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SUMMARY

Joint models are routinely used in clinical trials to fit longitudinal and survival data simulta-
neously in an integrated fashion. We propose a joint model that incorporates state-specific
trajectories for fitting the longitudinal ordinal response and time-to-event data, focusing on
its application to Alzheimer’s Disease (AD). The proposed joint model effectively captures
the fluctuating cognitive conditions observed before and after the transition between two
disease states. By integrating longitudinal data into the survival sub-model through shared
trajectories, we can improve the fit of the survival data. A Markov chain Monte Carlo
(MCMC) sampling algorithm is developed to carry out Bayesian computation. A variation
of the Deviance Information Criterion is developed to assess the fit of each component of
the joint model as well as the contribution of the longitudinal data in fitting the survival
data. A variation of the concordance (C) index is further derived to assess the discrimina-
tory and predictive performance of the longitudinal sub-model. An in-depth analysis of the
real data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database is carried
out to demonstrate the applicability of the proposed methodology.
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1 Introduction

Medical studies often collect longitudinal biomarker measurements and time-to-event data. Typ-
ically, these types of data are analyzed separately using conventional methods such as the linear
mixed effects models (Laird and Ware, 1982) for longitudinal data (Guerrero et al., 2016; Bernal-
Rusiel et al., 2013b) and Cox proportional hazards models (Cox, 1972) for survival data. However,
modeling them separately can lead to biased parameter estimates (Hu et al., 2009) due to measure-
ment errors and the failure to account for the endogeneity of the longitudinal evolution. To address
these limitations, joint modeling (Chen et al., 2004; Ibrahim et al., 2004; Tsiatis and Davidian, 2004)
has emerged as a popular approach in many medical studies. Joint models integrate the longitudinal
and survival models by incorporating association parameters and fitting them simultaneously. This
approach allows for the assessment of the association between the longitudinal and survival out-
comes, leading to more accurate estimations. By considering the longitudinal measurements in the
survival model, the overall fit is improved. Additionally, the contribution of the longitudinal data in
the fit of the survival data can be quantified using DIC factorization.

The literature on joint models encompasses a wide range of medical studies and numerous ex-
tensions. An overview of the joint models is provided in Papageorgiou et al. (2019) and Tsiatis
and Davidian (2004). Sheikh et al. (2022) introduced a power prior approach for leveraging exter-
nal data in joint models. Chen et al. (2004) proposed joint modeling of survival data with a cure
fraction, while Wu et al. (2020), Li et al. (2019), Li et al. (2018a), Li et al. (2018b), and Ibrahim
et al. (2004) applied joint models to various medical areas including Alzheimer’s Disease. Joint
models of multiple longitudinal biomarkers and survival data are introduced in Li et al. (2021) and
Medina-Olivares et al. (2023). Huang et al. (2011), Sheikh et al. (2021) and Zhang et al. (2021)
developed joint models of survival data with competing or semi-competing risks. A joint model
of functional data and survival data was presented in Li et al. (2022). Andrinopoulou et al. (2021)
and Li et al. (2017) described predictions using joint models. Zhang et al. (2017) and Zhang et al.
(2014) presented model assessments, while Zhang et al. (2016) and Sheikh et al. (2021) focused on
computational methods and software development.

While the conventional linear mixed effects model is commonly used for modeling longitudinal
outcomes (Yi and Tang, 2022; Ziegler et al., 2015; Bernal-Rusiel et al., 2013a), it may not capture the
fluctuations of biomarkers before and after state transitions in diseases involving such transitions. To
address this limitation, our proposed method incorporates state-specific fixed and random intercepts
and slopes that consider the shift in longitudinal measurements during state transitions. Instead of
using real time, we utilize the cumulative time that a participant stays in the current state, resetting
it to zero after a state switch to start a new trajectory. The survival sub-model is implemented
using the Cox proportional hazards model. We choose the shared trajectory (Ibrahim et al., 2004)
as the association term that links the longitudinal and survival sub-models, as it provides a more
straightforward and meaningful interpretation.

Ordinal longitudinal data are commonly encountered in a medical study, given the inherent order
that ranges from the lowest to the highest level. Numerous methods have been proposed for model-
ing ordinal data in the existing literature. Some classic models are introduced in McCullagh (1980).
Various Bayesian approaches are presented in Albert and Chib (1993), Cowles et al. (1996) and
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Chen et al. (2000). Furthermore, the literature exploring the modeling of longitudinal ordinal data
includes Molenberghs et al. (1997), Lee and Daniels (2008) and Varin and Czado (2010), while dis-
cussions about ordinal regression with mixed effects can be found in Hedeker and Gibbons (1994)
and Liu and Hedeker (2006). The joint model of longitudinal ordinal data and survival times is
proposed in Li et al. (2010). Some applications in medical studies are presented in Lee and Daniels
(2008) and Jacqmin-Gadda et al. (2010). In our proposed joint model, a proportional odds mixed-
effects ordered probit sub-model with state-specific trajectories with is assumed for the longitudinal
ordinal data.

For Bayesian computation, we develop a Markov chain Monte Carlo (MCMC) sampling algo-
rithm (Chen et al., 2000). Due to the inability to directly sample most parameters with the shared
trajectory, we employ a localized Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings,
1970). To assess the fit of each component of the joint model and the contribution of longitudinal
data in fitting the survival data, we develop a variation of the Deviance Information Criterion (DIC).
For the longitudinal response data, a variation of the concordance index is further derived to assess
the discriminatory and predictive performance of the longitudinal sub-model.

The remainder of the paper is organized as follows. Section 2 provides a description of the
motivating Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Section 3 describes the
proposed joint model with state-specific trajectories for fitting longitudinal ordinal biomarker and
time-to-event data. Section 4 presents the prior and posterior, the MCMC sampling algorithm, the
DIC criteria and Bayesian concordance index. The empirical results of the analysis of the ADNI
data are given in Section 5. We conclude the paper with brief discussion and future research in
Section 6. Some computational details and proofs are given in the Appendix.

2 Motivating ADNI data

The following statements are quoted from https://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_DSP_Policy.pdf:

“Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progres-
sion of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-
to-date information, see www.adni-info.org.”

The ADNI database comprises data from more than 2000 participants aged 55 or above. The
dataset includes three primary diagnosed disease states: Cognitive Normal (CN), Mild Cognitive
Impairment (MCI), and Alzheimer’s Disease (AD). Our research aims to investigate the association
between longitudinal ordinal cognitive assessment and the progression to AD. We define the event
as AD-free survival that the event indicator is set to 1 if the patient is diagnosed with AD or de-

https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf
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ceased; and 0 if the patient is alive and free from AD. Since progression to AD is treated as the
event, the participants diagnosed with AD at baseline are excluded. For participants transitioning
from CN/MCI to AD, we exclude the longitudinal measurements taken after their AD diagnosis.
Therefore, the potential transitions considered in our study include staying in CN, staying in MCI,
transitioning from CN to MCI, and transitioning from MCI to CN. Figure 1 shows the frequency
of each type of state transition either remaining in or transitioning between CN, MCI, and AD.
We can see that majority of the transitions are remaining in the same state. There are more than
100 occurrences for the transition between CN and MCI. More than 300 transitions from MCI to
AD are observed. Additionally, the number of participants following different patterns of disease

Figure 1: Frequency of each type of state transition either remaining in or transitioning between CN,
MCI, and AD.

progression are summarized in Table 1.
The longitudinal ordinal measurement we are interested in studying is a cognitive assessment

known as the Clinical Dementia Rating (CDR). The CDR rates five degrees of impairment in per-
formance on each of the 6 categories of cognitive function including memory, orientation, judgment
and problem solving, community affairs, home and hobbies, and personal care. The ratings of de-
gree of impairment obtained on each of the 6 categories of function are synthesized into one global
rating of dementia (ranged from 0 to 3 with higher value means worse cognitive condition). This
is used as a global measure of severity of dementia. CDR originally has five ordinal categories ob-
served in ADNI, namely 0 is Normal, 0.5 is Very Mild Dementia, 1 is Mild Dementia, 2 is Moderate
Dementia, and 3 is Severe Dementia. Due to the setting of our study, after excluding the participants
whose baseline diagnoses are AD, we only have the three least severe categories of CDR observed.
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Table 1: Number of participants following different patterns of disease progression.

Pattern Number of participants

Staying in CN 506

CN-MCI 100

CN-MCI-CN 7

CN-MCI-CN-MCI 8

CN-MCI-CN-MCI-CN 1

Staying in MCI 746

MCI-CN 50

MCI-CN-MCI 16

MCI-CN-MCI-CN 6

MCI-CN-MCI-CN-MCI 3

The number of participants who have CDR measured at each visit is shown is Figure 2. Most of the

Figure 2: Number of participants who have CDR measured at each visit.

follow-up visits occur annually, although some participants have semi-annual visits based on their
cognitive examination results. Given the longitudinal nature of CDR measurements, we employ a
state-specific trajectory model as the longitudinal sub-model. For the survival data, the diagnosis of
AD or death is considered as the event. Regarding the accuracy of the diagnosis time of AD, we
examine the time to reach the Minimal Clinically Important Difference (MCID) for AD and the time
gap between the AD diagnosis and the last prior visit in ADNI data. According to the literature, the
time to reach the MCID for AD in terms of the CDR is less than one year. The longitudinal measure-
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Figure 3: Kaplan-Meier curves for the event of progression to AD or death by diagnosed states at
baseline.

ment used in this paper is the global CDR, which is a higher-level summary scale for CDR Sum of
Boxes (CDR-SB). According to Cummings (2023), the MCID for CDR-SB is 1.19. The annual rate
of change in CDR-SB is 1.43 (SE = 0.05) for the global CDR 0.5 cohort; and 1.91 (SE = 0.07) for the
global CDR 1 cohort (Williams et al., 2013). For the time gap between the AD diagnosis and the last
prior visit, the Q1, median, and Q3 of the time gaps in years are 0.41, 0.65, and 0.75, respectively. In
terms of the visit code, 54% of the gap is a half-year visit and 90% is within a one-year visit. Given
that the majority of the time gaps between the AD diagnosis and the last prior visit are within a year,
and considering the time to reach MCID in terms of CDR is less than a year, it is reasonable to as-
sume that the time of AD diagnosis is accurate. Figure 3 presents the Kaplan-Meier survival curves
for AD-free survival by different diagnosed states at baseline. The participants diagnosed as MCI at
baseline have a significantly higher probability of progressing to AD or death. For the fitting of time
to AD, we use the Cox proportional hazard model as the survival sub-model. Then we can jointly
model the longitudinal ordinal data and time-to-event data to investigate the association between
the evolution of CDR and the progression to AD or death. Additionally, we extend the concept of
concordance to ordinal responses for individual patient data. We consider seven baseline covariates
in our analysis, including age (in years), sex (coded as ’Female’ = 1, ’Male’ = 0), race (coded as
’White’ = 1, ’Other’ = 0), marital status (coded as ’Married’ = 1, ’Other’ = 0), education (in years),
apolipoprotein E (APOE4) count, and Rey’s Auditory Verbal Learning Test (RAVLT) forgetting per-
centages. These baseline covariates are used in both the longitudinal and survival sub-models. Table
2 presents a demographic summary of the baseline covariates by baseline diagnostic group, includ-
ing the sample mean (sample standard deviation (SD)) for each of the continuous variables (age,
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Table 2: A summary of the baseline covariates categorized by diagnostic group.

Baseline covariates Total CN at baseline MCI at baseline P-value

Age 73.3 (7.01) 73.4 (6.14) 73.2 (7.60) 0.9630

Gender <0.001

Female 666 (46.1%) 335 (53.9%) 331 (40.2%)

Male 779 (53.9%) 287 (46.1%) 492 (59.8%)

Race 0.1500

White 1341 (92.8%) 570 (91.6%) 771 (93.7%)

Other 104 (7.2%) 52 (8.4%) 52 (6.3%)

Education 16.2 (2.75) 16.5 (2.63) 16.0 (2.81) <0.001

Marital 0.0013

Married 1071 (74.1%) 434 (69.8%) 637 (77.4%)

Other 374 (25.9%) 188 (30.2%) 186 (22.6%)

APOE4 <0.001

0 842 (58.3%) 431 (69.3%) 411 (49.9%)

1 493 (34.1%) 174 (28.0%) 319 (38.8%)

2 110 (7.6%) 17 (2.7%) 93 (11.3%)

RAVLT-forgetting 48.6 (32.6) 34.7 (27.9) 59.0 (32.0) <0.001
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education, APOE4, and RAVLT) and frequency (n) (relative frequency %) for each level of each of
the categorical variables (sex, race, and marital status). In Table 2, the P-values are obtained from
the Mann-Whitney test for numeric variables and Fisher’s exact test for categorical variables. We
observe statistically significant differences in gender (P-value < 0.001), education years (P-value <
0.001), marital status (P-value = 0.001), APOE4 count (P-value < 0.001), and RAVLT forgetting
percentages (P-value < 0.001) between the Cognitive Normal (CN) and Mild Cognitive Impairment
(MCI) groups at baseline. Furthermore, compared to the CN group, participants in the MCI group
tend to have a lower proportion of females, lower level of education, higher proportion of being
married, higher APOE4 count, and higher percentages of RAVLT forgetting.

3 Method

3.1 Longitudinal sub-model

Considering the longitudinal and ordinal nature of the measurements, we employ a state-specific
trajectory model (SSTM) with ordered probit link as the longitudinal sub-model. Suppose we have
mi longitudinal measurements observed for the i-th subject for i = 1, . . . , n. Let aij denote the
time in years of the j-th visit from the baseline for j = 0, 1, . . . ,mi and i = 1, . . . , n. Denote
y∗
i (aij) and yi(aij) as the latent and observed longitudinal measurements for subject i at time aij .

The diagnosed state of subject i at time aij is represented by κi(aij). Specifically, κi(aij) equals 0
if subject i is diagnosed as Cognitive Normal (CN) at time aij and 1 if diagnosed as Mild Cognitive
Impairment (MCI). Let t∗(aij) in (3.2) denote the cumulative time that subject i remains in the
current state up to time aij , which is defined as

t∗(aij) =

0, for j = 0,

aij − max
0≤j∗≤j−1

{aij∗1{κi(aij∗) = 1− κi(aij)}}, for j = 1, . . . ,mi.
(3.1)

Then, the longitudinal model is defined as

y∗i (aij) = θκi(aij)0 + θκi(aij)0i + (θκi(aij)1 + θκi(aij)1i)t
∗(aij) + x′

iγ + ϵij , (3.2)

where θκi(aij)0 and θκi(aij)1 are the fixed intercept and fixed slope, respectively, specific to the di-
agnosed state κi(aij), similarly, θκi(aij)0i and θκi(aij)1i are the random intercept and random slope
specific to the subject when diagnosed as state κi(aij), and γ is a p-dimensional vector of coeffi-
cients corresponding to the p-dimensional baseline covariates xi. After excluding the participants
who are diagnosed as AD at the baseline, the CDR of the remaining patients contains three levels,
namely 0, 0.5, and 1. Therefore, we have known cutoffs to be 0 and 1, while the variance of the
latent variable remains unknown (Chen et al., 2000). The specific conversion between the latent
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variable and the observed variable is

yi(aij) =


0, if y∗

i (aij) < 0,

0.5, if 0 < y∗
i (aij) < 1,

1, if y∗
i (aij) > 1,

(3.3)

where y∗
i (aij) is a latent measure defined in (3.2). The error term ϵij is assumed to follow N(0, σ2).

The random effects and the error term are assumed to be independent. Let θi = (θ00i, θ01i, θ10i, θ11i)
′ ∼

N(0,Ω), where Ω is a positive-definite variance-covariance matrix. Using Cholesky decomposition
of Ω = ΓΓ′, we can reparameterize θi (Sheikh et al., 2021) as follows

θi = ΓθR
i , (3.4)

where θR
i ∼ N(0, I4) and

Γ =


b11 0 0 0

b21 b22 0 0

0 0 b33 0

0 0 b43 b44

 ,

with positive diagonal entries. Now we can rewrite our longitudinal model (3.2) as

y∗i (aij) = θκi(aij)0 + (ΓθR
i )2κi(aij)+1 +

(
θκi(aij)1 + (ΓθR

i )2κi(aij)+2

)
t∗(aij)

+ x′
iγ + ϵij . (3.5)

Figure 4 provides a visual representation illustrating that the model with state-specific trajecto-
ries yields a better fit compared to the model with a state-independent trajectory. At the top, middle,
and bottom of Figure 4, we present the observed CDR, fitted CDR from the linear mixed model with
an interaction between state and time, and the fitted CDR from the state-specific trajectory model,
respectively, for a selected participant. The colors of the dots represent the diagnosed state for this
patient at each time point. We can see that SSTM performs better when the patient transitions to CN
at approximately year 4 and year 8 from the baseline.

Please note that this aforementioned model formulation assumes that both the biomarker and
diagnosis are assessed during the same visit for ease of mathematical representation. However, in
some cases, patients have separate visits for biomarker measurement and diagnosis. This means that
state transitions could occur between two biomarker measurements. Thus, we have also developed
a model that accommodates separate visits for biomarker measurement and diagnosis. The details
of this model can be found in the appendix.

3.2 Survival sub-model

Let ti be the event time or the censoring time and let δi represent the event indicator such that δi takes
a value of 0 for censored and 1 for the event for the i-th subject. The survival sub-model incorporates
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Figure 4: Trajectory of CDR from observed values (top), Linear Mixed Model with an interaction
between state and time (middle), and State-Specific Trajectory Model (bottom).

the shared trajectory from the longitudinal sub-model, along with other fixed covariates. We assume
a proportional hazards model (Cox (1972); Lin and Wei (1989)) with the hazard function given by

h(t|Xi(t), zi) = h0(t) exp
{
ακi(t)Xi(t) + z′

iβ
}
, (3.6)

where h0(t) is the baseline hazard function, β is the vector of the coefficients corresponding to the
baseline covariates zi, and ακi(t) is the state-specific association parameter for the shared trajec-
tory. In (3.6), α0 and α1 are the two association parameters corresponding to the states CN and
MCI, respectively. Here, Xi(t) denotes the longitudinal trajectory at time t for subject i from the
longitudinal model (3.2) and can be written as

Xi(t) = θκi(t)0 + θκi(t)0i + (θκi(t)1 + θκi(t)1i)t
∗
i (t) + x′

iγ, (3.7)

where κi(t) is a function of time t and is defined the same way as in the longitudinal sub-model (3.2),
and t∗i (t) is the cumulative time that the i-th subject remains in the current state until t, expressed as

t∗i (t) =

0, for t = 0,

t− maxaij∗≤t
{aij∗1{κi(aij∗) = 1− κi(t)}}, for t > 0.

(3.8)

Now the longitudinal model can be rewritten by y∗i (aij) = Xi(aij) + ϵij , as the only difference
between y∗i (aij) and Xi(aij) is the error term. In the survival sub-model, the trajectory of the
longitudinal biomarker builds a connection between the longitudinal and survival sub-models via
the association parameter ακi(t). With the reparameterization of θi = ΓθR

i in (3.4), the shared
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trajectory in the survival sub-model can be reformulated as

αXi(t) =α
{
θκi(t)0 + θκi(t)0i + (θκi(t)1 + θκi(t)1i)t

∗
i (t) + x′

iγ
}

=α
{
θκi(t)0 + (ΓθR

i )2κi(aij)+1 + (θκi(t)1 + (ΓθR
i )2κi(aij)+1)t

∗
i (t) + x′

iγ
}

=1{κi(t) = 0}α
{
θ00 + b11θ

R
i1 + (θ01 + b21θ

R
i1 + b22θ

R
i2)t

∗
i (t) + x′

iγ
}

+1{κi(t) = 1}α
{
θ10 + b33θ

R
i3 + (θ11 + b43θ

R
i3 + b44θ

R
i4)t

∗
i (t) + x′

iγ
}
. (3.9)

The term for the fixed intercept in (3.9) can be absorbed by the baseline hazard. Thus, (3.7) can be
rewritten as

Xi(t) = θκi(t)0i + (θκi(t)1 + θκi(t)1i)t
∗
i (t) + x′

iγ. (3.10)

It is also assumed that the baseline hazard function takes on a piecewise constant form with G

partitions of the time axis such that h0(t) = λg, t ∈ (sg−1, sg], g = 1, 2, . . . , G, 0 = s0 < s1 <

· · · < sG = ∞. Write λ = (λ1, λ2, . . . , λG) as the vector of piecewise constants for the baseline
hazard function.

3.3 Likelihood construction

Let θCN = (θ00,θ01) and θMCI = (θ10,θ11). Let ϕ = (ϕ1,ϕ2), where ϕ1 = (θCN,θMCI,γ, σ
2,Γ)

and ϕ2 = (λ,α,β). For the longitudinal sub-model, the density of y∗
i conditional on θR

i takes the
following expression:

f(y∗
i |ϕ1,θ

R
i ,κi,xi) =

mi∏
j=1

1∏
k=0

(2πσ2)−
1{κi(aij)=k}

2 exp

{
− 1{κi(aij) = k}

2σ2
× (3.11)

[
y∗i (aij)−

{
(θk0 + (ΓθR

i )2k+1) + (θk1 + (ΓθR
i )2k+2)t

∗(aij) + x′iγ
}]′

[
y∗i (aij)−

{
(θk0 + (ΓθR

i )2k+1) + (θk1 + (ΓθR
i )2k+2)t

∗(aij) + x′iγ
}]}

,

where t∗(aij) is defined in (3.1) and the density of θR
i is given by

f(θR
i ) =

1

(2π)2
exp{−1

2
θR′

i θR
i }. (3.12)

The likelihood function of the survival sub-model for the i-th subject can be written as

f(ti|ϕ1,ϕ2,θ
R
i , δi,κi, zi) =

[
h0(ti)exp

{
αXi(ti) + z′

iβ
}]δi

× exp
{
−

∫ ti

0

h0(u)exp
{
αXi(u) + z′

iβ
}
du

}
, (3.13)

where

Xi(u) = (θκi(u),0 + (ΓθR
i )2κi(u)+1) + (θκi(u),1 + (ΓθR

i )2κi(u)+2))t
∗
ih(u) + x′

iγ, (3.14)
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and

t∗ih(u) = u− θih∗ , h∗ = argmaxh{θih|θih ≤ u} and ti > 0. (3.15)

The joint distribution of (y∗
i , ti,θ

R
i ) is given by

f(y∗
i , ti,θ

R
i |ϕ, δi,κi,xi, zi) =f(y∗

i |ϕ1,θ
R
i ,κi,xi)×

f(ti|ϕ1,ϕ2,θ
R
i , δi,κi, zi)f(θ

R
i ), (3.16)

where f(y∗
i |ϕ1,θ

R
i ,κi,xi) is defined in (3.12) and the marginal distribution of (y∗

i , ti) can be
written as

f(y∗
i , ti|ϕ, δi,κi,xi, zi) =

∫
f(y∗

i , ti,θ
R
i |ϕ, δi,κi,xi, zi) dθ

R
i . (3.17)

Furthermore, we can write

f(y∗
i , ti|ϕ, δi,κi,xi, zi) = f(y∗

i |ϕ1,κi,xi)× f(ti|y∗
i ,ϕ1,ϕ2, δi,κi, zi), (3.18)

where f(y∗
i |ϕ1,κi,xi) =

∫
f(y∗

i |ϕ1,θ
R
i ,κi,xi)f(θ

R
i )dθ

R
i is the marginal distribution of y∗

i

and f(ti|y∗
i ,ϕ1,ϕ2, δi,κi, zi) is the conditional distribution of ti given y∗

i . Let Dobs = {(yi, ti,

δi,κi,xi, zi), i = 1, . . . , n} denote the observed data. Then the likelihood is given by

L(ϕ|Dobs) =

n∏
i=1

f(y∗
i , ti|ϕ, δi,κi,xi,yi, zi). (3.19)

4 Bayesian Inference

4.1 The priors and posterior

For θ0, θ1, γ, α, and β, we assume independent normal priors with θk ∼ N(θθk ,Vθk) for k = 0, 1,
γ ∼ N(θγ ,Vγ), β ∼ N(θβ ,Vβ), and α ∼ N(θα, σ

2
α) respectively, where θθ0 = θθ1 = θγ = θα =

θβ = 0, Vθ0 = Vθ1 = 1000I2, Vγ = Vβ = 1000Ip, and σ2
α = 1000. Independent gamma priors

are assumed for λ with λg ∼ Gamma(ag, bg), where ag = 0.001 and bg = 0.001 for g = 1, . . . , G.
We assume an inverse gamma prior for the measurement errors with σ2 ∼ IG(aσ2 , bσ2), where
aσ2 = bσ2 = 0.001. Independent normal N(0, 1) priors are assumed for log(Γ) on diagonal or Γ
off diagonal with log(Γ11), Γ21, log(Γ22), log(Γ33), Γ43, and log(Γ44), respectively. The joint prior
specified above is denoted by π(ϕ). The joint posterior distribution of ϕ is

π(ϕ|Dobs) =
L(ϕ|Dobs)π(ϕ)

c(Dobs)
, (4.1)

where the normalizing constant is defined as

c(Dobs) =

∫
f(y∗

i , ti|ϕ, δi,κi,xi, zi)π(ϕ)dϕ. (4.2)

Let θR = (θR
i , i = 1, . . . , n). The joint posterior distribution of (ϕ,θR) can be expressed as

π(ϕ,θR|Dobs) =

∏n
i=1 f(y

∗
i , ti,θ

R
i |ϕ, δi,κi,xi, zi)π(ϕ)

c(Dobs)
. (4.3)
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4.2 Posterior sampling

Since the posterior distribution defined in (4.3) is analytically intractable, we develop a MCMC
sampling algorithm to sample (ϕ,θR,y∗

i ). To run the MCMC algorithm, we need to sample from
the following conditional posterior distributions in turn:

(a) [θ|θR
i ,γ,σ

2,Γ,λ, α,β,Dobs] with localized Metropolis-Hasting algorithm;

(b) [γ|θ,Γ,θR
i ,σ

2,λ, α,β,Dobs] with localized Metropolis-Hasting algorithm;

(c) [Γ|θ,γ,θR
i ,σ

2,λ, α, β,Dobs] with localized Metropolis-Hasting algorithm;

(d) [σ2|θ,γ,θR
i ,κ,Dobs] ∼ Inverse-Gamma distribution;

(e) [α|λ,β,θR,Dobs] with localized Metropolis-Hasting algorithm;

(f) [β|θ,γ, σ2,Γ,θR,λ, α,Dobs] with localized Metropolis-Hasting algorithm;

(g) [λg|α,βk,θ,γ,Γ,θ
R
i ,Dobs] ∼ Gamma distribution;

(h) [θR
i |θ,γ, σ2,Γ,λ, α,β,Dobs] with localized Metropolis-Hasting algorithm;

(i) [y∗
i |yi,θ,γ, σ

2,Γ,θR
i ,λ, α,β,Dobs] ∼ Truncated Normal distribution.

In order to evaluate the integral Hi =
∫ ti
0

h0(u)exp
{
αXi(u) + z′

iβ
}
du in (3.13), we use the Rie-

mann integral approach. The details of the Riemann integral can be found in the Appendix.

4.3 Bayesian model assessment

Using the formula in (3.18), following Zhang et al. (2017), we can develop the DIC decomposition.
However, the DIC decomposition requires the evaluation of four-dimensional integrals. Hence, we
develop a variation of the DIC “decomposition”, which does not require any numerical integration.
Specifically, we define the deviance function as

Dev(ϕ,θR) =− 2

n∑
i=1

log(f(y∗
i |ϕ1,θ

R
i ,κi,xi)f(ti|ϕ1,ϕ2,θ

R
i , δi,κi, zi))

=− 2

n∑
i=1

log(f(y∗
i |ϕ1,θ

R
i ,κi,xi))− 2

n∑
i=1

log(f(ti|ϕ1,ϕ2,θ
R
i , δi,κi, zi))

≡DevLong(ϕ1,θ
R) + DevSurv(ϕ2,θ

R). (4.4)

Following the Deviance Information Criterion (DIC) defined in (Spiegelhalter et al. (2002)), we can
construct DICLong using DevLong and DICSurv using DevSurv. Mathematically, we have

DICLong = DevLong(ϕ1,θ
R) + 2p

D[Long] , (4.5)

where p
D[Long] = E[DevLong(ϕ1,θ

R)|Dobs] − DevLong(ϕ1,θR), and the expectation is taken with
respect to the posterior distribution given in (4.3). The DICSurv can be calculated in a similar fashion.
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This variation of DIC can be computed using the MCMC samples from the posterior distribution
under joint model. Therefore, this variation of DIC is very computationally efficient and convenient.

Under (4.4), the total DIC for the joint model has the following decomposition:

DIC = DICLong + DICSurv. (4.6)

To quantify the improvement in the fit of the survival data by the joint model, we define ∆DICSurv

as follows:

∆DICSurv = DICSurv,0 − DICSurv, (4.7)

where DICSurv,0 is defined under the survival-only model by letting the association parameters α

be a zero vector. Then, we compute the percentage of improvement from the survival-only model,
which is denoted by %∆DICSurv and defined as

%∆DICSurv =
∆DICSurv

DICSurv,0
. (4.8)

4.4 Concordance for ordinal responses

We develop a variation of concordance to evaluate the longitudinal model performance for ordinal
data. Concordance evaluates the predictive accuracy of a model by measuring the agreement be-
tween observed and predicted outcomes, which is the number of concordant pair divided by the total
number of comparable pairs.

In the ordinal response setting, using the notation in Section 3.1, for the ith subject, a within-
subject pair, (i, j) and (i, j′), where j < j′, is comparable if yi(aij) ̸= yi(aij′); and for subjects i
and i′, where i < i′, a between-subject pair, (i, j) and (i′, j′), is comparable if yi(aij) ̸= yi′(ai′j′),
where 1 ≤ j ≤ mi and 1 ≤ j′ ≤ mi′ . Furthermore, a comparable within-subject pair, (i, j) and
(i, j′), is concordant if

yi(aij) > yi(aij′) and

θκi(aij)0 + θκi(aij)0i + (θκi(aij)1 + θκi(aij)1i)t
∗(aij) >

θκi(aij′ )0
+ θκi(aij′ )0i

+ (θκi(aij′ )1
+ θκi(aij′ )1i

)t∗(aij′) (4.9)

or

yi(aij) < yi(aij′) and

θκi(aij)0 + θκi(aij)0i + (θκi(aij)1 + θκi(aij)1i)t
∗(aij) <

θκi(aij′ )0
+ θκi(aij′ )0i

+ (θκi(aij′ )1
+ θκi(aij′ )1i

)t∗(aij′). (4.10)

Similarly, a comparable between-subject pair, (i, j) and (i′, j′), is concordant if

yi(aij) > yi(ai′j′) and

θκi(aij)0 + θκi(aij)0i + (θκi(aij)1 + θκi(aij)1i)t
∗(aij) + x′

iγ >

θκi(ai′j′ )0
+ θκi(ai′j′ )0i

+ (θκi(ai′j′ )1
+ θκi(ai′j′ )1i

)t∗(ai′j′) + x′
i′γ (4.11)
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or

yi(aij) < yi(ai′j′) and

θκi(aij)0 + θκi(aij)0i + (θκi(aij)1 + θκi(aij)1i)t
∗(aij) + x′

iγ <

θκi(ai′j′ )0
+ θκi(ai′j′ )0i

+ (θκi(ai′j′ )1
+ θκi(ai′j′ )1i

)t∗(ai′j′) + x′
i′γ. (4.12)

A comparable pair is called a tie if the second inequality (< or >) in (4.9) – (4.12) becomes an
equality, “=”. Then we can define the concordance for the ordinal data as

C =
total number of condance pairs + 0.5× total number of ties

total number of comparable pairs
. (4.13)

Subsequently, we compute the percentage of improvement from the conventional linear mixed-
effects model, which is denoted by %∆CLong and defined as

%∆CLong =
∆CLong

CLMM
. (4.14)

5 Analysis of the ADNI Data
We analyze the ADNI data discussed in Section 2 using the proposed methods for ordinal data. The
longitudinal measurement we analyze is the Clinical Dementia Rating (CDR). We executed 5000
iterations for burn-in, and subsequently collected 10,000 MCMC samples. The posterior estimates
and 95% highest posterior density (HPD) intervals, as outlined by Chen and Shao (1999), are de-
tailed in Tables 3 and 4. For the survival sub-model, we select the optimal number of time intervals
based on the DIC variations. The survival sub-model with 9 pieces yields the smallest DICSurv|Long.
For computational stability, all continuous covariates are standardized in the analysis.

The intercept of the trajectory when the patient is in CN is statistically significantly lower than
the intercept when the patient is in MCI. Covariates including marital status, APOE4 and RAVLT
show a positive association with CDR values. Individuals who are married with a higher APOE4
count and higher RAVLT forgetting percentages tend to exhibit a significantly higher CDR. The
association parameters are also significantly different between states, indicating a different effect of
CDR on progression to AD when the patient is in different period of disease progression.

Table 5 displays the DIC decomposition results, providing an assessment of how the inclusion of
longitudinal data in the survival sub-model influences the fit of survival outcomes. The %∆DICSurv

draw the conclusion that the Clinical Dementia Rating (CDR) contributes significantly to the im-
provement of survival fit by 7.37%.

To assess the performance of the proposed state-specific trajectory model, we evaluate the DIC
variations and the concordance of SSTM and Linear Mixed Model with interaction of state and
time. We quantify the marginal improvement of the longitudinal model by implementing SSTM
over LMM and also the conditional improvement of the fit of the survival data by including the
longitudinal biomarker using SSTM over LMM. According to Table 6, the fit of the marginal lon-
gitudinal model is improved by 5.82% and 13.50% in terms of DIC and concordance, respectively.
The fit of the survival data given longitudinal biomarker is improved by 4.38%, according to DIC.
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Table 3: Posterior estimates of the longitudinal parameters for CDR (higher means worse) under
SSTM

Para. Post. mean Post. SD 95% HPD interval

θCN,0 1.0356 0.0246 ( 0.9842, 1.0829)

θCN,1 0.0376 0.0042 ( 0.0289, 0.0458)

θMCI,0 1.9632 0.0229 ( 1.9175, 2.0066)

θMCI,1 0.0409 0.0053 ( 0.0307, 0.0511)

θCN,0 − θMCI,0 -0.9276 0.0269 (-0.9854, -0.8769)

θCN,1 − θMCI,1 -0.0033 0.0068 (-0.0163, 0.0107)

γage 0.0053 0.0036 (-0.0021, 0.0119)

γsex -0.0025 0.0075 (-0.0171, 0.0124)

γrace 0.0189 0.0141 (-0.0074, 0.0471)

γmarital 0.0210 0.0083 ( 0.0052, 0.0374)

γeducation -0.0029 0.0035 (-0.0100, 0.0035)

γAPOE4 0.0196 0.0058 ( 0.0084, 0.0311)

γRAVLT 0.0152 0.0038 ( 0.0083, 0.0230)

b11 0.0194 0.0064 ( 0.0072, 0.0349)

b21 0.0005 0.0020 (-0.0036, 0.0041)

b22 0.0045 0.0011 ( 0.0019, 0.0064)

b33 0.0263 0.0035 ( 0.0200, 0.0334)

b43 0.0035 0.0013 ( 0.0007, 0.0059)

b44 0.0043 0.0018 ( 0.0001, 0.0071)

Ω11 − Ω33 -0.0003 0.0003 (-0.0009, 0.0004)

Ω21 − Ω43 -0.0001 0.0000 (-0.0002, 0.0000)

Ω22 − Ω44 0.0000 0.0000 ( 0.0000, 0.0000)

σ2 0.0800 0.0013 ( 0.0776, 0.0827)



Joint Modeling of Varying-disease-state Longitudinal Ordinal Data. . . 65

Table 4: Posterior estimates of the survival parameters for the association between CDR and time to
AD

Posterior mean Posterior SD 95% HPD interval

αCN 2.0171 0.1444 ( 1.7313, 2.2895)

αMCI -0.0649 0.0731 (-0.1965, 0.0796)

αCN − αMCI 2.0820 0.0856 (1.9226, 2.2590)

βage 0.2990 0.0533 (0.1983, 0.4067)

βsex -0.0207 0.1136 (-0.2465, 0.1969)

βrace -0.4635 0.1416 (-0.7219, -0.1777)

βmarital -0.0907 0.1198 (-0.3178, 0.1561)

βeducation -0.0137 0.0505 (-0.1198, 0.0796)

βAPOE4 0.4089 0.0754 ( 0.2694, 0.5634)

βRAVLT 0.4313 0.0571 ( 0.3277, 0.5523)

Table 5: ∆DICSurv

Response DICSurv,0 DICSurv|Long ∆DICSurv %∆DICSurv

CDR 602.7863 558.3423 44.4440 7.37%

Table 6: ∆DICLong, ∆DICSurv, and ∆CLong of CDR

Response CDR

DICLMM 11857.3477

DICSSTM 11167.3224

∆DICLong 690.0253

%∆DICLong 5.82%

Response CDR

DICSurv|LMM 583.9144

DICSurv|SSTM 558.3423

∆DICSurv 25.5721

%∆DICSurv 4.38%

Response CDR

CLMM 0.8022

CSSTM 0.9105

∆CLong 0.1083

%∆CLong 13.50%
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6 Discussion

In this study, we introduce the joint model for longitudinal ordinal data with state-specific trajectory
and time-to-event data, demonstrating its applicability to Alzheimer’s Disease. This model captures
the fluctuation of cognitive condition before and after state transition, enhancing the longitudinal
fit which is quantified by the proposed C-index. Additionally, the joint model incorporates the
contribution of longitudinal data into the survival sub-model. To quantify the improved fit of the
survival sub-model from the inclusion of longitudinal data, we calculated ∆DICSurv. These results
indicate a substantial enhancement in terms of survival fit. The computation for this paper is carried
out using FORTRAN compiler and the IMSL FORTRAN library, with double precision accuracy.
The FORTRAN code can be provided by the authors upon request.

Following are some potential future research developments based on this study: (i) we could
consider relaxing the assumption of independence between the random effects among states; (ii) the
transition time could be modeled using hidden Markov model; (iii) develop the decomposition of
WAIC by integrating out the random effects from the joint posterior instead of treating the random
effects as parameters; and (iv) jointly model the longitudinal biomarker and multi-state transition,
by employing a multi-state Markov transition model to study the transitions across all three states,
providing a comprehensive view of the disease progression and its correlation with various risk
factors.
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A Appendix

A.1 Proposed state-specific trajectory Model when the biomarker and diag-
nosis are examined in separate visits

Suppose we have mi longitudinal measurements and ri diagnosis results observed for the i-th subject
for i = 1, . . . , n. Let aij denote the time in years of the j-th biomarker visit from the baseline for
j = 0, 1, . . . ,mi and i = 1, . . . , n. Let a∗iℓ denote the time in years of the ℓ-th diagnosis visit from
the baseline for ℓ = 0, 1, . . . , ri and i = 1, . . . , n. Denote yi(aij) as the longitudinal measurement
for subject i at time aij . The diagnosed states of subject i at time aij and a∗iℓ are represented by
κi(aij) and κi(a

∗
iℓ), respectively. Specifically, κi(aij) equals 0 if subject i is diagnosed as Cognitive

Normal (CN) at time aij and 1 if diagnosed as Mild Cognitive Impairment (MCI). Assume ai,−1 =

0. The longitudinal model is defined as

yi(aij) =
∑

ℓ:ai,j−1<a∗
iℓ≤aij

{
(θκi(a∗

iℓ)0
+ θκi(a∗

iℓ)0i
)

× 1{(ℓ = min{ℓ : ai,j−1 < a∗iℓ ≤ aij}) ∪ (κi(a
∗
iℓ) ̸= κi(ai,ℓ−1))}

+ (θκi(a∗
iℓ)1

+ θκi(a∗
iℓ)1i

)t∗κi(a∗
iℓ)
(a∗iℓ)

}
+ (θκi(aij)0 + θκi(aij)0i)

× 1{({ℓ : ai,j−1 < a∗iℓ ≤ aij} = ∅) ∪ (κi(aij) ̸= κi(max{a∗iℓ : a∗iℓ ≤ aij}))}
+ (θκi(max{a∗

iℓ:a
∗
iℓ≤aij})1 + θκi(max{a∗

iℓ:a
∗
iℓ≤aij})1i)t

∗
κi(max{a∗

iℓ:a
∗
iℓ≤aij})(aij) + x′iγ + ϵij ,

(A.1)

where θκ0 and θκ1 are the fixed intercept and fixed slope, respectively, for the subject who is di-
agnosed as state κ, θκ0i and θκ1i are the state-specific and subject-specific random intercept and
random slope, respectively, γ is a p-dimensional vector of coefficients corresponding to the p-
dimensional covariates xi, t∗(a∗iℓ) and t∗(aij) are the cumulative time that subject i stays in the
current state until time a∗iℓ and aij , respectively, and they are defined as

t∗(a∗iℓ) =

0, for ℓ = 0,

a∗iℓ − max{aiℓ∗1{κi(aiℓ∗) = 1− κi(aij)}, ℓ∗ = 0, . . . , ℓ− 1}, for ℓ = 1, . . . , ri, and
(A.2)

t∗(aij) =

0, for j = 0,

aij − max{a∗iℓ1{κi(a
∗
iℓ) = 1− κi(aij)} : a∗iℓ ≤ aij}, for j = 1, 2, . . . ,mi.

(A.3)

The error term ϵij is assumed to follow N(0, σ2). The random effects and error term are assumed
to be independent.
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A.2 Riemann integral to evaluate the integration in the survival sub-model

In order to evaluate the integral Hi =
∫ ti
0

h0(u)exp
{
αXi(u) + z′

iβ
}
du in (3.13), we use the Rie-

mann integral approach. Let a∗iℓ = α(θi,2κ∗
iℓ+1+x′

iγ), Biℓ = αθi,2κ∗
iℓ+2, and Ciℓ = a∗iℓ−Biℓθ

∗
iℓ+

z′
iβ.

Let NSi be the number of times the ith subject switches the state. For example, if a subject stay
in CN the whole time, then NSi = 0. If a subject starts with CN, switches to MCI and later switches
back to CN, then NSi = 0. Let θih denote a vector of time points consisting of time at baseline, 0,
the time point when the i-th subject switches state and the event or censored time. Iiℓ represents the
ℓ-th time interval, ℓ = 1, . . . ,NSi + 1, segmented by the state switch. And κ∗

iℓ equals 0 if the i-th
subject is in CN during the time interval Iiℓ; 1 if in MCI. Let g

l
= argmaxg{sg|sg ∈ Iiℓ} denote the

last time point of s in the interval Iiℓ with g
0
= 0. If there does not exist any sg within an interval,

then g
l
= g

l−1
.

For example, if a patient is in CN in year [0,2), MCI in [2,4), CN in [4,7) and MCI in [7,8], where
8 is the censored time. Then NSi = 3, θi = (0, 2, 4, 7, 8), and Ii1 = [0, 2), κi1 = 0, Ii2 = [2, 4),
κi2 = 1, Ii3 = [4, 7), κi3 = 0, Ii4 = [7, 8], κi4 = 1.

Let N1, N2, N3 denote the numbers of segments in the corresponding three parts of the Riemann
integral. We have∫ ti

0

h0(u)exp
{
αXi(u) + z′

iβ
}
du (A.4)

=

NSi+1∑
l=1

{
1{g

l−1
̸= g

l
}
{∫ sg

l−1
+1

θ∗
iℓ

λg
l−1

+1exp
{
Biℓu+ Ciℓ

}
du+ 1{g

l−1
+ 1 ̸= g

l
}

×
[ g

l∑
g=g

l−1
+1

∫ sg

sg−1

λgexp
{
Biℓu+ Ciℓ

}
du

]}
+

∫ θi,l+1

max{sg
l
,θ∗

iℓ}
λg

l
+1exp

{
Biℓu+ Ciℓ

}
du

}

=

NSi+1∑
l=1

{
1{g

l−1
̸= g

l
}

{
N1∑
k=1

λg
l−1

+1

(sg
l−1

+1 − θ∗iℓ

N1

)
exp

{
(2k − 1)Biℓ(sg

l−1
+1 − θ∗iℓ)

2N1
+ Ciℓ

}

+ 1{g
l−1

+ 1 ̸= g
l
}
[ g

l∑
g=g

l−1
+1

N2∑
k=1

λg

(sg − sg−1

N2

)
exp

{
(2k − 1)Biℓ(sg − sg−1)

2N2
+ Ciℓ

}]}

+

N3∑
k=1

λg
l
+1

(θi,l+1 − max{sg
l
, θ∗iℓ}

N3

)
exp

{
(2k − 1)Biℓ(θi,l+1 − max{sg

l
, θ∗iℓ})

2N3
+ Ciℓ

}}
.

Algorithm to compute the integral in (A.4):

Step 1. Divide the trajectory into NSi + 1 intervals separated by state transitions.

Step 2. In each interval, determine NGiℓ, the number of time points sg within the interval Iiℓ.

Step 3. If NGiℓ = 0, then go to Step 4; else if NGiℓ = 1, then go to Step 5; otherwise, go to Step 6.
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Step 4. The integral over Iiℓ can be evaluated by

λg
l
+1

(θi,l+1 − θ∗iℓ
N3

) N3∑
k=1

exp
{
(2k − 1)Biℓ(θi,l+1 − θ∗iℓ)

2N3
+ Ciℓ

}
.

Step 5. The integral over Iiℓ can be evaluated by

λg
l

(sg
l
− θ∗iℓ
N1

) N1∑
k=1

exp
{
(2k − 1)Biℓ(sg

l
− θ∗iℓ)

2N1
+ Ciℓ

}
+

λg
l
+1

(θi,l+1 − sg
l

N3

) N3∑
k=1

exp
{
(2k − 1)Biℓ(θi,l+1 − sg

l
)

2N3
+ Ciℓ

}
.

Step 6. The integral over Iiℓ can be evaluated by

λg
l−1

+1

(sg
l−1

+1 − θ∗iℓ

N1

) N1∑
k=1

exp
{
(2k − 1)Biℓ(sg

l−1
+1 − θ∗iℓ)

2N1
+ Ciℓ

}
+

g
l∑

g=g
l−1

+1

λg

(sg − sg−1

N2

) N2∑
k=1

exp
{
(2k − 1)Biℓ(sg − sg−1)

2N2
+ Ciℓ

}
+

λg
l
+1

(θi,l+1 − sg
l

N3

) N3∑
k=1

exp
{
(2k − 1)Biℓ(θi,l+1 − sg

l
)

2N3
+ Ciℓ

}
.

Step 7. Evaluate the integral in (A.4) by summing up the integration results on all intervals.
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