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SUMMARY

In many randomized multi-visit studies, some response variables have an ordinal scale for
outcomes. The win odds (accounts for ties) and the win ratio (ignores ties) are useful
for treatment comparisons for ordinal outcomes. This paper discusses the application of
randomization-based covariance and stratification adjustment of the win odds (and win ra-
tio) to enable their more convenient use. Adjustment for strata is through the weighted
average of within stratum two-sample U statistics for numerators and denominators for
the stratified win odds (or win ratio). As randomization-based, invocation of covariance
adjustment is through constraints to zeros for baseline covariate differences in the joint
vector with logarithms of stratified win odds (or win ratios) for the respective visits. Such
adjustment has no formal assumptions about the distributions of response variables or co-
variates or the relationships of covariates to response variables; but the resulting adjusted
stratified win odds (or win ratios) have narrower confidence intervals than their unadjusted
counterparts when covariates have at least moderately strong associations with response
variables. There is illustration of such results for the stratified win odds (and win ratio)
for a randomized multi-visit clinical trial with an ordinal outcome for a chronic respiratory
disorder.
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1 Introduction

Many randomized multi-visit studies collect response variables for participants on an ordinal, rather
than interval, measurement scale. An example is the randomized multi-visit clinical trial discussed in
Section 2 and Section 4 for comparing test treatment to control for an ordinal global rating as terrible,
poor, fair, good, and excellent by participants with a chronic respiratory disorder (Koch et al., 1989;
Stokes et al., 2012). This ordinal, global rating has assessments at baseline and four follow-up visits.
Also, this example has centers as a factor for stratified randomization; and the baseline global rating,
age, and sex are covariates of interest for their associations with the ordinal response variables at the
four follow-up visits. As indicated in the subsequent paragraph, the win ratio and the win odds are
useful for describing the extent to which participants with the test treatment have better outcomes for
an ordinal response variable than those with the control. This paper discusses randomization based
methods for stratification and covariance adjustment for win ratios and win odds for the respective
visits of randomized multi-visit studies in Section 2 and Section 3; and it illustrates their application
to the previously described chronic respiratory disorder example in Section 2 and Section 4.

As discussed in Chapters 4 and 7 of Stokes et al. (2012), Gasparyan et al. (2021b), and many
other references, the Wilcoxon rank sum statistic enables a randomization-based comparison be-
tween two randomized treatment groups for an ordinal response variable at a single visit for a study.
The Mann-Whitney probability (i.e., win proportion WP ) is a corresponding measure for the differ-
ence between the two treatment groups; and Kawaguchi et al. (2011), and perhaps other references,
note that (WP–0.5) = (RT − RC)/n, where RT and RC are the mean ranks for the test (T ) and
control (C) treatment groups, with sample sizes nT and nC and n = nT + nC . Moreover, Chap-
ter 4 of Stokes et al. (2012), as well as Dong et al. (2020) and Gasparyan et al. (2021b), note that
WP = (P (T > C)+0.5P (T = C)) for the probability of a better outcome for a random participant
on test treatment (T ), with ties managed as half wins, compared to a random participant on control
treatment (C). Equivalently, 2(WP − 0.5) = (Somers′ D) = (P (T > C)− P (C > T )) = WD

expresses the win difference WD; and WO = WP/(1−WP ) = (1+WD)/(1−WD) is the win
odds. A related measure is the win ratio WR = P (T > C)/P (C > T ) as in Pocock et al. (2012);
and since (WR − WO) is proportional to WD, WR > WO > 1 when WD > 0 and WR <

WO < 1 when WD < 0; and WR = WO = 1.0 when WD = 0 or WR = WO if no ties. Also,
WR = (1 + Gamma)/(1 − Gamma), where Gamma is the Goodman-Kruskal (Goodman and
Kruskal, 1963, 1972) version of the Kendall tau rank correlation coefficient. Relatedly, simulation
studies in Carr et al. (1989) indicate that the Fisher (1925, 1992) Z transformation of a correlation
coefficient as applied to Gamma as Z = 0.5 log((1 +Gamma)/(1−Gamma)) = 0.5 log(WR)

has better statistical properties than Gamma for control of Type I error.
For studies with stratified randomization and no other relevant baseline covariates, the van El-

teren (1960) extension of the Wilcoxon rank sum statistic enables a randomization-based strati-
fied comparison between two treatment groups; and references such as pages 220-222 in Lehmann
(1975) note how it has a locally most powerful property. As noted in Kawaguchi et al. (2011), a
weighted mean of the within-stratum (WPh − 0.5), where WPh is the win proportion for the h-th
stratum with h = 1, 2, . . . , q for q strata, is the corresponding measure in the numerator of the van
Elteren test statistic for the difference between two treatment groups. A convenient expression for
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this weighted mean is (WP − 0.5) =
∑q

h=1 wh(WPh − 0.5) where

wh =

(
nThnCh

nTh + nCh + 1

)
/

(
q∑

h′=1

nTh′nCh′

nTh′ + nCh′ + 1

)
is the van Elteren weight for the h-th stratum with nTh and nCh as the sample sizes for the
test and control treatment groups within the h-th stratum. Relatedly, WD = 2(WP − 0.5) =∑q

h=1 whWDh and WO = (1 + WD)/(1 − WD) respectively are the win difference and the
win odds that correspond to the van Elteren test statistic for the combined strata. Also, Kawaguchi
et al. (2011) indicate that the logit transformation log

(
WP

1−WP

)
= log(WO) can have better sta-

tistical properties than WP in terms of Type I error control and coverage of confidence intervals,
particularly when WP is further from its null value of 0.5 (for no difference between treatments for
their distributions of a response variable in all strata). In Carr et al. (1989), there is consideration
of extensions of the Goodman-Kruskal Gamma for the combined strata and related statistical tests
for the homogeneity of Gamma among the strata; and they are indirectly applicable to the win ratio
via the previously noted Fisher Z transformation of Gamma for a study with two treatment groups.
More directly, Dong et al. (2018) provide methods for the stratified win ratio and a related test of
homogeneity; and Section 14.6 of Stokes et al. (2012) illustrates Wald tests of homogeneity for the
Mann-Whitney probability (i.e., WP ).

The appendices in Koch et al. (1998) describe the general nature of randomization-based covari-
ance adjustment, and their scope briefly includes the Mann-Whitney probability (i.e., WP ). For this
method, there is invocation of constraints to zeros for measures of treatment differences for base-
line covariates that are in a joint vector that includes measures of treatment differences for response
variables on the basis of randomization. Accordingly, this method has no formal assumptions about
the distributions of response variables or baseline covariates or the relationships of covariates with
response variables. As explained in Section 3, the resulting adjusted measures of treatment dif-
ferences for the response variables have smaller estimates for standard errors than their unadjusted
counterparts without such covariance adjustment when there are at least moderately strong associa-
tions between the response variables and the baseline covariates, and so they can provide narrower
confidence intervals and better power for comparisons between treatments. Kawaguchi et al. (2011)
more fully addresses randomization-based adjustment of the Mann-Whitney probability (i.e., WP )
for randomized multi-visit clinical trials, and it describes applications to three examples.

Gasparyan et al. (2021a) discuss methods for stratification and numeric covariate adjustment for
the win proportion (and thereby the win odds by transformation), although their discussion refers to
the win ratio. Related clarification of terminology concerning the distinction between the win odds
and the win ratio is in Dong et al. (2020), Brunner et al. (2021) and Gasparyan et al. (2021b), where
the win odds is noted to be a win ratio with ties as half wins. Gasparyan et al. (2021b) also provide
power and sample size calculation formulas for the win odds.

This paper summarizes in Section 3 and the Estimate for Covariance Matrix VF for F in Sec-
tion 3 how the methods in the Appendices of Koch et al. (1998) and Kawaguchi et al. (2011) enable
randomization-based stratification and baseline covariate adjustment for the win ratio and win odds
estimates for the visits in a randomized multi-visit clinical trial to compare a test treatment to a
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control treatment. Methods for two-sample U statistics, together with linear Taylor series approxi-
mations, are used to estimate the corresponding covariance matrices of these estimates (with these
methods being slightly more appropriate than the methods for one sample U statistics in Carr et al.
(1989) and Kawaguchi et al. (2011)). The previously noted example with respect to a chronic res-
piratory disorder has illustration in Section 2 of some basic methods for comparing two treatments
for ordinal response variables for studies with stratified randomization. Additionally, it has illustra-
tion of randomization-based methods for both stratification adjustment and covariance adjustment
in Section 4 so as to enable their more convenient use. In Section 5, there is a brief discussion that
summarizes the methods and provides comments for related topics.

2 Example with Results Adjusted for Strata
As indicated in Section 1, the chronic respiratory disorder example for describing the applications of
the methods in this paper is a clinical trial with stratified randomization to test treatment or control
at two centers for participants with a chronic respiratory disorder. The illustrated response variable
is an ordinal global rating as terrible, poor, fair, good, or excellent at baseline and four follow-up
visits; and age and sex are other baseline covariates of interest. The distributions of this ordinal
global rating at follow-up visit 1 are shown in Table 1 for the participants with control and test
treatment at the two centers.

Illustration is possible for basic methods for the win difference (WD), the win proportion (WP ),
the win odds (WO), and the win ratio (WR) through the use of the MEASURES option in the SAS
FREQ Procedure (SAS Institute Inc., 2018) to produce Somers’ D (as the win difference (WD)) and
Goodman-Kruskal Gamma for the comparisons between test treatment and control within the two
centers; and similar capabilities for basic methods are available for other software. Accordingly,
the first row of Table 2 provides estimates of Somers’ D (and their standard errors) for Center 1
and Center 2 for the example; and the 5th row correspondingly provides estimates of Goodman-
Kruskal Gamma (and their standard errors). As noted in Section 1, WP = (WD + 1)/2, WO =

WP/(1 − WP ), and WR = (1 + Gamma)/(1 − Gamma); and they are also shown in Table
2 for Center 1 and Center 2 with the estimates for their corresponding standard errors (SE). In
this regard, the determination of the estimates for their standard errors (SE) is possible though
the straightforward use of linear Taylor Series methods for their relationships, as well as those for
log(WR), to WD and Gamma. More specifically,

SE(WP ) = SE(WD)/2, SE(WO) = SE(WP )/(1−WP )2,

SE(log(WR)) = 2SE(Gamma)/(1−Gamma2) and

SE(WR) = 2SE(Gamma)/(1−Gamma)2.

In accordance with Section 1, stratification adjusted comparisons between the test and control
treatments are possible with weighted averages, d =

∑2
h=1 whdh of within stratum comparisons

dh for the centers h = 1, 2 with van Elteren weights, wh = 0.504, 0.496 so as to be compatible
with the van Elteren test statistic. For the win difference, WD, and the win probability, WP , for the
combined centers, the dh are their within stratum counterparts, WDh and (WPh−0.5), respectively;
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and for the win odds, WO, for the combined centers, the transformation WO = (WP/(1−WP ))

is applicable. The dh for the win ratio are the log(WRh), and the reverse transformation, W̃R =

exp(d), provides a win ratio for the combined strata. However, when the within stratum sample
sizes for the two treatment groups are moderate rather than large (e.g., 15 ≤ nTh, nCh ≤ 50),
the WR version of the win ratio from Expressions (A.1) and (A.2) in the Estimate for Covariance
Matrix VF for F in Section 3 has more robust statistical behavior; and so it is the stratified win ratio
for the methods for randomization-based covariance adjustment in Section 3 and their application
in Section 4. In this regard, WR in the Estimate for Covariance Matrix VF for F in Section 3 is
a ratio of weighted means across the strata for two-sample U statistics within strata; whereas W̃R

is a geometric mean of within stratum win ratios WRh based on one-sample U statistics for the
corresponding Goodman-Kruskal Gammas.

Standard errors for d are produced for WD, WP , and log(W̃R) via SE(d)

=
√∑2

h=1(whSE(dh))2; and they are shown in Table 2 for the example, with two-sided 95%

confidence intervals, d±1.96×SE(d). The confidence interval for W̃R is exp(log(W̃R)±1.96×
SE(log(W̃R))); and that for WO is exp(log(WO)± 1.96× SE(log(WO))) where
SE(log(WO)) = SE(WP )/(WP (1−WP )) via linear Taylor series methods. Also, the (W̃R−
1)/(W̃R + 1) transformation of the confidence interval for W̃R provides the confidence interval
for Gamma for the combined strata. Although the lower limits of the confidence intervals in Table
2 for WD, WP , and W̃R for the combined strata suggest that better global ratings are more likely
for test treatment than control, this interpretation needs some caution since the van Elteren test
statistic from SAS PROC FREQ (with center*treatment*response/cmh scores=modridits) has two-
sided p = 0.0524.

In Section 3, methods for randomization-based adjustment for baseline covariates are described
for the stratification adjusted win odds, WO, and win ratio, WR, for which more formal definitions
are in the Estimate for Covariance Matrix VF for F in Section 3. For the example in this section, the
application of randomization based adjustment for baseline covariates is then illustrated in Section
4 with the baseline global rating, age, and sex as the covariates for the global ratings at the four
follow-up visits.

3 Methods for Randomization-based Covariance Adjustment for
the Win Ratio and the Win Odds

Let x̄Th and x̄Ch denote means for vectors of s numeric covariates (with no missing values) for
test treatment and control for participants in the h-th stratum; and let g =

∑q
h=1 wh(x̄Th − x̄Ch)

denote the vector of stratified differences between treatments for means of covariates with respect to
van Elteren weights for the q strata of a stratification factor (as specified in Section 1 and illustrated
for centers in Section 2). Also, in accordance with Section 2 and the Estimate for Covariance
Matrix VF for F in Section 3, let f = (f0, f1, . . . , fr)

′ denote the vector of logarithms for the
stratification adjusted win odds WOj (or the win ratios WRj as defined with Expression (A.1) and
Expression (A.2) in the Estimate for Covariance Matrix VF for F in Section 3 where (A.3) and
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(A.4) pertain to the WOj) for a randomized clinical trial with (r + 1) visits, where j = 0 denotes
the baseline visit and j = 1, 2, . . . , r denote r post-baseline follow-up visits; i.e., fj = log(WOj)

for the stratification adjusted win odds (or fj = log(WRj) for the stratification adjusted win ratios).
Let F = (g′,f ′)′ = (g′, f0,f

′
∗)

′ denote the vector that jointly pertains to differences between
treatments for both all pertinent baseline covariates as (g′, f0)

′ and logarithms of stratified win odds
(or win ratios) at the r post-baseline follow-up visits as f∗. For the example in Section 2, r = 4

for the four post-baseline visits, and F = (g1, g2, f0, f1, f2, f3, f4)
′, where g1 corresponds to age

and g2 corresponds to sex (as 1 if male and 0 if female). More generally, f0 can include additional
ordinal covariates that pertain to the severity of the baseline status of a participant, and g can include
categorical covariates as 0 or 1 indicators.

Let VF denote a consistent estimate of the covariance matrix for F from the methods in the
Estimate for Covariance Matrix VF for F in Section 3. On the basis of stratified randomization
of test and control treatments to the participants, constraints to zeros are applicable to g and f0.
Accordingly, the invocation of these constraints for F by weighted least squares with weights
from V −1

F and X = [0r,(s+1), Ir]
′ produces the randomization-based adjusted estimates b =

(X ′V −1
F X)−1X ′V −1

F F for the logarithms of the stratification adjusted win odds (or win ratios)
for the r post-baseline follow-up visits; see the Appendices in Koch et al. (1998) for related discus-
sion. Moreover, how b represents the covariance adjustment for f∗ is more clearly evident with its
simplified expression as b = (f∗ −V ′

F ,12V
−1
F ,11[g

′, f0]
′) where VF ,11 is the (s+1)× (s+1) upper

left block of VF and VF ,12 is the (s+ 1)× r upper right block of VF .

A consistent estimator for the (r×r) covariance matrix Vb for the covariance adjusted estimates
for the logarithms of the stratification adjusted win odds (or the win ratios) is Vb = (X ′V −1

F X)−1 =

(Vf∗ −V ′
F ,12V

−1
F ,11VF ,12) where Vf∗ is the (r× r) lower right block of VF for the covariance ma-

trix that corresponds to the logarithms of stratified win odds (or win ratios) for the r post-baseline
visits. In this regard, the structure of Vb expresses how linear functions c′b have smaller estimated
variance c′Vbc than their unadjusted counterparts c′f∗ for which c′Vf∗c is the estimated variance.
This useful property of b applies without any assumptions for the distributions of the response vari-
ables or the covariates or the relationships of the covariates to the response variables; and so it is an
important statistical property of randomization-based covariance adjustment.

As indicated in the Estimate for Covariance Matrix VF for F in Section 3, F has an approxi-
mately multivariate normal distribution on the basis of central limit theory when the within stratum
sample sizes nTh and nCh and their totals nT =

∑q
h=1 nTh and nC =

∑q
h=1 nCh are sufficiently

large. Accordingly, b has an approximately multivariate normal distribution (see Koch et al. (1977),
Koch and Wiener (2017), and Chapter 14 of Stokes et al. (2012)). Thus, with vbj as the estimated
variance of bj from the j-th diagonal element of Vb and zα/2 as the 100(1 − α

2 ) quantile of the
standard normal distribution with mean 0 and variance 1, exp (bj ± zα

2

√
vbj ) provides a two-sided

100(1−α)% confidence interval from randomization-based covariance adjustment for the stratifica-
tion adjusted win odds (or win ratio) at the j-th visit. Moreover, for C as a specified (c× r) matrix
with full rank c ≤ r, QCb = b′C ′(CVbC

′)−1Cb approximately has the chi-squared distribution
with c degrees of freedom (d.f.) under the null hypothesis that Cb consistently estimates 0c as the
(c×1) vector of zeros. In this regard, with C = [I(r−1), −1(r−1)] where I(r−1) and 1(r−1) respec-
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tively are the (r−1)×(r−1) identity matrix and the (r−1)×1 vector of ones, QCb provides a test
statistic for homogeneity of the stratification adjusted win odds (or win ratios) across the r visits in
the sense of no treatment*visit interaction. When homogeneity is reasonably applicable QCb with
C = 1′

r provides a test statistic for the geometric mean of the win odds (or win ratios) across the r

visits equalling 1.0.

4 Results with Randomization-Based Covariance Adjustment
for the Example

In accordance with the application of the methods in the Estimate for Covariance Matrix VF for
F in Section 3 and Section 3 to the chronic respiratory disorder example in Section 2, Table 3 pro-
vides the estimates (and estimated standard errors) for the logarithms of the stratification adjusted
win odds and win ratios via the fj for the four post-baseline visits 1, 2, 3, 4; and it provides cor-
responding results which additionally have randomization-based covariance adjustment via the bj
(from constraints to zeros for g and f0 in F = (g′,f ′)′). In this regard, the estimated standard
errors √vfj for the fj (or √vbj for the bj) are square roots of the corresponding diagonal elements
of VF in Expression A.9 in the Estimate for Covariance Matrix VF for F in Section 3 (or Vb in
Section 3).

From the structure of the estimated covariance matrix Vb for b in Section 3, the estimated stan-
dard errors in Table 3 for the logarithms of the stratification adjusted win odds and win ratios for
the four post-baseline visits are about 10% smaller with randomization-based covariance adjust-
ment than without it. Moreover, this statistical property applies even though the estimated loga-
rithms of the stratification adjusted win odds and win ratios for the four post-baseline visits from
randomization-based covariance analysis via b are similar to those without it via f . In this re-
gard, randomization implies that (b − f∗) is a consistent estimator of 0r as the r × 1 vector of
zeros via (g′, f0)

′ being a consistent estimator of 0(s+1). The previously noted interpretations are
also applicable to the two-sided 95% confidence intervals in Figure 1 from exp (fj ± 1.96

√
vfj )

for the stratification adjusted win odds and win ratios without covariance adjustment and from
exp (bj ± 1.96

√
vbj ) for those with covariance adjustment.

In Figure 1, the stratified win odds and the stratified win ratio are noticeably larger for Visit 2
than the other three visits. For this interpretation, there is support from corresponding test statistics
QCb with C = [I3, −13] for treatment*visit interaction. Their results are QCb = 9.12 for the
stratified win odds with covariance adjustment and QCb = 8.18 for the stratified win ratio with
covariance adjustment, and so their corresponding p-values are 0.0277 and 0.0425, respectively,
relative to the chi-squared distribution with d.f. = 3.

For both the fj and the bj in Table 3, those for the logarithms of the win ratios are consistently
larger than their counterparts for the win odds. However, the estimated standard errors that pertain
to the logarithms of the win ratios are correspondingly larger than those for the win odds in the
sense that zfj = fj/

√
vfj (or zbj = bj/

√
vbj ) for the logarithms of the win ratios are reasonably

similar to their counterparts for the win odds. In this regard, the (win ratio/win odds) ratios for
the zfj are 1.001, 0.994, 1.001, 0.996 for the post-baseline visits 1, 2, 3, 4, respectively; and those
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for the zbj are 1.013, 1.015, 1.017, 1.023 for the post-baseline visits 1, 2, 3, 4, respectively. Thus,
for the comparisons between the test treatment and the control for the post-baseline visits 1, 2, 3,
4, the interpretation of the zfj (or the zbj ) for the stratified win ratios would be similar to those
for the stratified win odds; and such interpretations can be compatible with the extent to which the
corresponding confidence intervals have lower limits above 1.0 (or upper limits below 1.0).

For clinical trials like the chronic respiratory disorder example for which the total sample size for
the two treatment groups are in a moderate range, such as 40 ≤ nT , nC ≤ 100, there may need to be
some caution for the interpretation of the confidence intervals in Figure 1 (or the corresponding zfj
(or the zbj )) to evaluate whether better outcomes are more likely for the test treatment than control.
For this purpose, a more rigorous method is stratified rank analysis of covariance as the extension of
the van Elteren test statistic to have randomization-based covariance adjustment; and it is applicable
with either the NParCov3 (Zink and Koch, 2012) or the NParCov4 (Zink et al., 2017) SAS macros.
This method addresses (WP − 0.5) with the applicable covariance matrices determined under the
strong null hypothesis for randomization-based methods (i.e., each participant has the same outcome
regardless of their randomly assigned treatment). Specifications for the use of the NParCov4 macro
include the RANK Procedure in SAS (SAS Institute Inc., 2018) with the NPLUS1 option to produce
ranks within strata for the pooled treatment groups divided by the corresponding total sample size
plus 1, HYPOTH=NULL, and the option COMBINE=FIRST for randomization-based covariance
adjustment after stratification adjustment. The respective counterparts to the zbj from this method
are 2.301, 4.313, 3.387, 2.561 for the four post-baseline visits. Thus, the respective z-values from
stratified rank analysis of covariance are somewhat smaller than those from the zbj =2.362, 4.595,
3.630, 2.680 respectively for the win odds and the zbj =2.393, 4.663, 3.692, 2.742 respectively for
the win ratio for the four post-baseline visits; and such tendencies can be helpful for understanding
the extent to which the interpretation of the zbj may need some caution. Moreover, essentially ex-
act randomization-based assessments of the z-values from stratified rank analysis of covariance are
possible from their corresponding randomization distributions with respect to all possible stratified
randomizations of participants to the test treatment or control. Nevertheless, the stratified win odds
(or win ratio), together with their confidence intervals with randomization-based covariance adjust-
ment, can be very helpful descriptively for interpreting the comparisons between the test treatment
and the control for ordinal response variables in a randomized multi-visit study. In summary, a
reasonable analysis strategy for ordinal response variables can be the parallel use of stratified rank
analysis of covariance to evaluate rigorously whether better outcomes are more likely for test treat-
ment than control, together with the description of such tendencies with the stratified win odds (or
win ratio) by their confidence intervals from randomization-based covariance adjustment.
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Table 3: Estimates (and standard errors) for logarithms of the stratification adjusted win odds and
win ratios for the combined centers in multi-visit clinical trial.

Without Covariance Adjustment With Covariance Adjustment

Visit Log(win odds) Log(win ratio) Log(win odds) Log(win ratio)

1 0.416 (0.218) 0.569 (0.298) 0.437 (0.185) 0.603 (0.252)

2 0.931 (0.232) 1.256 (0.315) 0.965 (0.210) 1.315 (0.282)

3 0.675 (0.223) 0.903 (0.298) 0.726 (0.200) 0.982 (0.266)

4 0.494 (0.214) 0.692 (0.301) 0.528 (0.197) 0.754 (0.275)

Figure 1: 95% Confidence Intervals (CIs) for the Stratified Win Ratio and Stratified Win Odds
without and with Covariate Adjustment.

5 Discussion
This paper discusses randomization-based methods for stratification and baseline covariate adjust-
ment for win odds and win ratio estimates for randomized multi-visit clinical trials with ordinal
response variables and stratified randomization. As summarized in Section 3 and the Estimate for
Covariance Matrix VF for F in Section 3, the computations for the more widely applicable version
of these methods (i.e., within-stratum sample sizes nTh, nCh ≥ 15) have four steps. The Estimate
for Covariance Matrix VF for F in Section 3 provides the first three steps, with the first being the
construction of the vector for multivariate two-sample U statistics for the comparisons between the
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test treatment and control within each stratum for both the numeric covariates and the ordinal re-
sponse variables (as they pertain to the numerators and denominators for the win ratio and the win
odds), together with the estimation of their corresponding covariance matrices. The second step is
the determination of the weighted average across the strata for the vector of within-stratum two-
sample U statistics with the use of van Elteren weights so as to correspond to the numerator of the
van Elteren test statistic. The third step is the construction of the joint vector of both the differ-
ences between treatments for the means of covariates and the natural logarithms of the win ratios
(or win odds) at each visit, together with the estimation of their covariance matrices. The last step
is in Section 3, where randomization-based covariance adjustment has invocation through the use of
weighted least squares methods to constrain treatment differences pertaining to baseline covariates
to zeros. The chronic respiratory disorder example introduced in Section 2 has illustration of these
methods in Section 4.

As related clarification, the stratification adjusted win ratio as exp(fj) for the j-th visit is a
consistent estimator for a population parameter which is θWRj

= (
∑q

h=1 whθ1hj/
∑q

h=1 whθ2hj).
For θWRj , θ1hj = P (yThj > yChj) and θ2hj = P (yThj < yChj) for the ordinal response vari-
ables yThj and yChj at the j-th visit of a multi-visit clinical trial with j = 0, 1, 2, . . . , r by ran-
dom participants with test treatment T and control C in the h-th stratum with h = 1, 2, . . . , q; and
the wh are the van Elteren weights defined in Section 1. The population parameter for which the
stratification adjusted win odds is a consistent estimator is θWOj

= (
∑q

h=1 wh(θ1hj + 0.5θ3hj)/∑q
h=1 wh(θ2hj + 0.5θ3hj)) where θ3hj = P (yThj = yChj). Moreover, the exp (bj) for the win

ratio and the win odds (as the randomization-based covariance adjusted counterparts of the exp (fj))
in Section 3 are correspondingly consistent estimators for the θWRj and θWOj (since (b − f∗) is
a consistent estimator of 0r as indicated in Section 4); and they can provide narrower confidence
intervals than those without such covariance adjustment (as based on the fj since vbj ≤ vfj ) when
the covariates have at least moderately strong associations with the response variables.

In Section 4 for the chronic respiratory disorder example, the 95% confidence intervals for the
covariance adjusted estimates are narrower compared to those that only have adjustment for strata.
Also, the win odds estimates are closer to 1.0 than the win ratio estimates for the respective post-
baseline visits, although the corresponding Z values for the comparisons between treatments are
nearly identical.

Two SAS (SAS Institute Inc., 2018) macros, with one for the win ratio and one for the win
odds, are conveniently available at github.com/elaineek/adj-wrwo for the methods provided in this
paper for stratification adjustment and randomization-based covariance adjustment; see Kowalewski
et al. (2023). An R package (R Core Team, 2021) with functions that utilize similar arguments to
the SAS macro is also available at github.com/annweideman/winr. Both repositories contain the
chronic respiratory disorder dataset used in Section 4 to demonstrate the methodology in Section 3
of this paper; and they also contain a dataset for a randomized multi-visit dermatology clinical trial
as an additional example that has attention in both Kowalewski et al. (2023) and the documentation
within the R package.

As additional considerations for the methods in this paper, Kawaguchi and Koch (2015) provide
an R package R Core Team (2021), sanon, for the computation of stratified Mann-Whitney win prob-

https://github.com/elaineek/adj-wrwo
https://github.com/annweideman/winr
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abilities (WP ) with randomization-based covariance adjustment; and this package provides several
methods for managing missing data. They include managing missing data as tied with all observed
data as well as for carried forward kernel functions for the within-stratum pairwise comparisons of
each test treatment participant with each control participant. Sun et al. (2017) provide adaptions for
the Mann-Whitney win probability (WP ) as in (Kawaguchi et al., 2011) to multiple endpoints that
are related to one another, and they also illustrate the use of such methods with multiple imputation
for missing data. The previously noted methods of managing missing data in sanon (Kawaguchi and
Koch, 2015), as well as multiple imputation, could be additions to the SAS macros and R package
for the methods in this paper.

As indicated in Section 1, many randomized multi-visit clinical trials for the comparison of two
treatments have response variables with ordinal outcomes. The discussion in this paper is potentially
useful for such clinical trials through enabling the win odds and the win ratio for comparisons be-
tween a test treatment and control to have randomization-based adjustment for stratification factors
and baseline covariates; and such adjustments have no assumptions for the distributions of response
variables or covariates or the relationships of covariates to the response variables. Moreover, as indi-
cated in Figure 1 in Section 4 for the chronic respiratory disorder example, the confidence intervals
for the win odds and the win ratio from randomization-based covariance adjustment are narrower
than those without such adjustment when the covariates have at least moderately strong associations
with the response variables; and they are straightforward to interpret through the win odds or the
win ratio.

A Appendix

A.1 Estimate for Covariance Matrix VF for F in Section 3

In Section 3, the estimators WRj for the win ratios and WOj for the win odds for the respec-
tive visits j = 0, 1, 2, . . . , r of a multi-visit clinical trial are ratios of weighted means (across
the strata with respect to the van Elteren weights in Section 1 of two sample U statistics (for
which Puri and Sen (1971) is a reference). Accordingly, for f as the vector of their logarithms,
fj = log(

∑q
h=1 whU1hj/

∑q
h=1 whU2hj). For the win ratio,

U1hj =

nTh∑
k=1

nCh∑
k′=1

[I(yThjk > yChjk′)/nThnCh]

=

nTh∑
k=1

nCh∑
k′=1

U1hjkk′/nThnCh

(A.1)

U2hj =

nTh∑
k=1

nCh∑
k′=1

[I(yThjk < yChjk′)/nThnCh]

=

nTh∑
k=1

nCh∑
k′=1

U2hjkk′/nThnCh

(A.2)
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where yThjk and yChjk′ are random outcomes for the ordinal response variable at the j-th visit
for the k-th test treatment participant and the k′-th control participant in the h-th stratum; also,
I(S) is the indicator function which equals 1 when S applies and equals 0 otherwise. Relatedly,
(U1hj/U2hj) is the win ratio for the j-th visit for the h-th stratum. Alternatively, (U1hj/U2hj)

becomes the win odds for the j-th visit for the h-th stratum by modifying (A.1) and (A.2) to replace
the kernel function U1hjkk′ and U2hjkk′ by U∗

1hjkk′ and U∗
2hjkk′ in (A.3) and (A.4) and redefining

the U1hj and U2hj accordingly.

U∗
1hjkk′ = U1hjkk′ + 0.5I(yThjk = yChjk′) (A.3)

U∗
2hjkk′ = U2hjkk′ + 0.5I(yThjk = yChjk′) (A.4)

With Uxhkk′ = (xThk − xChk′) as the vector of differences between baseline covariates for the
k-th test treatment participant and the k′-th control participant in the h-th stratum,

g =

q∑
h=1

wh(x̄Th − x̄Ch)

=

q∑
h=1

wh

nTh∑
k=1

nCh∑
k′=1

Uxhkk′/nThnCh

=

q∑
h=1

whUxh

(A.5)

in Section 3 is a weighted mean across the strata for two sample U statistics within the strata.
For the win ratio, let U1hkk′ = (U1h0kk′ , U1h1kk′ , . . . , U1hrkk′)′ and U2hkk′ = (U2h0kk′ ,

U2h1kk′ , . . . , U2hrkk′)′ with Uhkk′ = (U ′
xhkk′ ,U ′

1hkk′ , U ′
2hkk′)′, then

Uh =

nTh∑
k=1

nCh∑
k′=1

Uhkk′

nThnCh
= (U ′

xh,U
′
1h,U

′
2h)

′, (A.6)

where U1h = (U1h0, U1h1, . . . , U1hr)
′ and U2h = (U2h0, U2h1, . . . , U2hr)

′. Since Uh is a (s +

2(r + 1)) vector of two sample U statistics, a consistent estimator for its covariance matrix is Vh in
(A.7).

Vh =

{
1

nTh(nTh − 1)

nTh∑
k=1

(Uhk∗ −Uh)(Uhk∗ −Uh)
′

}

+

{
1

nCh(nCh − 1)

nCh∑
k′=1

(Uh∗k′ −Uh)(Uh∗k′ −Uh)
′

}
,

(A.7)

where Uhk∗ = (
∑nCh

k′=1 Uhkk′/nCh) and Uh∗k′ = (
∑nTh

k=1 Uhkk′/nTh); see Brunner and Mun-
zel (2000), Gasparyan et al. (2021a), and Puri and Sen (1971) as related references. For Vh, the
underlying assumption is that the participants in each treatment group within the h-th stratum hy-
pothetically represent a corresponding population of similar participants in a sense comparable to
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a simple random sample; and for this assumption, the corresponding populations for the two treat-
ment groups have the same distributions for the baseline covariates as a consequence of the stratified
randomization of the participants to the test treatment and control groups.

Let U =
∑q

h=1 whUh = (U ′
x∗,U

′
1∗,U

′
2∗)

′ with wh as the van Elteren weights specified in
Section 1. Let (A.8), with A = [I(r+1), −I(r+1)], specify the relationship between F in Section 3
and U .

F =

g
f

 =

 Ux∗

A log(U ′
1∗,U

′
2∗)

′

 . (A.8)

It then follows that a consistent estimator for the covariance matrix of F from methods for multi-
variate linear Taylor series approximations is VF in (A.9).

VF =

 Is 0s,2(r+1)

0(r+1),s AD−1

V

 Is 0s,2(r+1)

0(r+1),s AD−1

′

. (A.9)

For VF , D is a diagonal matrix with [U ′
1∗,U

′
2∗]

′ as its diagonal elements, 0(r+1),s is an (r +

1)× s matrix of zeros, and 0s,2(r+1) is a s× 2(r+ 1) matrix of zeros; see Koch et al. (1977), Koch
and Wiener (2017), and Chapter 14 of Stokes et al. (2012) as related references. When the sample
sizes nTh and nCh within the strata and their totals nT =

∑q
h=1 nTh and nC =

∑q
h=1 nCh for

the combined strata are sufficiently large (e.g., all nTh, nCh ≥ 15 and nT , nC ≥ 40), U has an
approximately multivariate normal distribution via central limit theorems for U statistics (see Puri
and Sen (1971)); and so F has an approximately multivariate normal distribution for studies with
stratified randomization. Similarly, (A.8) and (A.9) can produce F and VF that correspond to the
win odds by modifying the respective elements of U1hkk′ and U2hkk′ that pertain to (A.6) and (A.7)
to be the U∗

1hjkk′ and U∗
2hjkk′ in (A.3) and (A.4) rather than the U1hjkk′ and U2hjkk′ in (A.1) and

(A.2).

References

Brunner, E. and Munzel, U. (2000), “The nonparametric Behrens-Fisher problem: asymptotic theory
and a small sample approximation,” Biometrical Journal, 42, 17–25.

Brunner, E., Vandemeulebroecke, M., and Mütze, T. (2021), “Win odds: an adaptation of the win
ratio to include ties,” Statistics in Medicine, 40, 3367–3384.

Carr, G. J., Hafner, K. B., and Koch, G. G. (1989), “Analysis of rank measures of association for
ordinal data from longitudinal studies,” Journal of the American Statistical Association, 84, 797–
804, doi: 10.1080/01621459.1989.10478840.

Dong, G., Hoaglin, D. C., Qiu, J., Matsouaka, R. A., Chang, Y.-W., Wang, J., and Vandemeule-
broecke, M. (2020), “The win ratio: on interpretation and handling of ties,” Statistics in Biophar-
maceutical Research, 12, 99–106, doi: 10.1080/19466315.2019.1575279.



Randomization-based Covariance Adjustment of Win Ratios and Win Odds . . . 47

Dong, G., Qiu, J., Wang, D., and Vandemeulebroecke, M. (2018), “The stratified win ratio,” J
Biopharm Stat, 28, 778–796.

Fisher, R. A. (1925), Statistical Methods for Research Workers, London: Oliver and Boyd.

— (1992), “Statistical Methods for Research Workers,” in Breakthroughs in Statistics: Methodology
and Distribution, eds. Kotz, S. and Johnson, N. L., New York, NY: Springer New York, pp. 66–70.

Gasparyan, S. B., Folkvaljon, F., Bengtsson, O., Buenconsejo, J., and Koch, G. G. (2021a), “Ad-
justed win ratio with stratification: Calculation methods and interpretation,” Statistical Methods
in Medical Research, 30, 580–611.

Gasparyan, S. B., Kowalewski, E. K., Folkvaljon, F., Bengtsson, O., Buenconsejo, J., Adler, J., and
Koch, G. G. (2021b), “Power and sample size calculation for the win odds test: application to an
ordinal endpoint in COVID-19 trials,” Journal of Biopharmaceutical Statistics, 1–23.

Goodman, L. A. and Kruskal, W. H. (1963), “Measures of association for cross classifications III:
approximate sampling theory,” 58, 310.

— (1972), “Measures of association for cross classifications, IV: simplification of asymptotic vari-
ances,” Journal of the American Statistical Association, 67, 415–421.

Kawaguchi, A. and Koch, G. G. (2015), “sanon: an R package for stratified analysis with nonpara-
metric covariable adjustment,” Journal of Statistical Software, 67, 1 – 37.

Kawaguchi, A., Koch, G. G., and Wang, X. (2011), “Stratified multivariate Mann–Whitney esti-
mators for the comparison of two treatments with randomization based covariance adjustment,”
Statistics in Biopharmaceutical Research, 3, 217–231, doi: 10.1198/sbr.2010.10007.

Koch, G., Carr, G., Amara, I., Stokes, M., and Uryniak, T. (1989), “Categorical Data Analysis,”
in Statistical Methodology in the Pharmaceutical Sciences, eds. Berry, D. and Dekker, M., New
York: CRC Press, pp. 389–473.

Koch, G. G., Landis, J. R., Freeman, J. L., Freeman, D. H., and Lehnen, R. G. (1977), “A general
methodology for the analysis of experiments with repeated measurement of categorical data,”
Biometrics, 33, 133.

Koch, G. G., Tangen, C. M., Jung, J. W., and Amara, I. A. (1998), “Issues for covariance analysis
of dichotomous and ordered categorical data from randomized clinical trials and non-parametric
strategies for addressing them,” Stat Med, 17, 1863–92.

Koch, G. G. and Wiener, L. E. (2017), “Chi-Squared Tests: Basics,” in Wiley StatsRef: Statistics
Reference Online, John Wiley & Sons, Ltd, pp. 1–20.

Kowalewski, E. K., Weideman, A. M. K., and Koch, G. G. (2023), “SAS macro for randomization-
based methods for covariance and stratified adjustment of win ratios and win odds for ordinal
outcomes,” Cary, N.C.: SAS Institute, Inc., Proceedings of the SouthEast SAS Users Group 2023
Conference.



48 Weideman et al.

Lehmann, E. L. (1975), Nonparametrics: Statistical Methods Based on Ranks, Oxford, England:
Holden-Day.

Pocock, S. J., Ariti, C. A., Collier, T. J., and Wang, D. (2012), “The win ratio: a new approach to
the analysis of composite endpoints in clinical trials based on clinical priorities,” Eur Heart J, 33,
176–82.

Puri, M. and Sen, P. (1971), Nonparametric Methods in Multivariate Analysis, New York: Wiley.

R Core Team (2021), R: A Language and Environment for Statistical Computing.

SAS Institute Inc. (2018), SAS/STAT(R): 15.1 User’s Guide, Cary, NC.

Stokes, M., Davis, C., and Koch, G. (2012), Categorical Data Analysis using SAS, Cary, NC: SAS
Institute, 3rd ed.

Sun, H., Kawaguchi, A., and Koch, G. (2017), “Analyzing multiple endpoints in a confirmatory
randomized clinical trial—an approach that addresses stratification, missing values, baseline im-
balance and multiplicity for strictly ordinal outcomes,” Pharmaceutical Statistics, 16, 157–166.

van Elteren, P. H. (1960), “On the combination of independent two-sample tests of Wilcoxon,”
Bulletin of the International Statistical Institute, 37, 351–361.

Zink, R., Koch, G., Chung, Y., and Wiener, L. (2017), “Chapter 2: Advanced randomization-based
methods,” in Analysis of Clinical Trials Using SAS, eds. Dmitrienko, A. and Koch, G., Cary, NC:
SAS Institute, Inc., 2nd ed.

Zink, R. C. and Koch, G. G. (2012), “NParCov3: A SAS/IML Macro for Nonparametric
Randomization-Based Analysis of Covariance,” Journal of Statistical Software, 50, 1 – 17.

Received: December 6, 2023

Accepted: May 12, 2024


	Introduction
	Example with Results Adjusted for Strata
	Methods for Randomization-based Covariance Adjustment for the Win Ratio and the Win Odds
	Results with Randomization-Based Covariance Adjustment for the Example
	Discussion
	Appendix
	Estimate for Covariance Matrix VF for F in Section 3


