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ABSTRACT

Response time is a key factor in the analysis of the different queueing network model
properties. This study computes a series of response times using a data-based recurrence
relation. The true average response time is determined using the sample averages from
those response times. Several confidence intervals are created for the open queueing net-
work model’s average response times using the calibration approach. Using a numerical
simulation analysis, the accuracy of the various confidence intervals is evaluated.
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1 Introduction
The amount of time a user takes from the time they arrive until they depart is known as their response time.
Examine the two-phase open queueing network architecture. Two nodes make up this system, and they have
different service rates µ1 and µ2 respectively. The rate of external arrivals is λ. There is very few published re-
search on statistical inference in queueing networks, and those that have largely dealt with parametric statistical
inference, that is, in situations where the population distribution takes a certain form were conducted in the past.
According to Jackson’s (1957) theorem, every node functions as a separate queue. So far very few researchers
have studied the non-parametric statistical inferences. Efron and Tibshirani (1993) developed and proposed the
bootstrap technique to estimate the sampling distribution of any statistic. In addition to the conventional boot-
strap (SB) method, the Bayesian bootstrap (BB) resampling technique was introduced by Rubin (1981). For
an M/G/1 FCFS queueing system, Chu and Ke (2006) created new confidence intervals for the mean response
time. Additionally, they computed the coverage probability and the average length of confidence intervals to
assess the accuracy of bootstrap confidence intervals. Through the computation of a series average response
time and the average response time’s confidence intervals, Chu and Ke (2007) used simulation to create a data-
driven recurrence relation for the G/G/1 queuing system. The nonparametric statistical estimation techniques
for average response times of several queueing network models have been examined by Gedam and Pathare
(2015 & 2019). For the mean reaction times of various queueing network models, they constructed confidence
intervals. Further they developed a calibration technique to increase the coverage accuracy of confidence in-
tervals in queueing network models. There is very little study on the calibration technique used in queueing
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networks. This encourages us to create confidence intervals for the average response times using the calibration
approach and to derive nonparametric statistical conclusions about the average response times for queueing
network models. Any approximate confidence interval system can have its coverage accuracy increased by
using the calibrating procedure. The purpose of the bootstrap calibration method is to calibrate the confidence
intervals by comparing them to the intended nominal level after estimating the true coverage of the intervals
using bootstrap. Section 2 discusses estimation of average response time by nonparametric method. Section
3 discusses calibration method. In section 4, calibrated confidence intervals for the mean response time are
covered. In Section 5, a numerical simulation analysis is performed. The corresponding tables display all of
the simulation findings and highlight the various estimating methodologies’ performances. Section 6 presents
a few conclusions.

2 Estimation of Mean Response Time by Nonparametric Method
Consider (Ai, Si, i = 1, 2) are the continuous random variables where Ai represents inter-arrival times and
Si represents service times of distinct nodes of a queueing network. Service times and inter-arrival times are
independent of each other.

Let A11, A12, . . . , A1n and A21, A22, . . . , A2n be a random sample drawn from A1 and A2 respectively,
where Aij stands for the times between arrivals. Let S11, S12, . . . , S1n and S21, S22, . . . , S2n be a random
sample drawn from S1 and S2 respectively, where Sij stands for the duration of service for jth person at ith

queueing network node. Let Uij & Vij denotes respectively response time & jth person’s waiting time at the
ith node. Then

Uij = Vij + Sij , i = 1, 2, j = 1, 2, . . . , n. (1)

Additionally, we can assess Vij using recurrence relation as

Vij = (Ui,j−1 −Aij)I(Ui,j−1 > Aij), (2)

for i = 1, 2, j = 1, 2, . . . , n and Vi1 = 0, i = 1, 2 and I(.) denote the indicator function. Using equation (1)
we get

Uij = (Ui,j−1 −Aij)I(Ui,j−1 > Aij) + Sij , (3)

for i = 1, 2, j = 2, 3, . . . , n and Ui1 = Si1, i = 1, 2. Equation (3) is the exact data based recurrence relation
for calculating response times Uij , i = 1, 2, j = 1, 2, . . . , n that are exactly as a sequence of customer’s
response times for queueing network. Hence

ûi =
1

n

n∑
j=1

Uij , i = 1, 2. (4)

These response times’ arithmetic average serves as the average response duration for a queueing network’s
natural estimator. By the Strong Law of Large Numbers (Rousses, 1997) , ûi is strongly consistent estimator
of ui . Since the precise distributions of Ai and Si are rarely known in practice, it is challenging to determine
the distribution of ûi

Hence assuming independence of Ai and Si , the asymptotic distributions of ûi can be developed. By
Slutsky’s theorem (Hogg and Craig, 1995) we have

√
n(ûi − ui)

D→ N(0, σ2
i ); i = 1, 2,
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where σ̂2
i is the variance of Uij and D→ denotes convergence in distribution. Then σ̂2

i , i = 1, 2 is a strongly
consistent estimator of σ2

i . Again applying the Slutsky’s theorem we have

√
n(ûi − ui)

σ̂i

D→ N(0, 1), i = 1, 2.

Thus ûi, i = 1, 2 is a strongly consistent and asymptotically normal (CAN) estimator with approximate vari-
ances σ̂2

i /n, i = 1, 2.

3 Calibration Method

Loh (1987) introduced the bootstrap calibration technique. In most cases, the actual coverage and the desired
coverage of a confidence procedure differ significantly. Most people are unaware of the calibration function
βi(α) where βi(α) = PFi [ui ≤ ûi[α]] and where Fi is unknown continuous probability distribution. Accurate
coverage might be obtained by calibrating an approximate confidence interval if the function βi(α) was known.
To estimate βi(α) we use the bootstrap method. The bootstrap estimate of βi(α) is β̂i(α) = PF̂i [ûi ≤ ûi[α]

∗]

where ûi[α]∗ is the αth confidence limit based on bootstrap dataset from F̂i . Also F̂i & ûi are fixed. By taking
B bootstrap data sets the estimate of β̂i(α) is obtained and seeing what proportion of them have ûi ≤ ûi[α]∗.

4 Different Calibrated Confidence Intervals for Mean Response
Time

4.1 Calibrated consistent and asymptotically normal (CAN) confidence inter-
val

Using CAN estimators, we construct confidence intervals for ui, i = 1, 2. Assume zα is the standard normal
distribution’s upper αth quantile. Evaluate β̂(α1) = P [ui ≤ ûi − zα/2σ̂i/

√
n] and β̂(α2) = P [ui ≤

ûi + zα/2σ̂i/
√
n] where α2 = 1 − α1 and 0 ≤ α1 ≤ 1. Then approximate 100(1 − α)% calibrated CAN

confidence intervals for mean response times ui, i = 1, 2 are given as(
û′i − z(β̂(α1)/2)

σ̂i/
√
n , û′i + z(β̂(α2)/2)

σ̂i/
√
n
)
, i = 1, 2. (5)

The calibrated CAN confidence intervals approach the calibrated normal confidence intervals for large enough
values of n.

4.2 Calibrated Confidence Intervals using Students t distribution (Exact-t)

Let tα be the upperαth quantile of the student’s t-distribution. Evaluate β̂(α3) = P [ui ≤ ûi−tα/2,(n−1)σ̂i/
√
n]

and β̂(α4) = P [ui ≤ ûi + tα/2,(n−1)σ̂i/
√
n] where α4 = 1 − α3 and 0 ≤ α3 ≤ 1 Then approximate

100(1− α)% calibrated t-confidence intervals for mean response times ui, i = 1, 2 are as follows:(
û′i − t(β̂(α3)/2,(n−1)σ̂i/

√
n , û′i + t(β̂(α4)/2,(n−1)σ̂i/

√
n
)
, i = 1, 2. (6)
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4.3 Calibrated confidence intervals using standard bootstrap (SB) method

A simple random sample (A∗ij , S
∗
ij , i = 1, 2, j = 1, 2, . . . , n) is obtained using the empirical distribution

function of (Aij , Sij , i = 1, 2, j = 1, 2, . . . , n) as per the bootstrap procedure. Using equation (3) we get
sequence of person’s response time as uij , i = 1, 2, j = 1, 2, . . . , n. On similar way we can obtain u∗ij , i =
1, 2, j = 1, 2, . . . , n. It follows that ûi = 1

n

∑n
j=1 uij , i = 1, 2 is estimate of the queuing network’s average

response time ui, i = 1, 2 and its bootstrap estimate is û∗i = 1
n

∑n
j=1 u

∗
ij , i = 1, 2. The above re-sampling

process can be repeatedN times. TheN bootstrap estimates û∗i1, û
∗
i2, . . . , û

∗
iN , i = 1, 2 can be computed from

the bootstrap resamples. Averaging the N bootstrap estimates we get

ûN (i) =
1

N

N∑
j=1

û∗ij , i = 1, 2

is the bootstrap estimate of ui, i = 1, 2 and standard deviation as

sd(ûN (i)) =

[
1

N − 1

N∑
j=1

[
u∗ij − ûN (i)

]2] 1
2

, i = 1, 2.

The distribution of ûi, i = 1, 2 is approximately normal by central limit theorem. After computing β̂(α5) =

P [ui ≤ ûi − zα/2σ̂i/
√
n] and β̂(α6) = P [ui ≤ ûi + zα/2σ̂i/

√
n] where α6 = 1− α5 and 0 ≤ α5 ≤ 1 we

get approximate 100(1− α)% calibrated SB confidence intervals for mean response times ui, i = 1, 2 as(
û′i − z(β̂(α5)/2)

sd(ûN (i)) , û′i + z(β̂(α6)/2)
sd(ûN (i))

)
, i = 1, 2. (7)

4.4 Calibrated confidence intervals using bootstrap - t Method

The N bootstrap estimates û∗i1, û
∗
i2, . . . , û

∗
iN , i = 1, 2 are obtained from the bootstrap resamples. Compute

Z∗ij =
(û∗ij−ûN (i))

sd(ûN (i))
i = 1, 2, j = 1, 2, . . . , N and sample Z∗i1, Z

∗
i2, . . . , Z

∗
iN , i = 1, 2 follow roughly t-

distribution. Now compute β̂(α7) = P [ui ≤ ûi − zα/2σ̂i/
√
n] and β̂(α8) = P [ui ≤ ûi + zα/2σ̂i/

√
n]

where α8 = 1− α7 and 0 ≤ α7 ≤ 1. Then approximate 100(1− α)% calibrated SB confidence intervals for
mean response times ui, i = 1, 2 as

(
û′i − z(β̂(α7)/2)

sd(ûN (i)) , û′i + z(β̂(α8)/2)
sd(ûN (i))

)
, i = 1, 2. (8)

4.5 Calibrated confidence intervals using variance-stabilized bootstrap-t (VST)
method

Let ûi, i = 1, 2 is a strongly consistent and asymptotically normal estimator with approximate variances
σ̂2
i /n, i = 1, 2 and consider σ̂i = φ(ûi).

By taking into account the expectations on both sides and expanding the Taylor series to the first order, we
find a transformation f(r̂i) that is V ar(f(ûi)) roughly constant.

f(ûi) ≈ f(ui) + (ûi − ui)f ′(ui)⇒ [f(ûi)− f(ui)]2 ≈ (ûi − ui)2(f ′(ui))2, i = 1, 2.
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Taking expectations on both sides, we get

V ar[f(ûi)] ≈ V ar(ûi)(f ′(ui))2 = (φ(ui))
2(f ′(ui))

2, i = 1, 2.

Now consider f(ûi) =
√
n log(φ(ûi)), i = 1, 2 is the variance-stabilizing transformation. Then we have,

V [f(ûi)] ≈
( √

n

φ(ûi)

)2

V ar[ûi] =

(√
n

σ̂i

)2

V ar[ûi] =
n

σ̂2
i

σ̂2
i

n
= 1, i = 1, 2.

Consider N bootstrap estimates û∗i1, û
∗
i2, . . . , û

∗
iN , i = 1, 2 computed from the bootstrap resamples and evalu-

ate
θ∗ij =

√
n log(û∗ij)−

√
n log(ûi), i = 1, 2, j = 1, 2, . . . , N.

Now compute β̂(α9) = P [ui ≤ e
log(ûi)− 1√

n
v̂it1−α/2 ] and β̂(α10) = P [ui ≤ e

log(ûi)− 1√
n
v̂itα/2 ] where

α10 = 1 − α9 and 0 ≤ α9 ≤ 1. Then approximate 100(1 − α)% calibrated confidence intervals for mean
response times ui, i = 1, 2 using VST as(

e
log(ûi)− 1√

n
v̂itβ̂(α9) , e

log(ûi)− 1√
n
v̂itβ̂(α10)

)
, (9)

where v̂itβ̂(α9)
and v̂itβ̂(α10)

are the percentiles of the random samples.

4.6 Calibrated confidence intervals using percentile bootstrap (PB) method
The bootstrap distribution of ûi, i = 1, 2 is û∗i1, û∗i2, . . . , û∗iN , i = 1, 2. Let order statistics be û∗i (1), û

∗
i (2),

. . . , û∗i (N), i = 1, 2 of û∗i1, û∗i2, . . . , û∗iN , i = 1, 2. Now compute β̂(α11) = P [ui ≤ û∗i ([N(α/2)]) and
β̂(α12) = P [ui ≤ û∗i ([N(1−α/2)]). The 100(1−α)% calibrated confidence interval for ui, i = 1, 2 is then
obtained by using the 100(α/2)th and 100(1− α/2)th percentage points of the bootstrap distribution as(

û∗i

([
N

(
β̂(α11)

2

)])
, û∗i

([
N

(
β̂(α12)

2

)]))
, i = 1, 2, (10)

where [x] denotes the greatest integer less than or equal to x.

Table 1: Description of various queuing network models were simulated with a1 ≥ 0, a2 ≥ 0, s1 ≥ 0, and
s2 ≥ 0

Queueing Model for Inter-arrival time Model for service time

Network

E4/H
Pe
4 /1 to f(a1) =

128
3 a31e

−4a1 f(s1) = 0.02e−0.2s1 + 0.16e−0.8s1 + 0.48e−1.6s1/3 + 2.56e−6.4s1

HPe
4 /E4/1 f(a2) = 0.02e−0.2a2 + 0.16e−0.8a2 + 0.48e−1.6a2/3 + 2.56e−6.4a2 f(s2) =

1
96s

3
2e

−s2/2

HPe
4 /HPo

4 /1 to f(a1) =
3
40e

−0.2a1 + 1
10e

−0.8a1 + 2
5e

−1.6a1 + 8
5e

−6.4a1 f(s1) = 2e−2s1 + 4e−4s1 + 16
3 e−16s1/3 + 16e−16s1

HPo
4 /HPe

4 /1 f(a2) = 2e−2a2 + 4e−4a2 + 16
3 e−16a2/3 + 16e−16a2 f(s2) = 0.1e−s2 + 0.4e−2s2 + 0.8e−8s2/3 + 3.2e−8s2

E4/H
Po
4 /1 to f(a1) =

128
3 a31e

−4a1 f(s1) = e−s1 + 2e−2s1 + 8
3e

−8s1/3 + 8e−8s1

HPo
4 /E4/1 f(a2) = e−a2 + 2e−2a2 + 8

3e
−8a2/3 + 8e−8a2 f(s2) =

1
96s

3
2e

−s2/2
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Table 2: Consistency of simulation analysis when n = 100 and 200

The mean of 1000 simulated response time

Simulated Models The true response time n = 100 n = 200

E4/H
Pe
4 /1 to HPe

4 /E4/1 r1=1.02302 r̂1=1.02128 r̂1=1.02626

r2=0.58672 r̂2=0.58470 r̂2=0.58444

HPe
4 /HPo

4 /1 to HPo
4 /HPe

4 /1 r1=1.33233 r̂1=1.32091 r̂1=1.33013

r2=0.38887 r̂2=0.38964 r̂2=0.38930

E4/H
Po
4 /1 to HPo

4 /E4/1 r1=2.33751 r̂1=2.33527 r̂1=2.33276

r2=0.51244 r̂2=0.51167 r̂2=0.51245

Table 3: Consistency of simulation analysis when n = 15 and 25

The average of 1000 simulated response times

Simulated Models The true response time n = 15 n = 25

E4/H
Pe
4 /1 to HPe

4 /E4/1 r1=1.02302 r̂1=1.02434 r̂1=1.01430

r2=0.58672 r̂2=0.57245 r̂2=0.58277

HPe
4 /HPo

4 /1 to HPo
4 /HPe

4 /1 r1=1.33233 r̂1=1.29252 r̂1=1.30199

r2=0.38887 r̂2=0.38499 r̂2=0.38993

E4/H
Po
4 /1 to HPo

4 /E4/1 r1=2.33751 r̂1=2.28803 r̂1=2.31360

r2=0.51244 r̂2=0.50942 r̂2=0.51085
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Table 4: Simulation Results of different models

Estimation n=100 n=200 Coverage Percentages Relative Coverage Average Lengths Relative Average Length

Approches α 1 − α α 1 − α n = 100 n = 200 n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

E4/H
Pe
4 /1 toHPe4 /E4/1

Normal1 0.059 0.924 0.046 0.906 0.808 0.801 4.443 6.157 0.182 0.130 0.178 0.127

Normal2 0.120 0.798 0.136 0.844 0.443 0.469 7.021 9.800 0.063 0.048 0.108 0.082

Boott1 0.035 0.928 0.024 0.918 0.879 0.889 4.124 5.663 0.213 0.157 0.209 0.153

Boott2 0.019 0.883 0.026 0.924 0.854 0.892 5.533 7.339 0.154 0.122 0.264 0.208

VST1 0.057 0.935 0.052 0.920 0.846 0.840 4.124 5.827 0.205 0.144 0.201 0.140

VST2 0.081 0.850 0.077 0.898 0.647 0.707 5.280 7.098 0.123 0.100 0.210 0.170

SB1 0.043 0.935 0.028 0.922 0.867 0.877 4.053 5.557 0.214 0.158 0.209 0.154

SB2 0.032 0.902 0.032 0.941 0.831 0.894 4.938 6.871 0.168 0.130 0.288 0.223

PB1 0.053 0.918 0.047 0.898 0.797 0.789 4.223 5.934 0.189 0.133 0.185 0.130

PB2 0.058 0.854 0.072 0.890 0.687 0.636 5.301 6.804 0.130 0.093 0.185 0.130

HPe4 /HPo4 /1 toHPo4 /HPe4 /1

Normal1 0.149 0.743 0.156 0.766 0.320 0.319 2.196 2.944 0.146 0.108 0.110 0.081

Normal2 0.054 0.872 0.095 0.897 0.686 0.688 12.011 18.163 0.057 0.038 0.147 0.097

Boott1 0.013 0.871 0.030 0.912 0.850 0.876 1.731 2.334 0.491 0.375 0.372 0.282

Boott2 0.017 0.905 0.031 0.931 0.873 0.903 10.102 14.678 0.086 0.062 0.222 0.158

VST1 0.077 0.847 0.086 0.854 0.629 0.618 1.567 2.127 0.401 0.291 0.304 0.218

VST2 0.044 0.897 0.071 0.920 0.787 0.784 10.039 14.638 0.078 0.054 0.201 0.138

SB1 0.019 0.911 0.039 0.921 0.863 0.863 1.418 2.148 0.609 0.402 0.461 0.302

SB2 0.019 0.912 0.042 0.936 0.854 0.891 9.365 14.624 0.091 0.061 0.234 0.157

PB1 0.074 0.841 0.085 0.859 0.618 0.613 1.544 2.141 0.400 0.286 0.303 0.215

PB2 0.043 0.880 0.057 0.883 0.698 0.730 10.192 14.772 0.068 0.049 0.303 0.215

E4/H
Po
4 /1 toHPo4 /E4/1

Normal1 0.114 0.772 0.130 0.818 0.393 0.463 1.408 2.184 0.279 0.212 0.120 0.091

Normal2 0.055 0.921 0.061 0.918 0.829 0.812 10.653 15.039 0.078 0.054 0.152 0.105

Boott1 0.009 0.870 0.023 0.916 0.858 0.881 1.172 1.596 0.732 0.552 0.313 0.237

Boott2 0.038 0.928 0.048 0.937 0.884 0.867 9.835 13.600 0.090 0.064 0.176 0.124

VST1 0.038 0.845 0.067 0.889 0.711 0.712 1.102 1.539 0.645 0.463 0.276 0.198

VST2 0.071 0.933 0.066 0.936 0.835 0.825 10.022 13.596 0.083 0.061 0.163 0.118

SB1 0.015 0.896 0.029 0.933 0.811 0.883 0.961 1.485 0.844 0.595 0.361 0.255

SB2 0.043 0.937 0.051 0.940 0.882 0.873 9.660 13.647 0.091 0.064 0.178 0.125

PB1 0.052 0.864 0.053 0.877 0.694 0.683 1.107 1.587 0.627 0.430 0.268 0.184

PB2 0.052 0.917 0.060 0.920 0.852 0.810 9.808 13.740 0.087 0.059 0.268 0.184
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5 A Numerical Simulation Study

To assess the accuracy of calibrated confidence intervals numerical simulation is conducted. Based on sim-
ulation studies, we discover that higher confidence interval coverage percentages are frequently the result of
higher interval estimate methods’ standard deviations. Moreover, lower coverage percentages are frequently
the outcome of more constrained confidence ranges. Therefore, neither the average length nor the coverage
percentage are useful when evaluating interval estimate techniques. We take into account a metric called rel-
ative coverage to assess the effectiveness of interval estimate techniques. The coverage percentage divided by
the calibrated confidence interval standard deviation yields the relative coverage. Furthermore, lower coverage
percentages are often the result of more restricted confidence ranges. The related calibrated confidence inter-
vals perform better the higher the relative coverage. The ratio of average length to response time is known as
relative average length. It is more informative if the interval is modest for a given confidence level. Shorter
relative average length, therefore, indicates better results from the associated calibrated confidence range. The
coverage accuracy, relative average length and relative coverage of the various calibrated confidence intervals
are assessed, but the consistency of ui, i = 1, 2 is investigated by comparing the true value of ui, i = 1, 2 with
the average of simulated estimates ûi, i = 1, 2 .

In a simulated study, we have selected queueing network models, as indicated in Table 1, to achieve these
goals. The true values of ui and simulated sample values of ûi for large sample size n ≥ 107 are shown in Table
1. Tables 2 and 3 display the estimated average response time for other queueing network model considered
for the research. Here HPe

4 represents 4-stage hyper-exponential distribution, HPo
4 represents 4-stage hypo-

exponential distribution, E4 represents 4-stage Erlang distribution.

Therefore, for each queueing network listed in Table 1, sample of size(n) 15, 25, 100, 200 are drawn from
the original samples. From the original samples N = 1000 bootstrap resamples are drawn. Then from equa-
tions (5) to (10) we obtain calibrated Normal, CAN, Exact-t, Boot-t, SB, PB and VST confidence intervals for
response time ui with confidence level 90%. The aforementioned simulation process is repeated 1000 times
and we calculate average lengths, relative average lengths, coverage percentages, and relative coverage. All
results are shown in Tables 4 & 5.

According to the simulation findings we see that coverage percentages and relative coverage are increasing
but average lengths and relative average lengths are decreasing with sample size n. Out of nearly all confidence
intervals, the Percentile Bootstrap approach has the highest coverage percentage. As n increases, the coverage
percentage gets closer to 90.With increasing sample size n, the relative average lengths of all methods decrease,
with the Normal approach having the lowest relative average length. The normal method has the smallest
relative average lengths and the highest relative coverage among all estimation techniques.

Lastly, of all the estimation techniques for large samples, the best calibrated confidence intervals for the av-
erage response time are constructed using the normal method; for small samples, the best calibrated confidence
intervals are constructed using the CAN method (Results are shown in Table 6).
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Table 5: Simulation Results of different models

Estimation n=15 n=25 Coverage Percentages Relative Coverage Average Lengths Relative Average Length

Approches α 1 − α α 1 − α n = 15 n = 25 n = 15 n = 25 n = 15 n = 25 n = 15 n = 25

E4/H
Pe
4 /1 toHPe4 /E4/1

CAN1 0.041 0.878 0.033 0.911 0.737 0.819 1.712 2.163 0.430 0.379 0.420 0.373

CAN2 0.100 0.810 0.094 0.799 0.524 0.474 3.315 3.710 0.158 0.128 0.276 0.219

Exact-t1 0.031 0.893 0.026 0.918 0.794 0.845 1.609 2.042 0.494 0.414 0.482 0.408

Exact-t2 0.092 0.829 0.089 0.811 0.557 0.499 3.195 3.681 0.174 0.136 0.305 0.233

Boott1 0.021 0.861 0.017 0.911 0.785 0.867 1.708 2.057 0.460 0.421 0.449 0.415

Boott2 0.007 0.861 0.009 0.859 0.861 0.839 2.526 3.039 0.341 0.276 0.595 0.474

VST1 0.069 0.907 0.047 0.937 0.774 0.847 1.693 2.023 0.457 0.419 0.446 0.413

VST2 0.049 0.885 0.054 0.858 0.757 0.708 2.278 2.795 0.332 0.253 0.580 0.435

SB1 0.029 0.877 0.022 0.915 0.772 0.845 1.595 1.951 0.484 0.433 0.472 0.427

SB2 0.012 0.894 0.013 0.878 0.829 0.778 1.809 2.165 0.458 0.359 0.801 0.617

PB1 0.029 0.862 0.038 0.911 0.706 0.783 1.675 2.110 0.422 0.371 0.412 0.366

PB2 0.042 0.832 0.043 0.817 0.624 0.616 2.341 2.830 0.267 0.218 0.412 0.366

HPe4 /HPo4 /1 toHPo4 /HPe4 /1

CAN1 0.109 0.707 0.129 0.739 0.364 0.354 1.097 1.274 0.332 0.278 0.257 0.213

CAN2 0.067 0.839 0.065 0.846 0.652 0.658 5.176 6.504 0.126 0.101 0.327 0.259

Exact-t1 0.098 0.727 0.122 0.748 0.393 0.367 1.064 1.249 0.369 0.294 0.286 0.226

Exact-t2 0.051 0.853 0.060 0.852 0.699 0.685 4.862 6.400 0.144 0.107 0.373 0.274

Boott1 0.005 0.793 0.005 0.828 0.741 0.799 0.887 1.002 0.835 0.798 0.646 0.613

Boott2 0.013 0.841 0.011 0.864 0.789 0.832 4.447 5.489 0.177 0.152 0.461 0.389

VST1 0.052 0.811 0.059 0.832 0.639 0.657 0.729 0.861 0.876 0.763 0.678 0.586

VST2 0.062 0.881 0.054 0.892 0.749 0.763 4.285 5.362 0.175 0.142 0.454 0.365

SB1 0.008 0.840 0.008 0.869 0.717 0.782 0.539 0.641 1.330 1.220 1.029 0.937

SB2 0.019 0.856 0.021 0.883 0.790 0.812 3.864 4.930 0.204 0.165 0.531 0.422

PB1 0.038 0.797 0.049 0.809 0.558 0.573 0.789 0.887 0.707 0.646 0.547 0.496

PB2 0.044 0.829 0.042 0.838 0.692 0.702 4.479 5.776 0.155 0.122 0.547 0.496

E4/H
Po
4 /1 toHPo4 /E4/1

CAN1 0.079 0.762 0.088 0.773 0.471 0.436 0.657 0.775 0.717 0.563 0.314 0.243

CAN2 0.051 0.883 0.049 0.907 0.782 0.811 4.252 5.328 0.184 0.152 0.361 0.298

Exact-t1 0.070 0.773 0.080 0.790 0.507 0.464 0.643 0.763 0.788 0.608 0.345 0.263

Exact-t2 0.039 0.894 0.044 0.917 0.827 0.837 3.959 5.105 0.209 0.164 0.410 0.321

Boott1 0.002 0.793 0.003 0.839 0.712 0.808 0.505 0.638 1.411 1.267 0.617 0.548

Boott2 0.031 0.879 0.028 0.909 0.815 0.864 4.084 5.017 0.200 0.172 0.392 0.337

VST1 0.032 0.841 0.037 0.860 0.697 0.726 0.439 0.577 1.588 1.258 0.694 0.544

VST2 0.076 0.913 0.072 0.931 0.794 0.812 4.051 4.987 0.196 0.163 0.385 0.319

SB1 0.003 0.829 0.004 0.875 0.724 0.777 0.342 0.432 2.114 1.799 0.924 0.778

SB2 0.036 0.887 0.031 0.917 0.812 0.858 3.890 4.798 0.209 0.179 0.410 0.350

PB1 0.025 0.797 0.031 0.809 0.561 0.620 0.532 0.622 1.055 0.997 0.461 0.431

PB2 0.049 0.864 0.041 0.899 0.760 0.801 4.032 5.123 0.188 0.156 0.461 0.431

Note that among estimation approaches, boldface indicates the highest relative coverage and the shortest relative average lengths.
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Table 6: Results based on various response time estimation techniques for different Queuing Network models

Method of estimation with

Maximum Relative Coverage Shortest Relative Average Length

Large Sample size (n) n = 100 n = 200 n = 100 n = 200

E4/H
Pe
4 /1 to HPe

4 /E4/1 Normal Normal Normal Normal

HPe
4 /HPo

4 /1 to HPo
4 /HPe

4 /1 Normal Normal Normal Normal

E4/H
Po
4 /1 to HPo

4 /E4/1 Normal Normal Normal Normal

Small Sample size (n) n = 15 n = 25 n = 15 n = 25

E4/H
Pe
4 /1 to HPe

4 /E4/1 CAN CAN CAN/PB CAN/PB

HPe
4 /HPo

4 /1 to HPo
4 /HPe

4 /1 CAN CAN CAN CAN

E4/H
Po
4 /1 to HPo

4 /E4/1 CAN CAN CAN CAN

6 Conclusions

The calibrated confidence intervals for the average response time of the two-stage open queueing network are
presented in this paper. For the two-stage open queueing network, we derive a response time sequence using
a recurrence relation to inter-arrival and service times. Calibrated confidence intervals for average response
time are produced by applying various estimation techniques, including Normal, CAN, Exact-t, Boot-t, SB,
PB, and VST. To comprehend, compare, and evaluate the performance of the resulting calibrated confidence
intervals, relative average lengths and the relative coverage are utilized. According to the simulation results, the
CAN method performs best for small samples, while among nearly all estimation methods for large samples
the Normal method performs best for simulated models. The approaches mentioned above can be implemented
in real-world queueing networks.
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