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SUMMARY

In periodontal disease surveillance in human populations, full-mouth clinical examinations
to classify the disease status of individuals are the gold standard for estimating periodontitis
prevalence. However, conducting full-mouth exams is resource intensive, time consuming,
and costly, especially in studies involving thousands of participants. Partial-recording pro-
tocols have been utilized in oral health surveys worldwide to gather correlated binary out-
comes of periodontal disease on selected teeth in lieu of full-mouth exams. Since the use of
partial-recording protocols tends to underestimate disease prevalence, a statistical distribu-
tional approach considering the pattern of tooth-level disease in the mouth was proposed to
substantially reduce bias for the estimation of periodontitis prevalence. This approach em-
ployed multivariate Bernoulli distributions for observation (tooth)-level disease indicators
to define formulae for the prevalence of disease (periodontitis) at the cluster (person)-level
for various full-mouth case definitions. In turn, prevalence estimators were based on plug-
in estimates of parameters from a conditional linear family for binary data gathered under
partial recording protocols. Work in this article extended existing prevalence estimators
for simple case definitions based on single clinical measures of tooth-level periodontal dis-
ease to a definition of severe periodontitis using two measures as defined by the Centers
for Disease Control and Prevention and the American Academy of Periodontology, and
later adopted by the 2017 World Workshop in Periodontology. Simulations evaluated the
finite-sample performance of the proposed estimators and their confidence intervals for
three established partial-recording protocols. In general, the prevalence estimators per-
formed well relative to bias and coverage when tooth-level probabilities of disease and
within-mouth correlation structures were correctly specified and even when the pattern of
tooth-pair correlations was misspecified.
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1 Introduction

1.1 Partial-mouth recording protocols and case definitions in the surveillance
of periodontitis

The surveillance of health and disease in human populations requires practical methods for ongoing
or periodic ascertainment. For example, the National Health and Nutrition Examination Survey
(NHANES) has monitored the oral health of the U.S. population since the early 1970s through
clinical examinations of the oral cavity. The level of disease is often characterized by prevalence,
which is the proportion of individuals in a population that have the disease, according to a specific
case definition, at a given time point. Periodontitis is chronic inflammatory disease that leads to
the destruction of the supporting tissues around teeth, and at its late stages to tooth loss, impairing
function, esthetics, quality of life, and systemic health. The global prevalence of periodontitis is
estimated to be approximately 11% and more than 1 billion individuals are affected (Chen et al.,
2021). In a full-mouth examination for the surveillance of periodontitis, i.e., gum disease, one or
more periodontal measures are recorded on up to 6 sites per tooth from up to 28 teeth in the adult
dentition, where third molars are commonly excluded. Thresholds are applied to pocket depth (PD)
and/or clinical attachment loss (CAL), measured in full millimeters, at each tooth site, resulting in
a set of biologically clustered binary disease indicators. In the surveillance of periodontitis, a case
definition is a rule that when applied to the indicators classifies the individual as having periodontitis
or not. In this article, we refer to disease status at the site or tooth level (presence vs. absence) as
periodontal disease and define periodontitis for person level disease.

In the NHANES, and other surveillance studies, estimating the prevalence of periodontitis in
populations has been challenging, in part, because case definitions have varied across studies and
over time. While definitions of periodontitis for use in epidemiological surveys often consider multi-
ple clinical factors and continue to undergo development (Tonetti et al., 2018; Holtfreter et al., 2024),
most case definitions historically have been based on PD and/or CAL. The simplest definitions have
been based on a single cardinal measure, PD or CAL, which often allows direct comparison to re-
sults from other studies (Kingman and Albandar, 2002; Susin et al., 2005; Beck et al., 2006; Eke
et al., 2010; Alshihayb et al., 2022). Because single measure case definitions were considered inad-
equate given the different clinical manifestations of periodontal tissue inflammation and destruction
(Page and Eke, 2007), definitions of periodontitis with spatial requirements based on thresholds for
both PD and CAL were introduced by the Centers for Disease Control and Prevention in conjunction
with the American Academy for Periodontology (CDC/AAP) in 2012 (Eke et al., 2012).

In periodontitis surveillance, full-mouth clinical examinations resulting in disease classification
of individuals – based on a case definition – are the gold standard to estimate the prevalence of
periodontitis. However, conducting full-mouth examinations, which may require up to 30 minutes
per person, are costly, resource intensive, increase participant burden, and are often impractical for
population research and surveillance, especially in large epidemiological cohort studies involving
thousands of participants. To address these barriers, partial recording protocols (PRPs), by which
we mean partial-mouth exams, have been utilized in national surveys, including the NHANES from
1988 to 2009, to gather correlated binary outcomes of periodontal disease on a subset of selected



Estimating Disease Prevalence From Partially-sampled Clusters . . . 5

teeth and sites in lieu of time-consuming full-mouth periodontal exams. Specific PRPs, considered
in this article, include the Ramfjord (Ramfjord, 1959), the Community Periodontal Index for Treat-
ment Needs (CPITN) (Ainamo, 1982; Chattopadhyay et al., 2008), and random half-mouth (RHM)
protocols. Ramfjord and CPITN are fixed site selection methods (FSSMs) where the same set of
tooth sites are recorded for each study participant. In contrast, RHM protocols have a two-stage
sampling sequence where two mouth quadrants are randomly sampled followed by the selection of
fixed tooth sites within all teeth in the selected quadrants. NHANES III from 1988-1994 and the
NHANES IV from 1999-2004 both utilized a RHM protocol for periodontal data collection.

Unfortunately, partial-mouth exams underestimate the prevalence of periodontitis when disease
from tooth sites not selected in the PRP goes undetected and unconsidered in the application of the
case definition. Specifically, assuming no measurement error at the tooth site level, there are false
negatives but not false positives at the participant level (Susin et al., 2005; Preisser et al., 2017).
The sizeable underestimation of prevalence using the standard disease classification estimator with
two different PRPs prompted the NHANES to cease use of partial-mouth exams and implement a
full-mouth examination protocol in 2009, albeit with less frequent use over time; NHANES has
exclusively used full-mouth periodontal exams ever since. Considering the cost-saving benefit from
PRPs, this article develops novel statistical approaches to the estimation of periodontitis prevalence
that could ultimately contribute to a return to the regular use of PRPs in large oral epidemiological
studies.

1.2 Statistical considerations on estimating periodontitis prevalence

As an alternative to the standard classification prevalence estimator for PRPs, Preisser et al. (2017)
proposed formulae for prevalence, defined as the probability of disease for an individual in a homo-
geneous population. In particular, the formulae are based on an assumed multivariate distribution for
the correlated binary disease indicators where each mouth is defined as a cluster and the disease clas-
sification at each tooth site is a Bernoulli random variable. While the statistical distribution method
(SDM) is a general approach to prevalence estimation in PRPs, it was originally implemented for a
single-measure threshold case definition of one or more tooth sites affected. Preisser et al. (2024)
extended the SDM to a single-measure threshold case definition of two or more tooth sites affected.
In SDM, the data are assumed to follow a multivariate binary distribution in the conditional linear
family (CLF) of distributions (Qaqish, 2003b). A particular CLF member is specified by a set of
tooth site marginal means (i.e, the probabilities of having disease at each tooth site) and the pairwise
correlation matrix of these disease indicators across tooth sites in the full-mouth. In the case of
missing teeth, “full-mouth” refers to all of an individual’s existing teeth (Preisser et al., 2024).

While the CLF allows for flexible specification of the marginal means and pairwise correlations
in the SDM approach, Preisser et al. (2017) defined a prevalence formula for the clustered data that
was derived under two working assumptions: (i) the probability of having disease is the same across
all sites; and (ii) the correlation of disease status is the same for all pairs of sites within the mouth.
Even though these assumptions were unrealistic, using oral examination data from 6,793 partici-
pants in the Arteriolosclerosis Risk in Communities study, the new formula yielded periodontitis
prevalence estimates from PRPs that were much closer to full-mouth estimates than those based
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on disease classification of study participants. Resampling of the cohort showed the proposed esti-
mators gave good precision and accuracy for as few as six tooth sites sampled per individual. On
the other hand, Wang and Preisser (2016) conducted simulation studies finding this estimator re-
sulted in approximately 10% bias when the simple assumptions of common disease probability and
exchangeable correlation did not hold.

Departing from the overly simple two-parameter CLF model of a constant mean and exchange-
able within-mouth correlation model, Shing et al. (2023) introduced flexibly-specified marginal
mean and correlation models, which were estimated with generalized estimating equations (GEE),
that allowed unequal probabilities of disease across tooth sites and spatial correlation patterns of dis-
ease in the mouth. Preisser et al. (2024) employed multiple imputation to impute binary disease sta-
tus for tooth sites not selected in PRPs via a similarly enriched (i.e., with multiple parameters) CLF
model, which, in turn, allowed case classification of individuals based on their imputed full-mouth
data. To handle the complexity of the CLF model, Monte Carlo methods were used to estimate the
variance of the prevalence estimators. Despite the improvements of SDM relative to the simple esti-
mators of Preisser et al. (2017), the application in Preisser et al. (2024) was limited to single-measure
(PD or CAL) threshold case definitions. Furthermore, the evaluations in both articles were limited to
random site selection methods (RSSMs), which are PRPs that take a simple random sample of sites
from among all 168 sites (excluding third molars) in the adult dentition (Beck et al., 2006). The use
of RSSMs are challenging because of the inherent variability introduced in the clinical examination
protocols and data recording since different teeth and tooth sites are selected for each participant. To
our knowledge, RSSMs have not been used in practice, and they are not considered in this article.

Since the case status of individuals cannot be reliably determined from partial-mouth sampling,
which precludes the valid application of the classification approach to prevalence estimation, Sec-
tion 2 of this article introduces new formulae for disease prevalence as defined by the CDC/AAP
severe case definition based on a combination of PD and CAL thresholds. It further includes two
single measure case definitions as defined by the marginal components of the CDC/AAP severe case
definition for which we assume, as in Preisser et al. (2017), a CLF that implicitly defines a common
tooth-level probability of disease (µ) and exchangeable pairwise correlation (ρ) between teeth. Un-
like much of the PRP literature including Preisser et al. (2017), the proposed approach applies to
tooth-level indicators as the standard tooth-site level case definitions in this article can be reduced to
equivalent tooth-level definitions, which simplifies prevalence computations. For the CDC/AAP se-
vere case definition, we define a CLF distribution that has distinct tooth-level means for PD and CAL
measures (µPD and µCAL, respectively) and a multi-parameter, within-mouth correlation structure.
Prevalence estimates are obtained by plugging in GEE estimates (Preisser et al., 2024) of the mean
and correlation parameters into the prevalence formulae. Variance estimators are proposed for the
prevalence estimators based the delta method (Wang and Preisser, 2016) for the single-threshold
case definitions and bootstrap methods for the CDC/AAP severe disease case definition, follow-
ing the Monte Carlo estimation methods of Preisser et al. (2024). In Section 3, simulation studies
evaluate the finite-sample performance of the estimators including bias, efficiency, coverage, and
robustness to model misspecification under the Ramfjord, CPITN and RHM PRPs with comparison
to full-mouth exams as the gold standard. Finally, Section 4 summarizes results, discusses strengths
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and limitations of the SDM method, and identifies future research.

2 Methods

2.1 The measurement of periodontal disease

Periodontal diseases (gum disease) are a group of diseases and conditions that affect the soft (gin-
giva and periodontal attachment) and hard tissues (alveolar bone) surrounding teeth. Gingivitis is the
mildest form of periodontal disease and it is characterized by inflammation of the marginal tissues.
Periodontitis is a chronic multifactorial inflammatory disease associated with microbial biofilms
characterized by destruction of the supporting tissues around the teeth, including periodontal attach-
ment and alveolar bone. If left untreated, periodontitis may lead to tooth mobility, root exposure
(gingival recession), halitosis (bad breath), tooth sensitivity, loss of masticatory function, poor es-
thetics, and ultimately tooth loss. Severe periodontitis has been associated with bacteremia (bacteria
in the blood), systemic inflammation, and several systemic diseases and conditions.

Gingival recession (GR) occurs when the gingival margin (gumline) recedes from the border
between the smooth enamel of the tooth crown and the tooth root’s rough-textured cover; this border
is called the cemento-enamel junction (CEJ). In a healthy periodontium, the gingival tissues (gums)
are attached to the tooth at the CEJ.

GR is measured as the distance from the gumline to the CEJ; in Figure 1, GR is positive in (a)
and negative in (b). PD is the distance from the gumline to the bottom of the pocket formed between
the gums and the tooth. CAL measures the total distance between the base of the periodontal pocket
and the CEJ (Page and Eke 2007). Since CAL can be calculated as a function of PD and GR (CAL
= PD + GR), many surveys only collect two of these three measures. From 2011 to 2014, the
NHANES measured GR and PD using a color-coded periodontal probe with measurement rounded
to the lowest whole mm; CAL was derived using an algorithm in the data entry program (Dye
et al., 2019). When collected, GR, PD, and CAL are measured in whole millimeters (mm) using a
probing tool at up to six sites on each assessed tooth. In the NHANES, measurements of PD and
GR range from 0 to 9mm and -9 to 9mm, respectively (Centers for Disease Control and Prevention
(CDC). National Center for Health Statistics (NCHS), 2013). Sites are evenly distributed around
the tooth with three sites on the lingual, or tongue, and three sites on the buccal, or cheek, side
of the tooth. On each side of the tooth, the sites are distributed as follows: the site closer to the
front of the mouth (mesio-), the site closer to the back of the mouth (disto-), and the site halfway
between mesio- and disto- sites (mid-). The six sites on each tooth are: mesiolingual, midlingual,
distolingual, distobuccal, midbuccal, and mesiobuccal. The four interproximal (IP) sites, sites that
are commonly next to another tooth and harder to clean, are mesiolingual, distolingual, mesiobuccal,
and distobuccal.

2.2 Case definitions

We consider PD and CAL thresholds in three case definitions of disease at the complete cluster
(i.e., mouth) level: the probability of (1) one or more or (2) two or more IP tooth sites with disease
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(a) (b)

Figure 1: Periodontal Disease Measurements

not on the same tooth - as defined by a single threshold measure of PD or CAL - and (3) severe
disease based on a combination of PD and CAL thresholds as defined below by the CDC/AAP case
definition. It is not always possible to express case definitions based on tooth site indicators at the
tooth level (e.g., Preisser et al., 2024). However, since disease in the first two case definitions must
occur on different teeth, multiple sites on the same tooth with disease only constitute one occurrence
of disease for the case definition. This made it possible to rephrase the first two case definitions
in terms of tooth-level indicators, which reduces the computational burden of cluster sizes from a
maximum of 168 tooth sites (e.g., Preisser et al., 2017, 2024), down to a maximum of 28 teeth.
Finally, according to the CDC/AAP, severe periodontitis is defined as a person having at least 2 IP
sites, not on the same tooth, with CAL measurements at or above 6mm and at least 1 IP site with
PD measurements at or above 5mm (Eke et al., 2012). Because the case definition requires diseased
sites for CAL to occur on different teeth (Alshihayb et al., 2022), the CDC/AAP definition of severe
periodontitis is equivalent to having two or more teeth with at least one IP site having CAL at or
above 6mm and at least one tooth with at least one IP site having PD at or above 5mm. Thus, the
CDC/AAP severe case definition is also defined in terms of tooth-level indicators for each measure;
with two measures for each tooth, the computational burden is reduced to a maximum of 56 tooth
level measurements.

All case definitions for population-based surveillance of periodontitis are based on a full-mouth
examination, which in this article and consistent with the CDC/AAP definition, consists of periodon-
tal measurements on the four IP sites of the 28 teeth in the adult dentition, excluding third molars. In
practice, a full-mouth exam would include at most 28 teeth (excluding third molars) with 4 IP sites
per tooth for a maximum of 112 sites per mouth. Any measurements from non-IP tooth sites are not
considered. For simplicity and clarity of exposition, the possibility of individuals with missing teeth
is not considered in this article. Extension of the proposed methods to include individuals with less
than 28 teeth could follow (Preisser et al., 2024) as discussed in Section 4.

For an individual, let Yj = 1 if the maximum CAL measurement across the four IP sites on
the j-th tooth is greater or equal to 6mm, and 0 otherwise. Also let Wj = 1 if the maximum PD
measurement across the four IP sites on the j-th tooth is greater or equal to 5mm, and 0 otherwise.
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The index for an individual, i, is suppressed until it is needed in Section 2.7 on estimation. Then,
Ỹ = Σ28

j=1Yj is the total number teeth in the individual’s mouth with CAL greater or equal to 6mm
for at least one IP site, and W̃ = Σ28

j=1Wj is the total number teeth with PD greater or equal to
5mm for at least one IP site. The prevalence of severe periodontitis is the proportion of individuals
in a population of interest that satisfies the CDC/AAP case definition, which is expressed as the
probability

πsevere = Pr(W̃ ≥ 1, Ỹ ≥ 2).

Three full-mouth case definitions of periodontitis prevalence are considered (Table 1). The first
two case definitions are marginal population proportions corresponding to a single type of clinical
measure from the CDC/AAP severe periodontitis case definition.

In a full mouth exam (without missing teeth), the observed binary data are W = (W1, . . . ,W28)
T

and Y = (Y1, . . . , Y28)
T and we can classify each individual as having periodontitis or not. In

a PRP, many of the elements of W and Y are missing by design, and a formula based on an
SDM is required to estimate prevalence as the classification method results in underestimation
bias. Considering the second case definition, the SDM is given by a model for the mean vec-
tor µ = E(Y) = (µ1, . . . , µ28)

T , where µj = E(Yj), and its corresponding correlation matrix
R = Corr(Y). Background knowledge on the degree and pattern of periodontitis is used to specify
the SDM given by the parameters for (µ, R). The CLF provides a full distribution for the 228 possi-
ble profiles of Y in terms of a small or moderately small number of parameters; in the extreme case,
only two parameters – common mean and exchangeable correlation, were specified in Preisser et al.
(2017). The distribution of W can be described similarly.

The CDC/AAP severe case definition required modeling a multivariate binary distribution for
56 tooth-level indicators corresponding to (Wj , Yj) for each tooth, j = 1, . . . , 28, which required
the additional consideration of between-measure correlations, Corr(Wj , Yj′). Evaluating the per-
formance of the SDM approach for estimating periodontitis prevalence with the widely accepted
CDC/AAP severe case definition will help to determine whether SDM can produce reliable esti-
mates in large epidemiologic studies.

2.3 Partial-mouth recording protocols (PRPs)

Permanent teeth are classified into four categories: incisors, canines, premolars, and molars. Peri-
odontal disease is more common in premolars and molars than on the incisors and canines. PRPs
typically select a subset of teeth and/or tooth sites to estimate full mouth oral health (Figure 2). The
Ramfjord method consisted of collecting probing measurements from all six sites on the same six
teeth for every participant (Ramfjord, 1959). In 1983, the World Health Organization developed
the Community Periodontal Index for Treatment Needs (CPITN) protocol (Ainamo, 1982); while
similar to Ramfjord’s protocol in that it relies on a fixed set of selected teeth, the CPITN protocol
collected probing measurements from all six sites on ten teeth. Random half-mouth (RHM) pro-
tocols sample specific sites on all teeth from two randomly chosen quadrants. RHMs have taken
several forms: (1) randomly sampling two of the four quadrants without restriction, which provides
six possible quadrant pairs in the sample frame; (2) randomly selecting an upper and lower quad-
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rant giving four possible quadrant pairs, (3) randomly selecting an upper quadrant and taking the
contra-lateral (i.e., cross-diagonal) lower quadrant giving two possible quadrant pairs. The latter is
equivalent to randomly sampling a lower quadrant and taking its contra-lateral upper quadrant. The
exact teeth selected by each of these previously implemented PRPs is detailed below and in Figure
2.

1. Ramfjord (1959) protocol, which includes two molars (teeth number 3 and 19), two premolars
(teeth number 12 and 28), and two incisors (teeth number 9 and 25), for a total of 6 teeth.

2. Community Periodontal Index for Treatment Needs (CPITN) protocol (Ainamo, 1982), which
includes eight molars (teeth number 2, 3, 14, 15, 18, 19, 30 and 31) and two incisors (8 and
24), for a total of 10 teeth.

3. Random Half Mouth (RHM; Drury et al., 1996) protocol, which includes 7 teeth from a
randomly selected upper quadrant and 7 teeth from a randomly selected lower quadrant (i.e.,
method 2, above), for a total of 14 teeth. This method collects measurements from four molars,
four premolars, two canines, and four incisors per mouth. The teeth numbers observed will
vary by participant.

We evaluate the performance of these three PRPs compared to full-mouth exam data. In each of the
PRPs, all sites from selected teeth are typically measured. However, under the case definitions in
Section 2.2, it would only be necessary to record CAL and PD at the four IP sites on each tooth.

(a) (b)

Figure 2: Fixed Tooth Selection for Ramfjord and CPITN Protocols and Random-Half Mouth Pro-
tocol Quadrants

2.4 General prevalence formulae

In this section, general formulae for the prevalence corresponding to the case definitions in Table
1 were derived based on the tooth-level binary variates; computational formulae based on specific
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member distributions of the CLF are provided in Section 2.6. In this section, each prevalence ex-
pression was factorized as a product of conditional probabilities based upon a standard, but arbi-
trary, dental numbering system. The binary variates can be reordered in this section giving different
(based on tooth identifiers), yet equivalent, factorizations for prevalence. Details can be found in
Web-Appendix A.1.

Case Definition #1: At least 1 tooth affected with maximum PD ≥ 5mm

πPD = Pr(W̃ ≥ 1) = 1− Pr(W̃ = 0) = 1−
28∏
j=1

(
1− ζj

)
,

where ζj = Pr
(
Wj = 1

∣∣∑j−1
k=1Wk = 0

)
for j ≥ 2 and ζ1 = Pr(W1 = 1) = µW1

.

Case Definition #2: At least 2 teeth affected with maximum CAL ≥ 6mm

πCAL = Pr(Ỹ ≥ 2) = 1− Pr(Ỹ = 0)− Pr(Ỹ = 1),

where

Pr(Ỹ = 0) =

28∏
j=1

(
1− ηj

)
,

Pr(Ỹ = 1) =

28∑
k=1

η
I(k=1)
1

[
ηk

k−1∏
j=1

(
1− ηj

)]I(k>1)[ 28∏
j=k+1

(
1− ηj|k

)]I(k<28)

,

ηj = Pr
(
Yj = 1

∣∣ j−1∑
l=1

Yl = 0
)

for j ≥ 2,

η1 = Pr
(
Y1 = 1

)
= µY1

and

ηj|k = Pr

(
Yj = 1

∣∣∣∣Yk = 1,

j−1∑
l=1;l ̸=k

Yl = 0

)
for j ≥ 2.

The case definitions #1 and #2, which are based on single measures (PD or CAL), are general
formulae that could be applied to different threshold values. For example, whereas the threshold for
CAL of 6mm in Table 1 that is considered in this article defines severe periodontitis, the threshold
for CAL of 4mm has been used elsewhere to define moderate periodontitis (Eke et al., 2012).

Case Definition #3: Severe Periodontitis

The CDC/AAP severe periodontitis case definition based on PD and CAL requires the full-mouth
vector of length 56 of tooth-level indicators with the first 28 elements corresponding toW1, . . . ,W28

and the last 28 elements corresponding to Y1, . . . , Y28, such that U = (U1, . . . , U56)
T = (W1, . . . ,

W28, Y1, . . . , Y28)
T . The prevalence of severe periodontitis is the joint probability that W̃ ≥ 1 and

Ỹ ≥ 2 corresponding to the lower right cell in a two by two contingency table defined for W̃ and Ỹ



12 Edwards et al.

as defined by the thresholds of 1 and 2, respectively:

πsevere = Pr(W̃ ≥ 1, Ỹ ≥ 2) = 1−
{
Pr(Ỹ ≤ 1) + Pr(W̃ = 0)− Pr(Ỹ ≤ 1, W̃ = 0)

}
= 1−

{
Pr(Ỹ = 0) + Pr(Ỹ = 1)

+ Pr(W̃ = 0)− Pr(W̃ = 0, Ỹ = 0)− Pr(W̃ = 0, Ỹ = 1)
}
,

where

Pr(W̃ = 0, Ỹ = 0) =

56∏
j=1

(
1− θj

)
,

Pr(W̃ = 0, Ỹ = 1) =

56∑
k=29

θk

[ 28∏
j=1

(
1− θj

)][ k−1∏
j=29

(
1− θj

)]I(k>29)[ 56∏
j=k+1

(
1− θj|k

)]I(k<56)

,

θj = Pr
(
Uj = 1

∣∣ j−1∑
l=1

Ul = 0
)
,

θ1 = Pr(W1 = 1) = µW1 and θj|k = Pr
(
Uj = 1

∣∣Uk = 1,

j−1∑
l=1;l ̸=k

Ul = 0
)
.

The expression for πsevere included terms based upon the probabilities that correspond to the case
definitions #1 and #2 via Pr(Ỹ ≤ 1) = 1 − πCAL and Pr(W̃ = 0) = 1 − πPD = Π28

j=1(1 − θj).
Also, Pr(W̃ = 0, Ỹ = 1) = Pr(W̃ = 0)Pr(Ỹ = 1|W̃ = 0) where Pr(Ỹ = 1|W̃ = 0) is derived
in Web-Appendix A.1.

The formulae in this section are impractical for non-parametric estimation as they involve multi-
nomial distributions with huge numbers of categories corresponding to cells in a 228 contingency
table for the first two case definitions and one with 256 possible profiles for the third definition. The
next section provides practical computational formulae based on specific expressions for the con-
ditional probabilities ζj , ηj , ηj|k, θj and θj|k derived from multivariate binary distributions for the
tooth-level measures.

2.5 Statistical distribution model (SDM) method

The SDM approach to estimate periodontitis prevalence models the pattern of disease across all
measures in the mouth by assuming a multivariate correlated binary distribution in the CLF. The CLF
of distributions was proposed as a method for simulating correlated binary variables with a specified
marginal mean vector and pairwise correlation matrix, without the need for explicit specification
of the higher order moments of the multivariate binary distribution (Qaqish, 2003b; Preisser and
Qaqish, 2014). The CLF has also been used as the basis for maximum likelihood estimation of
longitudinal binary data models (e.g., Yang and Chaganty, 2014).

Focusing on CAL, but without loss of generality, background knowledge on periodontitis in-
forms the structures of µ = E(Y) and R = Corr(Y), where Y is the vector of an individual’s
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Table 1: Full-Mouth Definitions for Periodontitis Cases and Prevalence1

(1) At least 1 tooth affected with πPD = Pr(W̃ ≥ 1),

maximum PD≥5mm where W̃ =
∑28

j=1 Wj & Wj = I(max(PDj) ≥ 5mm)

(2) At least 2 teeth affected with πCAL = Pr(Ỹ ≥ 2)

maximum CAL≥6mm where Ỹ =
∑28

j=1 Yj & Yj = I(max(CALj) ≥ 6mm)

(3) Joint (CDC/AAP Severe Periodontitis) πsevere = Pr(W̃ ≥ 1, Ỹ ≥ 2)

1The vectors PDj and CALj each contain four IP measurements for the j-th tooth, such that severe periodontitis is

defined as ≥2 teeth having at least 1 IP site with CAL≥6mm and ≥1 tooth with at least 1 IP site with PD≥5mm;

PD = pocket depth, CAL = clinical attachment loss, IP=interproximal

tooth-level CAL indicators from Section 2.2. The CLF is defined by the following sequence of con-
ditional means (i.e., probabilities, λj , j = 1, . . . , 28) that fall within the viable range (i.e., [0,1])
with λ1 = µ1 and, for j > 2,

λj(xj) = E(Yj |Xj = xj) = Pr(Yj = 1|Xj = xj) = µj + bTj [xj − E(Xj)],

where
Xj = (Y1, . . . , Yj−1)

T and bj = cov(Xj)−1cov(Xj , Yj)

This family of distributions allows flexibility in defining a distribution of periodontitis across all
measurements in a mouth as it allows the specification of unequal means and an arbitrary pairwise
correlation structure. The formula above is expressed using the notation for case definition #2, but
Yj could be replaced by Wj for case definition #1 or by Uk, an element from the joint vector of
dimension 56 consisting of all Wj and Yj , for case definition #3, k = 1, . . . , 56.

Moreover, the λj-terms, written as λj(xj) to denote their dependency on the values in the ordered
sequence of binary variables xj , become the terms ζj , ηj , ηj|k, θj and θj|k according to the particular
sequence of 0’s and 1’s in xj used to define each term. An equivalent expression for λj is

λj = µj +

j−1∑
l=1

bjl
(
Yl − µl

)
where bjl is the l-th element of bj , which depends upon both marginal means and pairwise cor-
relations. Thus, the model, or distribution, for the correlated, tooth-level binary variates is defined
through the specification of the marginal mean vector µ and pairwise correlation matrixR, which are
both parameterized with a relatively small number of parameters. Following Preisser et al. (2017),
there are two working assumptions for the single measure case definitions #1 and #2 under which
the CLF is equivalent to the Beta-binomial distribution (Qaqish, 2003b) in Web-Appendix A.2:

1. Common mean – probability of disease is the same for all teeth (i.e., µPD or µCAL, respec-
tively) and
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2. Exchangeable correlation - within-mouth pairwise correlation of disease is constant for all
tooth pairs (i.e., ρPD or ρCAL, respectively).

The third case definition introduces two additional pairwise correlations to measure the correla-
tion between disease due to PD and CAL on the same tooth (ρsame) and on different teeth (ρdiff ).
A CLF distribution is specified for U, a vector defined in Section 2.4 that contains both Wj’s and
Yj’s. A six-parameter model is specified at the tooth-level for indicators of disease based on PD and
CAL measurements,

µ ≡ E(U) =



µPD
...

µPD

µCAL
...

µCAL


56,1

& R ≡ Corr(U) =



1 ρPD ρsame ρdiff
. . . . . .

ρPD 1 ρdiff ρsame

ρsame ρdiff 1 ρCAL
. . . . . .

ρdiff ρsame ρCAL 1


56,56

2.6 CLF-based prevalence formulae

Prevalence estimation, based on a case definition of periodontitis, used a specified CLF for the
pattern of periodontal disease measured by the tooth-level binary variates. The working assumptions
for the first two case definitions stated in Section 2.5 result in the following prevalence formulae,

πPD = Pr(W̃ ≥ 1) = 1−
28∏
j=1

(
1− ζj

)
= 1−

28∏
j=1

(1− µPD)(1− ρPD) + (j − 1)ρPD
1 + (j − 2)ρPD

= 1−
28∏
j=1

(
1− (1− ρPD)µPD

1 + (j − 2)ρPD

)

πCAL = Pr(Ỹ ≥ 2) = 1−
28∏
j=1

(
1− (1− ρCAL)µCAL

1 + (j − 2)ρCAL

)

− 28µCAL(1− ρCAL)

1 + 26ρCAL

27∏
j=1

(1− µCAL)(1− ρCAL) + (j − 1)ρCAL
1 + (j − 2)ρCAL

For the third case definition, a simplified formula cannot be obtained so we use the general formula
for πsevere from Section 2.4, while recognizing that the θj and θj|k terms are specific types of λj
terms and so have expressions depending upon the six model parameters from Section 2.5.

We note that the CLF provides a full distribution for the 228 possible profiles of Y (or W) in
terms of a small or moderately small number of marginal mean and pairwise correlation parameters.
Unlike in Section 2.4, changing the order of the binary indicators may result in a different CLF in
the sense that inferred higher order nuisance parameters may change. Even though the ordering of
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teeth is arbitrary given their three-dimensional spatial orientation to one another, the impact of the
chosen ordering on the value of the prevalence is generally expected to be limited. In general, while
the CLF does not include all possible correlated binary distributions, it has been recommended for
clustered binary data due to its good coverage of such distributions (Preisser and Qaqish, 2014).

2.7 Estimation of intermediate parameters in the CLF-based prevalence es-
timator

Prevalence estimates were calculated for each case definition with respect to each PRP using esti-
mates of the mean and pairwise correlations. Means were estimated with the following method of
moments equations:

µ̂PD =

∑K
i=1 W̃i∑K
i=1mi

and µ̂CAL =

∑K
i=1 Ỹi∑K
i=1mi

(2.1)

where i = 1, . . . ,K subjects, W̃i is the number of diseased teeth due to PD ≥ 5mm for person i, Ỹi
is the number of diseased teeth due to CAL ≥ 6mm for person i, and mi is the number of teeth
selected by the PRP for person i. While mi is constant for all subjects in our analysis, it will vary
based on the PRP being analyzed; for Ramfjord, mi = 6; for CPITN, mi = 10; for RHM, mi = 14;
and for full-mouth, mi = 28.

Within-mouth pairwise correlations were estimated with GEE-type estimators (Zeger and Liang,
1986). Define the residuals,

rPDij
=

wij − µ̂PD√
µ̂PD(1− µ̂PD)

and rCALij
=

yij − µ̂CAL√
µ̂CAL(1− µ̂CAL)

Let sij = 1 denote whether the j-th tooth in the i-th mouth (participant) is selected by the PRP.
Then

ρ̂PD =

∑K
i=1

∑
j ̸=k sijrPDijsikrPDik∑K
i=1mi(mi − 1)

, ρ̂CAL =

∑K
i=1

∑
j ̸=k sijrCALijsikrCALik∑K
i=1mi(mi − 1)

,

ρ̂same =

∑K
i=1

∑28
j=1 sijrPDij

rCALij∑K
i=1mi

, and ρ̂diff =

∑K
i=1

∑
j ̸=k sijrPDij

sikrCALik∑K
i=1mi(mi − 1)

(2.2)

For case definition #1, µ̂ = µ̂PD and ρ̂ = ρ̂PD; for case definition #2, µ̂ = µ̂CAL and ρ̂ =

ρ̂CAL. For equal cluster sizes (mi = m) as for the PRPs in this article, estimators from the paired
estimating equations of Prentice (1988) without covariates reduces to the formulae for the site-
level probabilities µ̂ and pairwise correlations presented in 2.1 and 2.2. Prentice’s GEE approach
also provides an estimate of the joint covariance matrix of the intermediate parameter estimates
that define the prevalence formula in Section 2.6 that, for case definitions #1 and #2, is used to
determine the variance of the prevalence estimate via the delta method as described in the next
section. Prentice’s GEE was implemented in this article with the SAS macro GEECORR (Shing
et al., 2021).
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When estimating the intermediate parameters for π̂severe with GEECORR, it was possible that
the estimated pairwise correlation matrix was not positive semi-definite. When this happened, the
closest semi-positive definite matrix was found using the Frobenius norm (Higham, 1988); if needed,
diagonal values were reset to one to adhere to the structure of a correlation matrix. However, this
requirement sometimes caused the final correlation matrix to remain non-positive semi-definite but
resulted, nonetheless, in prevalence estimates within the plausible range (i.e., between 0 and 1).

2.8 Variance estimation for the CLF-based prevalence estimator

Common Mean and Exchangeable Correlation
For the two single measure case definitions, asymptotic variance estimates for µ̂ and π̂ were

calculated using the delta method; details are in Web-Appendix A.3. An intercept only model with
a logit link for the marginal mean, logit(µ) = β, and the identity link for the correlation model was
fit using the paired estimating equations approach of Prentice (1988), which provided estimates of
Cov(β, ρ̂).

For case definition #1, let πPD = Pr(W̃ ≥ 1) = 1 − ψ0, where ψ0 = Pr(W̃ = 0) and define
ψ∗
0 = ln(ψ0). Following Wang and Preisser (2016), and given the logit link, the variance for the

prevalence based on case definition #1 is var(π̂PD) = e2ψ
∗
0 ∗ var(ψ̂∗

0), where the var(ψ̂∗
0) is defined

in Web-Appendix A.3.
For case definition #2, let πCAL = Pr(Ỹ ≥ 2) = 1 − ψ0,1, where ψ0,1 = ψ0 + ψ1, ψ0 =

Pr(Ỹ = 0) and ψ1 = Pr(Ỹ = 1). Consider ψ∗
0,1 = ln(ψ0 + ψ1). Then the variance for the

prevalence in case definition #2 is var(π̂CAL) = e2ψ
∗
0,1 ∗ var(ψ̂∗

0,1), where the var(ψ̂∗
0,1) is defined

in Web-Appendix A.3.
Next, we consider the variance formula for the severe case definition based on the model with

two means and four correlations. Since there was no closed form of this variance, bootstrap meth-
ods were applied to each simulated replicate to estimate within simulation variances of µ, R, and
πsevere. The bootstrap method used in this paper has 6 steps.

Step 1. From the PRP data with K individuals (clusters), draw a sample of K individuals with
replacement as the r-th replicate.

Step 2. Calculate estimates µ̂ and R̂ using method of moments and GEE estimators as described
above.

Step 3. Estimate π̂severe from a CLF-compatible distribution defined by µ̂ and R̂.

Step 4. Repeat steps 1-3 with the r-th replicate 200 times.

Step 5. Calculate the variance of µ̂,R̂, and π̂severe for the r-th replicate based on results from
the 200 bootstrap samples.

Step 6. Repeat steps 1-5 for each replicate.
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3 Simulation Study

3.1 Data generation models

The selection of parameter values in CLF distributions for the random generation of the multivariate
vector of binary data, U, using the method of Qaqish (2003b) was based on the dental literature
and statistical considerations. This presented no difficulties for estimating prevalence under case
definitions #1 and #2, which relied on two plug-in estimates, µ̂ and ρ̂. This owes to the fact that,
for a common mean µ, any choice of correlation such that −1/(n − 1) < ρ < 1, where n is the
number of marginal means, corresponds to a CLF distribution, which ensures 0 < π < 1. However,
with regards to prevalence estimation for case definition #3, assignment of the six parameters in the
model for U needed to correspond to a distribution in the CLF. This meant that satisfying positive
definiteness for R and the pairwise Fréchet bounds on the correlation parameters were necessary
but not sufficient conditions for the existence of a multivariate binary distribution, most particularly
one belonging to the CLF. Software provided by Qaqish (2003a) was used to identify whether a
combination of the six parameters for the random variable U were CLF compatible, i.e., where
there exists a multivariate binary distribution with the given parameter values in the CLF. A detailed
summary of CLF violations, Fréchet bounds violations, and adjustments to the pairwise correlation
matrix is in Web-Appendix A.4.

Considering that Eke et al. (2012) found that roughly 15% of individuals in their convenience
sample of adults 35 or older had PD greater than or equal to 5mm, the CLF parameters were chosen
such that πPD ranged from 0.15 to 0.19; similarly, values were chosen such that πCAL was approx-
imately 0.11. Furthermore, based on Michalowicz et al. (2013), a data generation model for U was
considered with a moderately high correlation between PD and CAL measures on the same tooth
given by ρsame = 0.50. Reported estimates of severe periodontitis range between 5% and 10%

(Chen et al., 2021; Eke et al., 2012).
To narrow and simplify the search of CLF distributions, we added non-mandatory “assump-

tion restrictions” of common means (µPD = µCAL = µ), common measure-specific (marginal)
exchangeable correlations (ρPD = ρCAL = ρ), and, based on biological considerations of prox-
imity and sameness, ρdiff ≤ ρ ≤ ρsame. Having then focused on distributions for U with four
non-redundant parameters, the top four panels of Figure 3 plots the Fréchet and positive definite
bounds on the exchangeable correlation ρ as a function of the common mean µ for fixed ρdiff and
ρsame. Likewise, the bottom two panels of Figure 3 plots Fréchet and positive definite bounds on
ρdiff as a function of ρ for fixed mean µ and ρsame. All six panels show the range restrictions
on correlations imposed by the CLF method. When the within-tooth correlation for PD and CAL
was set to ρsame = 0.50 and the across tooth correlation for PD and CAL equaled ρdiff = 0.15,
the exchangeable correlation was restricted to 0.15 ≥ ρ ≥ 0.16. Finally, from these four parame-
ters, “true” prevalence values were determined from the CLF formulae in Section 2.4. Thus, data
generation model 1 was defined by:

Model #1: µPD = µCAL = 0.021; ρPD = ρCAL = 0.16, ρsame = 0.50, ρdiff = 0.15;

πPD = 0.19246, πCAL = 0.11490, πsevere = 0.10082
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Considering that assignment of ρsame = 0.50 substantially restricted the possible values the
other model parameters could take to ensure CLF compatibility, the second data generation model
sets ρsame = 0.19. Parameter values were chosen such that πsevere = 0.06. The second data
generation model had many CLF compatible distributional options as shown in the right-hand-side
panels of Figure 3. When setting ρsame = 0.19 and ρdiff = 0.09, the exchangeable correlation was
restricted to 0.08 ≤ ρ ≤ 0.18, so we defined:

Model #2: µPD = µCAL = 0.020; ρPD = ρCAL = 0.15, ρsame = 0.19, ρdiff = 0.09;

πPD = 0.19072, πCAL = 0.11183, πsevere = 0.06444

A final data generation model was considered to evaluate the performance of the SDM under
model misspecification. Model 3 had varying means between PD and CAL measurements and seven
unique correlation values to represent the intra-oral distribution of periodontal disease in a mouth;
resulting in a nine parameter model.

Model #3: µPD = 0.015, µCAL = 0.020; ρPDSQ
= ρCALSQ

= 0.19,

ρPDAQ
= ρCALAQ

= 0.17, ρPDCQ
= ρCALCQ

= 0.14;

ρsame = 0.19, ρdiffSQ
= 0.11, ρdiffAQ

= 0.10, ρdiffCQ
= 0.09;

πPD = 0.15520, πCAL = 0.11383, πsevere = 0.06365

The common exchangeable correlation and different measures on different teeth correlations,
ρ and ρdiff in models 1 and 2 respectively, were divided into three distinct parameters to reflect
quadrant relationships between measurements (Figure 2). Correlations between teeth within the
same quadrant (ρPDSQ

= ρCALSQ
= ρSQ; ρdiffSQ

) were assumed to be the largest, followed by
those from adjacent quadrants (ρPDAQ

= ρCALAQ
= ρAQ; ρdiffAQ

). The lowest were those from
contra-lateral quadrants (ρPDCLQuad

= ρCALCLQuad
= ρCQ; ρdiffCQ

). This logic resulted in the
following assumptions:

ρsame > ρSQ > ρAQ > ρCQ, and

ρsame > ρdiffSQ
> ρdiffAQ

> ρdiffCQ
.

The corresponding correlation matrix for U, with its blocked elements ordered by measure (PD,
then CAL) and, within measure, by quadrant number (1, 2, 3, 4), under the nine-parameter model is
R ≡ Corr(U) where

R =



RSQPD
RAdjPD

RCLPD
RAdjPD

RSQdiff
RAdjdiff

RCLdiff
RAdjdiff

RSQPD
RAdjPD

RCLPD
RSQdiff

RAdjdiff
RCLdiff

RSQPD
RAdjPD

RSQdiff
RAdjdiff

RSQPD
RSQdiff

RSQCAL
RAdjCAL

RCLCAL
RAdjCAL

RSQCAL
RAdjCAL

RCLCAL

RSQCAL
RAdjCAL

RSQCAL


56,56
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and

RSQPD
= RSQCAL

=


1 ρSQ

. . .

ρSQ 1


7,7

, RSQdiff
=


ρsame ρdiffSQ

. . .

ρdiffSQ
ρsame


7,7

,

and the rest had a common correlation for all their elements: RAdjPD
= RAdjCAL

= 17,7 ∗ ρAQ,
RCLPD

= RCLCAL
= 17,7 ∗ ρCQ, RAdjdiff

= 17,7 ∗ ρdiffAQ
, and RCLdiff

= 17,7 ∗ ρdiffCQ
.

All data were generated for a full-mouth (n = 28 teeth; “FULL” in subsequent results) assuming
no missing teeth.

3.2 Evaluation methods

To evaluate the performance of the prevalence estimators from Section 2.7 for their estimands from
Section 2.6 under various PRPs, full-mouth data with binary indicators of disease based on PD and
CAL measurements for each tooth were simulated from a CLF under one of three models with
parameter values described in the previous section. In the first simulation experiment, we simulated
1,000 replicate samples of 500, 1000, and 5000 full-mouth clusters (m = 28) for Models 1 and 2.
Specifically, the vector of binary variates U was generated based on the joint model for the severe
case definition described in Section 2.5. In a second simulation experiment, 1000 replicates of
5000 clusters under the nine parameter Model 3 were generated to examine the performance of the
proposed estimators under misspecification of the correlation structure.

From the generated FULL data for each individual (i.e., cluster), the binary data values for the
fixed-teeth in the Ramfjord and CPITN PRPs were saved as data based on tooth number (Figure
2). For RHM, the data consisted of the teeth from a randomly selected upper quadrant and lower
quadrant. The prevalence estimate and its variance was estimated for each simulation replicate. For
the single measure case definitions #1 and #2, we use the delta method to estimate the variance; for
severe periodontitis as defined in case definition #3, the bootstrap method was used as described in
Section 2.8.

For each simulation scenario, the percent relative bias of the prevalence estimators under each
PRP was calculated as 100(¯̂π − π)/π, where ¯̂π is the mean of the 1000 prevalence estimates. The
percent relative bias of the standard errors was calculated as

100
(
se(π̂)− Σπ̂,MC

)
/Σπ̂,MC

where the gold standard is the Monte Carlo standard deviation

Σπ̂,MC =

√√√√1000∑
i=1

(
π̂i −

1000∑
i=1

π̂i/1000

)2

/999

and i indexes the 1000 replicates. We calculated coverage of the 95% confidence interval (CI) for π
as the proportion of replicates for which the CI contained the true parameter value. Finally, relative
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(a) Large Within Tooth Correlation (b) Realistic Severe Prevalence

Figure 3: Severe Case Definition Range Restrictions for Model Selection
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efficiency was evaluated by taking the ratio of the mean squared error (MSE) of the full-mouth
estimate for π and the MSE of the PRP estimate for π,

MSEfull/MSEPRP =

1000∑
i=1

(
π̂full,i − π

)2
/

1000∑
i=1

(
π̂PRP,i − π

)2
,

where i indexes the 1000 replicates. All simulations were performed using SAS software Version
9.4. Copyright ©2002-2012 SAS Institute.

3.3 Results when the correlation model is correctly specified

For the two single measure case definitions, the prevalence estimator and its standard error based
on a Beta-Binomial distribution, i.e, with a common mean and exchangeable correlation, performed
well when the true model was also from a Beta-Binomial distribution (Tables 2 and 3). Prevalence
estimates had absolute relative bias below 3%, and closely matched the true prevalence for all sample
sizes and PRPs evaluated. Standard error estimates had absolute percent relative bias less than
5%, except in two cases for K = 500 individuals and decreased with mi (the number of teeth
selected in the PRP; Table 2). Relative efficiency increased with mi and was consistent in pattern
and magnitude across PRPs for each sample size, K, prevalence estimand, and model (Table 3).
Coverage was generally close to the 95% nominal level. For the CDC-AAP severe periodontitis case
definition, π̂SEV performed well with minimal relative bias, within ±3% of the true values, for both
the prevalence and its standard error (Table 4). Average prevalence estimates were similar across
all sample sizes and PRPs for each true model, closely matching the true prevalence. As expected,
average standard errors decreased with increasingK ormi. All PRPs and models had coverage rates
near the 95% nominal level. Relative efficiency followed a monotonic trend as PRPs with more teeth
had larger relative efficiencies. Relative efficiency was about 35% for Ramfjord, 60% for CPITN,
and 75% for RHM across all sample sizes. Regardless of the PRP, the severe periodontitis case
definition had relative efficiency somewhere between the single measure case definitions #1 and #2.
Case definition #1 had the lowest relative efficiency estimates. Case definition #2 had the highest
relative efficiency estimates.

3.4 Results when the correlation model is misspecified

When data were generated under Model 3 to examine the impact of correlation structure misspec-
ification, the prevalence estimators π̂PD, π̂CAL and π̂SEV and their standard errors generally per-
formed well (Table 5, K = 5000). Percent absolute relative bias was below 2% for all PRPs
considered except under the RHM protocol, where the underestimation bias for π̂PD and π̂SEV was
4.0% and 3.7%, respectively. The absolute relative bias of the standard error estimates was under
5.2% for all simulation scenarios. Under the Ramfjord and CPITN protocols, relative efficiency was
similar between the single measure case definitions, but noticeably lower for π̂SEV , the estimate for
severe periodontitis. In contrast, relative efficiency under the RHM protocol was 48.4% for π̂PD
and 53.2% for π̂SEV compared to 82.1% for π̂CAL. In particular, the result that CPITN was more
efficient than RHM for estimating π̂PD, i.e., 68.4% versus 48.4%, was a bit surprising as it selected
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four fewer teeth than RHM. Correspondingly, coverage was near the 95% nominal level for all sce-
narios except for π̂PD and π̂SEV under RHM where coverage was 85% and 89.2%, respectively,
suggesting that RHM may not be a robust PRP method in instances of misspecification of the corre-
lation structure for some prevalence estimators. Intermediate parameters for all models are detailed
in Web-Appendix A.4.

4 Discussion
While PRPs have long been-known to reduce the need for resources and costs of periodontal exams
in large epidemiological studies and oral health surveys, their use has been questioned in the past
decade due to the underestimation bias of periodontitis prevalence estimators owing to the standard
approach based on the case classification of study participants using partial examination data. Taking
a novel approach, this article extended a statistical distribution method for estimation of periodon-
titis prevalence under PRPs based on multivariate Bernoulli distributions of tooth-level indicators
of periodontal disease, thereby minimizing bias and improving the accuracy of disease estimates.
This article’s most significant extension of earlier work on SDM (Preisser et al., 2017, 2024) was
the development of a formula and a variance estimation procedure for periodontitis prevalence with
PRPs for the CDC/AAP case definition of severe periodontitis. In simulation studies, the preva-
lence estimator was shown to have low bias for three commonly used PRPs. Overall, however, the
statistical behavior of the novel prevalence estimator was better under Ramfjord and CPITN than
RHM protocols. Therefore, despite sampling more teeth than Ramfjord or CPITN, the conclusions
reached by this study recommend against use of RHMs.

This study adds to the evidence that SDM is a valid approach for the estimation of periodontitis
prevalence in PRPs. In the simulation experiments, the bias of the prevalence estimator and its stan-
dard error were generally under 5% and confidence interval coverage was close to the nominal 95%
level. This good performance, even under misspecification of the correlation structure, was some-
what better than reported by Wang and Preisser (2016) in their simulation studies for single measure
case definitions, where the bias of standard errors was as high as 10%. Compared to Wang and
Preisser, differences in the results observed in this article may be explained by the common within
measure tooth-level probabilities in both the data generation and analysis models. In contrast, Wang
and Preisser considered a spatial representation of the within measure tooth-level probabilities of
disease and the correlation structure in their data generation model. Similarly, using full-mouth pe-
riodontal exam data as the gold standard, Preisser et al. (2017, 2024) showed that the “bias” of SDM
prevalence estimators in PRPs is generally under 10%, which is much better than the substantial bias
often associated with case classification estimators.
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Table 2: Prevalence Estimates and their Standard Errors (SE) for All Case Definitions by PRP in
Simulation Study with 1,000 Replicates

# of Individuals

Data PRP 500 1,000 5,000

Generation (# of teeth) π̂ SEπ π̂ SEπ π̂ SEπ

πPD

Model 11 RAM (6) 0.1977 0.0322 0.1952 0.0231 0.1932 0.0104

CPITN (10) 0.1956 0.0260 0.1950 0.0187 0.1929 0.0084

RHM (14) 0.1960 0.0236 0.1944 0.0168 0.1929 0.0076

FULL (28) 0.1946 0.0205 0.1940 0.0147 0.1928 0.0066

Model 22 RAM (6) 0.1959 0.0327 0.1940 0.0234 0.1914 0.0106

CPITN (10) 0.1934 0.0260 0.1932 0.0187 0.1910 0.0084

RHM (14) 0.1946 0.0236 0.1927 0.0169 0.1908 0.0076

FULL (28) 0.1932 0.0204 0.1925 0.0146 0.1909 0.0066

πCAL

Model 1 RAM (6) 0.1155 0.0176 0.1156 0.0125 0.1149 0.0056

CPITN (10) 0.1154 0.0152 0.1154 0.0107 0.1151 0.0048

RHM (14) 0.1153 0.0141 0.1152 0.0100 0.1149 0.0045

FULL (28) 0.1152 0.0128 0.1153 0.0091 0.1149 0.0041

Model 2 RAM (6) 0.1118 0.0173 0.1127 0.0123 0.1120 0.0055

CPITN (10) 0.1122 0.0149 0.1122 0.0106 0.1120 0.0047

RHM (14) 0.1121 0.0139 0.1125 0.0099 0.1119 0.0044

FULL (28) 0.1121 0.0126 0.1123 0.0089 0.1119 0.0040

1µPD = µCAL = 0.021; ρPD = ρCAL = 0.16, ρsame = 0.50, ρdiff = 0.15;πPD = 0.1925, πCAL = 0.1149, πsevere = 0.1008

2µPD = µCAL = 0.020; ρPD = ρCAL = 0.15, ρsame = 0.19, ρdiff = 0.09; πPD = 0.1907, πCAL = 0.1118, πsevere = 0.0644

PRP = partial-mouth recording protocol, CLF = conditional linear family, PD = pocket depth,

CAL = clinical attachment loss, SEV = severity, RAM = Ramfjord protocol, CPITN = Community Periodontal Index

for Treatment Needs protocol, RHM = random half mouth, FULL = full-mouth exam



24 Edwards et al.

Ta
bl

e
3:

Pe
rc

en
tR

el
at

iv
e

B
ia

s,
Pe

rc
en

tR
el

at
iv

e
E

ffi
ci

en
cy

,a
nd

C
ov

er
ag

e
fo

r
A

ll
C

as
e

D
efi

ni
tio

ns
by

PR
P

in
Si

m
ul

at
io

n
St

ud
y

w
ith

1,
00

0
R

ep
lic

at
es

N
um

be
ro

fI
nd

iv
id

ua
ls

Tr
ue

PR
P

50
0

1,
00

0
5,

00
0

M
od

el
(#

of
te

et
h)

R
B

R
E

C
O

V
R

B
R

E
C

O
V

R
B

R
E

C
O

V

π̂
SE

π
π̂

π
π̂

SE
π

π̂
π

π̂
SE

π
π̂

π

π
P

D

M
od

el
11

R
A

M
(6

)
2.

70
-9

.3
1

35
.7

7
92

.7
0

1.
40

-0
.7

3
39

.9
9

94
.7

0
0.

40
-2

.8
4

37
.3

5
93

.0
0

C
PI

T
N

(1
0)

1.
62

-4
.2

8
61

.5
2

93
.7

0
1.

33
-2

.8
6

58
.4

0
93

.6
0

0.
21

2.
20

63
.6

4
95

.2
0

R
H

M
(1

4)
1.

83
-3

.7
4

75
.0

9
94

.4
0

0.
98

1.
09

78
.3

8
94

.7
0

0.
25

0.
72

75
.5

4
95

.5
0

FU
L

L
(2

8)
1.

11
-3

.7
8

10
0.

0
93

.8
0

0.
80

-0
.4

0
10

0.
0

94
.8

0
0.

19
0.

91
10

0.
0

95
.4

0

M
od

el
22

R
A

M
(6

)
2.

74
-4

.4
6

36
.2

9
94

.3
0

1.
72

-4
.1

0
37

.4
5

93
.4

0
0.

35
-0

.3
0

37
.9

3
94

.8
0

C
PI

T
N

(1
0)

1.
40

-5
.6

1
56

.7
7

93
.4

0
1.

31
-4

.0
9

58
.3

2
93

.8
0

0.
13

1.
05

61
.1

5
95

.2
0

R
H

M
(1

4)
2.

06
-2

.9
0

72
.2

5
94

.1
0

1.
04

-1
.8

8
75

.4
7

94
.8

0
0.

05
2.

12
77

.1
0

96
.1

0

FU
L

L
(2

8)
1.

30
-1

.5
5

10
0.

0
94

.6
0

0.
96

-2
.0

7
10

0.
0

95
.2

0
0.

09
0.

67
10

0.
0

95
.2

0

π
C

A
L

M
od

el
1

R
A

M
(6

)
0.

49
0.

82
55

.4
4

95
.0

0
0.

57
1.

69
51

.8
4

95
.1

0
0.

00
-0

.2
9

52
.0

4
94

.8
0

C
PI

T
N

(1
0)

0.
39

1.
97

76
.5

5
94

.9
0

0.
45

3.
09

71
.8

3
95

.5
0

0.
16

-2
.9

3
66

.4
2

93
.9

0

R
H

M
(1

4)
0.

36
-2

.0
4

81
.2

5
93

.6
0

0.
28

0.
34

78
.6

0
94

.4
0

-0
.0

1
1.

53
83

.9
6

95
.9

0

FU
L

L
(2

8)
0.

22
-1

.2
8

10
0.

0
94

.2
0

0.
34

2.
93

10
0.

0
95

.3
0

0.
00

0.
59

10
0.

0
95

.4
0

M
od

el
2

R
A

M
(6

)
-0

.0
5

1.
21

53
.4

6
94

.7
0

0.
76

-0
.5

3
52

.5
6

94
.5

0
0.

17
0.

95
54

.7
3

95
.6

0

C
PI

T
N

(1
0)

0.
31

0.
81

71
.3

0
94

.2
0

0.
36

-0
.2

9
71

.7
3

94
.6

0
0.

18
-2

.2
7

69
.3

6
94

.5
0

R
H

M
(1

4)
0.

25
1.

40
83

.1
9

94
.8

0
0.

56
-1

.4
9

80
.5

1
93

.8
0

0.
03

1.
05

85
.8

5
95

.3
0

FU
L

L
(2

8)
0.

27
0.

92
10

0.
0

94
.9

0
0.

40
-0

.6
2

10
0.

0
94

.7
0

0.
04

-1
.0

9
10

0.
0

94
.8

0

1
µ
P
D

=
µ
C
A
L
=

0
.0
2
1
;ρ

P
D

=
ρ
C
A
L
=

0
.1
6
,ρ

s
a
m

e
=

0
.5
0
,ρ

d
if

f
=

0
.1
5
;π

P
D

=
0
.1
9
2
5
,π

C
A
L
=

0
.1
1
4
9
,π

s
e
v
e
r
e
=

0
.1
0
0
8

2
µ
P
D

=
µ
C
A
L
=

0
.0
2
0
;ρ

P
D

=
ρ
C
A
L
=

0
.1
5
,ρ

s
a
m

e
=

0
.1
9
,ρ

d
if

f
=

0
.0
9
;π

P
D

=
0
.1
9
0
7
,π

C
A
L
=

0
.1
1
1
8
,π

s
e
v
e
r
e
=

0
.0
6
4
4

PR
P

=
pa

rt
ia

l-
m

ou
th

re
co

rd
in

g
pr

ot
oc

ol
,C

L
F

=
co

nd
iti

on
al

lin
ea

rf
am

ily
,P

D
=

po
ck

et
de

pt
h,

C
A

L
=

cl
in

ic
al

at
ta

ch
m

en
tl

os
s,

SE
V

=
se

ve
ri

ty
,

R
A

M
=

R
am

fj
or

d
pr

ot
oc

ol
,C

PI
T

N
=

C
om

m
un

ity
Pe

ri
od

on
ta

lI
nd

ex
fo

rT
re

at
m

en
tN

ee
ds

pr
ot

oc
ol

,R
H

M
=

ra
nd

om
ha

lf
m

ou
th

,

FU
L

L
=

fu
ll-

m
ou

th
ex

am
,R

B
=

pe
rc

en
tr

el
at

iv
e

bi
as

,R
E

=
pe

rc
en

tr
el

at
iv

e
ef

fic
ie

nc
y,

C
O

V
=

co
ve

ra
ge

of
95

%
co

nfi
de

nc
e

in
te

rv
al

s



Estimating Disease Prevalence From Partially-sampled Clusters . . . 25

Ta
bl

e
4:

Pr
ev

al
en

ce
E

st
im

at
es

,
th

ei
r

St
an

da
rd

E
rr

or
s

(S
E

),
Pe

rc
en

t
R

el
at

iv
e

B
ia

s,
Pe

rc
en

t
R

el
at

iv
e

E
ffi

ci
en

cy
,

an
d

C
ov

er
ag

e
fo

r
C

D
C

/A
A

P
Se

ve
re

C
as

e
D

efi
ni

tio
n

(π
S
E
V

-C
L

F
Fo

rm
ul

a)
by

PR
P

in
Si

m
ul

at
io

n
St

ud
y

w
ith

1,
00

0
R

ep
lic

at
es

#
of

In
di

vi
du

al
s

D
at

a
PR

P
50

0
1,

00
0

5,
00

0

G
en

er
at

io
n

(#
of

te
et

h)
π̂

SE
π

π̂
SE

π
π̂

SE
π

M
od

el
11

R
A

M
(6

)
0.

10
24

0.
01

87
0.

10
28

0.
01

36
0.

10
14

0.
00

63

C
PI

T
N

(1
0)

0.
10

23
0.

01
54

0.
10

20
0.

01
09

0.
10

11
0.

00
48

R
H

M
(1

4)
0.

10
21

0.
01

40
0.

10
15

0.
00

98
0.

10
10

0.
00

43

FU
L

L
(2

8)
0.

10
13

0.
01

21
0.

10
14

0.
00

85
0.

10
09

0.
00

38

M
od

el
22

R
A

M
(6

)
0.

06
63

0.
01

75
0.

06
59

0.
01

23
0.

06
47

0.
00

53

C
PI

T
N

(1
0)

0.
06

52
0.

01
34

0.
06

53
0.

00
94

0.
06

45
0.

00
42

R
H

M
(1

4)
0.

06
52

0.
01

19
0.

06
52

0.
00

84
0.

06
44

0.
00

37

FU
L

L
(2

8)
0.

06
46

0.
01

02
0.

06
49

0.
00

73
0.

06
44

0.
00

33

Tr
ue

R
B

R
E

C
O

V
R

B
R

E
C

O
V

R
B

R
E

C
O

V

M
od

el
π̂

SE
π

π̂
π

π̂
SE

π
π̂

π
π̂

SE
π

π̂
π

M
od

el
1

R
A

M
(6

)
1.

51
-1

.6
7

40
.8

6
94

.4
0

1.
94

0.
97

38
.2

5
94

.4
0

0.
59

-2
.5

2
34

.0
1

94
.2

0

C
PI

T
N

(1
0)

1.
42

-2
.2

3
59

.7
9

94
.1

0
1.

19
0.

96
59

.1
9

95
.0

0
0.

29
-1

.3
3

58
.7

0
94

.4
0

R
H

M
(1

4)
1.

31
-0

.4
9

75
.2

3
94

.9
0

0.
68

3.
35

78
.1

1
95

.8
0

0.
13

-0
.2

5
75

.3
4

95
.1

0

FU
L

L
(2

8)
0.

49
-1

.0
2

10
0.

0
94

.9
0

0.
61

1.
62

10
0.

0
95

.5
0

0.
03

0.
16

10
0.

0
94

.4
0

M
od

el
2

R
A

M
(6

)
2.

87
-0

.0
1

35
.3

2
93

.7
0

2.
20

-0
.4

0
35

.3
1

94
.3

0
0.

41
1.

54
38

.6
2

96
.2

0

C
PI

T
N

(1
0)

1.
18

1.
05

62
.0

3
94

.2
0

1.
35

-1
.2

5
59

.2
0

94
.0

0
0.

11
-2

.3
5

57
.2

8
93

.8
0

R
H

M
(1

4)
1.

17
-1

.0
3

75
.2

8
92

.9
0

1.
13

0.
31

76
.9

9
94

.6
0

-0
.0

3
3.

37
79

.6
6

95
.3

0

FU
L

L
(2

8)
0.

24
-2

.0
3

10
0.

0
93

.6
0

0.
65

-0
.9

5
10

0.
0

94
.1

0
0.

01
0.

99
10

0.
0

95
.0

0

1
µ
P
D

=
µ
C
A
L
=

0
.0
2
1
;ρ

P
D

=
ρ
C
A
L
=

0
.1
6
,ρ

s
a
m

e
=

0
.5
0
,ρ

d
if

f
=

0
.1
5
;π

P
D

=
0
.1
9
2
5
,π

C
A
L
=

0
.1
1
4
9
,π

s
e
v
e
r
e
=

0
.1
0
0
8

2
µ
P
D

=
µ
C
A
L
=

0
.0
2
0
;ρ

P
D

=
ρ
C
A
L
=

0
.1
5
,ρ

s
a
m

e
=

0
.1
9
,ρ

d
if

f
=

0
.0
9
;π

P
D

=
0
.1
9
0
7
,π

C
A
L
=

0
.1
1
1
8
,π

s
e
v
e
r
e
=

0
.0
6
4
4

PR
P

=
pa

rt
ia

l-
m

ou
th

re
co

rd
in

g
pr

ot
oc

ol
,C

L
F

=
co

nd
iti

on
al

lin
ea

rf
am

ily
,P

D
=

po
ck

et
de

pt
h,

C
A

L
=

cl
in

ic
al

at
ta

ch
m

en
tl

os
s,

SE
V

=
se

ve
ri

ty
,

R
A

M
=

R
am

fj
or

d
pr

ot
oc

ol
,C

PI
T

N
=

C
om

m
un

ity
Pe

ri
od

on
ta

lI
nd

ex
fo

rT
re

at
m

en
tN

ee
ds

pr
ot

oc
ol

,R
H

M
=

ra
nd

om
ha

lf
m

ou
th

,

FU
L

L
=

fu
ll-

m
ou

th
ex

am
,R

B
=

pe
rc

en
tr

el
at

iv
e

bi
as

,R
E

=
pe

rc
en

tr
el

at
iv

e
ef

fic
ie

nc
y,

C
O

V
=

co
ve

ra
ge

of
95

%
co

nfi
de

nc
e

in
te

rv
al

s



26 Edwards et al.

This article evaluated multiple sample size combinations to determine the impact of the number
of clusters and cluster size (i.e., number of teeth selected in PRPs) on the statistical performance
of prevalence estimators. Large epidemiological studies, such as the NHANES surveys (Eke et al.,
2018, 2015), the Arteriolosclerosis Risk in Communities Study (Beck et al., 2001; Preisser et al.,
2017), and the Hispanic Community Health Study/Study of Latinos (Shing et al., 2023), typically
have over 5000 participants, i.e., clusters. Limited funding, international setting, or hard-to-reach
populations are a few factors that might cause a study to have fewer than 5000 clusters. With these
considerations and under strong parametric assumptions about the distribution of disease within the
mouth, simulation results with 500, 1000, and 5000 clusters suggested that the CPITN and RHM
protocols were, respectively, about 60% and 75% statistically efficient as full-mouth data collec-
tion. This said, if a sample of 5000 clusters can be collected, then the Ramfjord protocol that only
samples six teeth per mouth, i.e., cluster, yielded better results, i.e., smaller average standard error,
than a sample of 500 or 1000 clusters with full-mouth data. In simulations based on 5000 clusters
where the prevalence formula for the CDC/AAP severe case definition was based on a misspecified
within-mouth correlation structure, CPITN and RHM protocols were, respectively, 50% and 53%
statistically efficient as full-mouth data collection.

One PRP method in our evaluation, RHM, did not perform well under misspecification of the
pairwise correlation structure for two of three prevalence estimators. Based on a sample size of
K = 5000, Ramfjord and, especially, the CPITN protocol were fairly robust to misspecification
of the correlation model with minimal relative bias for prevalence and standard error estimates and
coverage near the nominal 95% level. Interestingly, RHM, which measures more teeth per individ-
ual (m = 14) than Ramfjord (m = 6) or CPITN (m = 10), had mixed results. For case definition #2
it performed well, but for case definitions #1 and #3 (severe disease), RHM had higher relative bias
and lower coverage compared to Ramfjord and CPITN. This is due to its quadrant representation.
With full-mouth data under a single measure case definition, 52% of the pairwise correlations come
from teeth in adjacent quadrants, 26% from teeth in contralateral quadrants, and 22% from teeth in
the same quadrant. While these percentages are similar for Ramfjord and CPITN, the RHM PRP
oversamples tooth pairs from the same quadrant and thus creates pairwise correlation estimates that
are higher than expected with our prevalence analysis model that mistakenly assumes an exchange-
able correlation within measure. This result highlights the importance of carefully choosing a PRP
method based not only on the case definition but also on assumptions about the underlying distribu-
tion of periodontal disease within a cluster, that is, both the intensity and pattern of disease in the
mouth.

In regards to the apparent robustness of case definition #2, it produced the best results in terms
of relative bias, relative efficiency, and coverage for all data generation models. For case definitions
#1 and #2, the full-mouth data can be represented by a 228 contingency table. There is only one
way for the contingency table to satisfy case definition #1 (i.e., 1− Pr(W = 0)) - and similarly for
the PD component of case definition #3 –, but twenty-nine ways for the contingency table to satisfy
case definition #2 because an affected tooth can occur at any one of the 28 teeth or no teeth (i.e.,
1− Pr(Y = 0)− Pr(Y = 1)), which seemingly makes case definition #2 more robust to correlation
model misspecification under the RHM protocol.
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Table 5: Results from Misspecified Analysis Model1 for All Case Definitions by PRP in Simulation
Study with 1,000 Replicates and 5,000 Individuals per Replicate

Estimates RB RE COV

PRP π̂ SEπ π̂ SEπ π̂ π

πPD

RAM (6) 0.1559 0.0101 0.46 -0.58 41.06 94.40

CPITN (10) 0.1542 0.0079 -0.66 1.29 68.43 94.60

RHM (14) 0.1489 0.0069 -4.03 -0.17 48.44 85.00

FULL (28) 0.1529 0.0060 -1.48 -1.29 100.00 92.90

πCAL

RAM (6) 0.1156 0.0056 1.52 1.26 45.75 93.90

CPITN (10) 0.1152 0.0048 1.21 5.11 68.38 95.60

RHM (14) 0.1130 0.0044 -0.74 3.58 82.07 94.40

FULL (28) 0.1145 0.0039 0.62 2.54 100.00 95.80

πSEV - CLF Formula

RAM (6) 0.0658 0.0058 3.31 5.19 28.21 95.50

CPITN (10) 0.0645 0.0043 1.36 -2.89 49.71 93.60

RHM (14) 0.0613 0.0036 -3.68 0.01 53.15 89.20

FULL (28) 0.0637 0.0032 0.02 -0.04 100.00 95.00

1µPD = 0.015, µCAL = 0.020; ρPDsamequad
= ρCALsamequad

= 0.17, ρPDadjquad
= ρCALadjquad

= 0.14,

ρPDCLquad
= ρCALCLquad

= 0.11; ρsame = 0.19, ρdiffsamequad
= 0.11, ρdiffadjquad

= 0.10,

ρdiffCLquad
= 0.09;πPD = 0.1552, πCAL = 0.1138, πsevere = 0.0637

PRP = partial-mouth recording protocol, CLF = conditional linear family, PD = pocket depth,

CAL = clinical attachment loss, SEV = severity, RAM = Ramfjord protocol,

RHM = random half mouth, FULL = full-mouth exam, CPITN = Community Periodontal Index for

Treatment Needs protocol, RB = percent relative bias, RE = percent relative efficiency, COV = coverage of 95% CIs
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While our work indicates the SDM method can produce accurate prevalence estimates when
the PRP is carefully chosen with regard to knowledge of the structure of periodontal disease within
a mouth, further evaluation of the proposed prevalence estimators under model misspecification is
needed. Additional evaluation of the proposed estimators under model misspecification that account
for varying within measure (PD and CAL) tooth-level probabilities of disease in addition to other
complex structures for the pairwise correlations would further support the SDM approach as a viable
method of estimating periodontitis prevalence in surveillance studies using PRPs. Another type of
model misspecification arises when the means and correlations are correctly specified, but the data
are generated from a distribution for correlated binary data that is not from the CLF, such as the
multivariate probit (Emrich and Piedmonte, 1991), which could also be explored. In addition to
extending the data generation and analysis models, since not all studies can benefit from large cluster
sizes, future analysis should extend the evaluation of model misspecification to smaller sample sizes
of 500 and 1000 clusters.

The aforementioned discussion suggests that new prevalence estimators defined under various
model specifications to account for even more complex mean and pairwise correlation structures
than considered in this article, such as considered in Shing et al. (2023), should be explored to
solidify the dynamic application of the SDM approach. Another limitation of the general prevalence
formulae in Section 2.4 is that they assume there are no missing data within a cluster. That is,
every individual has all 28 teeth, which is very unlikely to occur in adult populations, especially in
developing countries/regions. In the convenience sample of adults over 35 years of age from Eke
et al. (2012), only 32.4% of the sample had no tooth loss, with a sample average of 3.5 missing teeth.
Moreover, tooth loss is associated with demographics, socioeconomic, and behavioral factors, which
would affect estimates of disease for different population subgroups. Extending the proposed CDC-
AAP severe periodontitis prevalence estimate to include individuals with missing teeth is needed to
fully establish its use with PRPs as an alternative to full-mouth data collection. A possible adaptation
could follow Preisser et al. (2024) who proposed conditioning estimands on the number of missing
teeth, and then averaging them across the population distribution of the number of missing teeth in
the mouth.

A strength of SDM is that each prevalence formula in Section 2.6 may apply to any underlying
distribution of correlated tooth-level binary data from the conditional linear family Qaqish (2003b),
but this method requires that the prevalence formula be uniquely determined for each case defini-
tion. As evidenced in Section 2.4, the complexity of the formula increases from case definitions
#1 to #2 to #3. While a prevalence formula for the “moderate or severe” CDC/AAP case definition
should be possible (Eke et al., 2012), the use of multiple imputation, albeit more computationally
intensive, may be more feasible for prevalence estimation than SDM for some complex case defi-
nitions (Preisser et al., 2024). Another adaptation of the SDM approach would be to use weighted
estimates of the mean and correlation parameters of the working CLF with the aim of lessening
bias of the prevalence estimator under model misspecification, which, for example, may have led to
better performance of RHM in this study.

In summary, when cluster sizes (e.g., the number of teeth in the oral cavity) are large in re-
search involving biological clustering of disease indicators within humans, sampling methods may
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be used to reduce cost and respondent burden resulting in partially sampled clusters. This article
demonstrated that PRPs are a viable alternative to full-mouth data collection when analyzed by as-
suming an underlying statistical distribution to calculate periodontitis prevalence under a commonly
accepted case definition for severe periodontitis.
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