‡ 10.1∗

φ −22.3‡ −8.6∗

NMARL β0 −11.5‡ −4.9∗ −7.8‡ −5.8∗ −10.7‡ −3.5 −10.5‡ −2.4

β1 −83.8‡ −12.2∗ −79.1‡ −20.3∗ −83.2‡ −9.8∗ −82.9‡ −10.3∗

β2 −10.0‡ 0.0 −6.7‡ 0.5 −8.7‡ 3.0 −8.4‡ 2.0

β3 −10.8‡ −3.5 −7.5‡ −3.6 −9.7‡ −2.9 −9.5‡ −1.0

σ2
2 −40.9‡ −20.4∗ −26.3‡ −29.3∗ −35.0‡ −5.0 −34.1‡ −5.0∗

σ2
3 −25.7‡ −6.6∗ −20.0‡ −7.0∗ −23.8‡ −3.3 −15.9‡ 10.0∗

φ −15.6‡ 49.5∗

NMARH β0 5.5‡ −6.8∗ 18.1‡ −7.9∗ 6.8‡ −3.5 7.2‡ −0.8

β1 −309.6‡ −6.9∗ −297.9‡ −20.9∗ −309.8‡ −10.6∗ −309.9‡ −10.9

β2 −12.9‡ −2.4 −1.6‡ −1.0 −11.5‡ 0.4 −11.0‡ 0.2

β3 −12.9‡ −3.5 −1.4 −3.1∗ −12.0‡ −2.3 −11.6‡ 0.8

σ2
2 −44.5‡ −26.8∗ 10.0‡ −48.0∗ −36.5‡ 3.7 −35.1‡ −5.4∗

σ2
3 −28.0‡ −6.4∗ −7.5‡ −5.4∗ −26.3‡ −1.8 −18.8‡ 10.4∗

φ −23.1‡ −39.6∗

† significant bias in estimate at P < 0.05; ‡ significant bias in estimate at P < 0.01; ∗ significant bias
in standard error at P < 0.05
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Table A3: Relative bias of estimates and standard errors to the true values with a significance indication, based on analyses
of 1000 simulated datasets generated by autoregressive random effects model with (ρ = 0.5) in five simulated scenarios
of missing values: scc40 (missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of
missing values at random due to drop-outs), MNARL, MNARH (low (31%) and high (52%) proportion of missing values
not at random). Parameters: β0 (intercept), β1 (time coefficient), β2 (subject level factor), β3 (cluster level factor), σ2

2
(variance at subject level), σ2

3 (variance at cluster level), φ (extra-binomial dispersion). see Table A1 for coding of estimation
procedures.

Statistical Methods

Scen- Parm- PQL PQLx ML MCMC

ario eter Est. SE Est. SE Est. SE Est. SE

scc40 β0 −16.7‡ −2.5 −14.7‡ −3.5 −16.8‡ −1.0 −17.1‡ 0.0

β1 −16.7‡ 0.0 −14.7‡ −5.3∗ −16.7‡ 0.0 −16.7‡ 0.0

β2 −16.7‡ −2.7 −14.9‡ −3.5 −16.5‡ 0.9 −16.3‡ 0.0

β3 −16.8‡ −2.4 −15.0‡ −2.4 −16.7‡ −1.6 −16.7‡ 1.6

σ2
2 −68.4‡ −14.2∗ −61.9‡ −21.6∗ −65.5‡ −1.6 −65.2‡ 0.0

σ2
3 −36.4‡ −10.2∗ −33.5‡ −11.1∗ −36.2‡ −7.0∗ −29.6‡ 6.3∗

φ −10.2‡ 140.0∗

MARL β0 −16.9‡ −5.5∗ −14.2‡ −6.4∗ −16.8‡ −3.9 −16.9‡ −0.9

β1 −18.5‡ −8.9∗ −10.8‡ −15.8∗ −17.3‡ −2.7 −17.0‡ −3.6

β2 −16.9‡ −4.9∗ −14.5‡ −4.8∗ −16.6‡ 0.9 −16.4‡ −1.0

β3 −16.0‡ −7.2∗ −13.6‡ −7.5∗ −15.7‡ −6.3∗ −15.7‡ −2.7

σ2
2 −68.7‡ −16.1∗ −60.8‡ −26.0∗ −65.3‡ 1.2 −65.0‡ −0.2

σ2
3 −35.4‡ −7.6∗ −31.6‡ −8.1∗ −35.0‡ −3.4 −28.3‡ 10.4∗

φ −10.9‡ 111.7∗

MARH β0 −18.4‡ −5.6∗ −12.6‡ −8.2∗ −17.5‡ −3.4 −17.7‡ −0.1

β1 −18.5‡ −24.5∗ 20.9‡ −47.8∗ −8.9‡ −7.0∗ −10.1‡ −12.4∗

β2 −22.0‡ −8.0∗ −14.9‡ −13.1∗ −20.6‡ −1.9 −20.8‡ −3.1

β3 −21.2‡ −7.6∗ −13.9‡ −10.2∗ −19.8‡ −6.0∗ −19.9‡ −1.3

σ2
2 −85.5‡ −28.1∗ −69.1‡ −57.3∗ −80.6‡ −7.0∗ −81.3‡ −19.8∗

σ2
3 −43.3‡ −11.5∗ −32.2‡ −16.1∗ −41.3‡ −5.3∗ −35.5‡ 8.0∗

φ −11.2‡ 9.9∗

NMARL β0 −22.7‡ −5.7∗ −21.2‡ −6.5∗ −22.8‡ −4.5∗ −23.0‡ −1.7

β1 −85.2‡ −12.8∗ −84.1‡ −16.6∗ −85.0‡ −10.9∗ −85.0‡ −11.1∗

β2 −22.4‡ −3.6 −21.1‡ −4.0 −22.5‡ −0.1 −22.5‡ −0.4

β3 −21.5‡ −7.1∗ −20.1‡ −7.3∗ −21.6‡ −6.3∗ −21.7‡ −2.4

σ2
2 −86.1‡ −13.3∗ −82.0‡ −24.6∗ −84.5‡ −1.2 −84.7‡ −6.3∗

σ2
3 −43.8‡ −7.0∗ −41.8‡ −7.6∗ −44.0‡ −3.2 −38.2‡ 10.8∗

φ −7.3‡ 107.1∗

NMARH β0 −4.8‡ −6.7∗ 1.4‡ −9.9∗ −4.9‡ −4.3∗ −5.1‡ −1.4

β1 −274.6‡ −12.5∗ −275.7‡ −18.2∗ −274.3‡ −13.4∗ −274.4‡ −13.6∗

β2 −23.5‡ 0.4 −18.8‡ −2.2 −23.2‡ 3.5 −23.3‡ 2.6

β3 −22.5‡ −7.2∗ −17.5‡ −8.2∗ −22.4‡ −6.1∗ −22.4‡ −2.4

σ2
2 −84.1‡ −14.8∗ −68.6‡ −46.9∗ −81.8‡ −1.5 −83.2‡ −16.8∗

σ2
3 −44.6‡ −10.0∗ −37.2‡ −12.4∗ −44.3‡ −5.1∗ −38.7‡ 7.4∗

φ −11.8‡ −21.4∗

† significant bias in estimate at P < 0.05; ‡ significant bias in estimate at P < 0.01; ∗ significant bias
in standard error at P < 0.05
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