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SUMMARY

In a longitudinal study, data on different types of variables are often collected repeatedly
over time. Some variables may be continuous, and some variables may be binary or times
to an event of interest. Even for a single variable, data may be collected at different phases
of the study with different characteristics. These different types of variables are typically
associated or correlated, since they are measurements on the same individuals in the study.
Analysis of data on each of these variables separately, ignoring other variables, may be
inefficient and may also lead to biased results. Standard multivariate models with several
correlated responses may not be easy to specify for different types of variables or when
the models are nonlinear. Jointly modelling these variables simultaneously not only may
be more efficient but may also reduce biases in parameter estimation. Statistical inference
can then be based on the joint likelihood for all observed data. In this article, we briefly
review several different types of joint models for longitudinal data. We focus on mixed
effects models and likelihood methods for inference. We illustrate these joint models with
datasets from HIV/AIDS studies.
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1 Introduction

In a longitudinal study, data on more than one variables are often collected repeatedly over time.
These variables may be of different types, such as some being continuous and some being binary.
Because data on these variables are collected on the same individuals in the study, they are often
correlated or associated. In other words, not only the repeated measurements of a variable may be
correlated, data on different variables at a given time point may also be correlated. In data anal-
yses, the correlations or associations among these variables should be incorporated in a statistical
model in order to make more efficient statistical inference and avoid potential biases. Analyses for
longitudinal data on each variable separately may be inefficient and biased. Standard multivariate
models for several correlated responses, such as multivariate linear mixed effects models, may not
be appropriate when the variables are of different types or the models are nonlinear. Thus, jointly
modelling longitudinal data on several variables simultaneously are desirable. In this article, we
provide a review of joint models for longitudinal data.

As an example, we consider an HIV/AIDS longitudinal study. Figure 1 shows the longitudinal
data collected on two variables (CD4 cell count and viral load). Here viral loads may drop below
a detection limit (left censored), while CD4 is known to be measured with errors. As we can see,
data on these two variables appear to be negatively correlated. While both variables may be viewed
as continuous variables, we are sometimes interested in investigating whether viral load being left
censored (a binary variable) may be associated with (true) CD4 values, or we may be interested
in investigating whether CD4 below 200 (a binary variable, where 200 is a critical threshold value
for CD4 data) may be associated with (true) viral load values. Moreover, sometimes CD4 may be
viewed as count data. Thus, two different types of longitudinal variables may be associated. To
incorporate this association, joint models may be desirable. We will discuss more details in later
sections.

Mixed effects models are widely used in the analysis of longitudinal data, since they allow for
both individual-specific inference and population-average inference. Moreover, joint models may be
natually specified for mixed effects models. Thus, we focus on mixed effects models in this article.
A mixed effects model for longitudinal data can be obtained from the corresponding regression
models for cross-sectional data by introducing random effects in the model. These random effects
incorporate the association among the repeated measurements since each individual shares the same
random effects which may be interpreted as latent characteristics of the individual. Moreover, these
random effects reflect the variations of the longitudinal data across individuals.

There are different types of mixed effects models, depending on the types of the response vari-
able as well as its relationship with covariates. In this article, we focus on generalized linear mixed
models (GLMMs) and nonlinear mixed effects (NLME) models, since GLMMs are useful for non-
normal responses, such as binary or count responses, and NLME models are nonlinear models.
In both cases, multivariate models, which also incorporate the association among the response
variables, are difficult to specify, making joint modelling an attractive approach. Moreover, both
GLMMs and NLME models include linear mixed effects (LME) models as a special case. Semi-
parametric or nonparametric mixed effects models may also be approximated by LME models (Wu,
2009). Therefore, GLMM and NLME models cover a wide variety of mixed effects models for
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Figure 1: Longitudinal data on CD4 and viral loads (in log10 scale) for four randomly selected sub-
jects. Viral load trajectories are represented by the solid lines, while CD4 trajectories are represented
by dashed lines. Observed values are denoted by solid dots, while left-censored viral load values are
imputed by the detection limit and are denoted by triangular dots.

longitudinal data.
We first consider a few simple examples where joint models may be useful. For simplicity,

here we focus on LME models, though later we consider more general GLMM and NLME models.
Let yij and xij be two continuous variables for individual i measured at time tij , i = 1, 2, . . . , n,
j = 1, 2, . . . , ni. Joint models are desirable in the following situations:

• Example 1: Covariate measurement error problem. Suppose that y is a response and x is
a covariate with measurement errors. To address measurement errors, we may consider the
following joint model

yij = β0 + b0i + β1x
∗
ij + ϵij , (1.1)

xij = α0 + a0i + α1tij + eij = x∗
ij + eij , i = 1, . . . , n, j = 1, . . . , ni,

where β0, β1, α0, and α1 are fixed effects, b0i and a0i are the random effects, x∗
ij is the true but

unobserved covariate value of xij , ϵij is random error, and eij denotes measurement errors.
The above two models are joint or associated since they share the same variable x∗. Similar
joint models may be obtained if the LME response model is replaced by a GLMM or NLME
model.
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• Example 2: Modelling two associated longitudinal processes. Suppose that we are interested
in the association between two longitudinal variables x and y in a longitudinal study, such as
CD4 and viral load. We may then consider the following models

yij = β0 + b0i + (β1 + b1i)tij + ϵij ,

xij = α0 + a0i + (α1 + a1i)tij + eij , i = 1, 2, . . . , n, j = 1, 2, . . . , ni.

To incorporate the association between x and y, we may assume that the random effect b1i
and a1i in the two models are correlated, since these random effects may represent latent
characteristics of the same individuals. Then, joint models are desirable to make simultaneous
inference. The above two LME models may also be replaced by GLMM or NLME models.

• Example 3: Joint models for longitudinal and survival data. In a longitudinal study, we may
also be interested in certain events such as dropouts. When modeling the longitudinal data
with informative dropouts, we may consider the following joint model

yij = β0 + b0i + (β1 + b1i)xij + ϵij ,

hi(t) = h0(t)exp(β2b0i + β3b1i), i = 1, 2, . . . , n, j = 1, 2, . . . , ni,

where hi(t) represents the hazard function of the event for individual i at time t, h0(t) is an
unspecified baseline hazard function, and βj’s are fixed effects. Here the random effects in the
longitudinal model, (b0i, b1i), are viewed “covariates” in the survival model. Alternatively, we
may consider a survival model with measurement errors in a time-dependent covariate yij .

In Section 2, we will discuss more general joint models.
For statistical inference of joint models, a commonly used so-called two-step method proceeds

as follows:

• Step 1: Estimate the shared variables or parameters in one model based on the observed data,
ignoring the other model.

• Step 2: Estimate the parameters in the other model separately, substituting the shared variables
or parameters with the estimated values from Step 1.

While the two-step method is straightforward to implement, it may under-estimate the standard er-
rors of parameter estimates since it ignores uncertainty in estimation in Step 1, and it may even
lead to biased estimation in some cases. Moreover, the two-step estimates may not be fully effi-
cient. Therefore, it is desirable to conduct statistical inference for joint models based on the joint
likelihood of all the observed data. The maximum likelihood estimates (MLEs) of all model pa-
rameters can be simultaneously obtained by maximizing the joint likelihood. A potential challenge
of the joint likelihood approach lies in computational complexity, as joint likelihoods often involve
high-dimensional and intractable integrals.

There is a large literature on the analysis of longitudinal data and joint models, especially joint
models for longitudinal and survival data. Longitudinal data analysis based on mixed effects models
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are reviewed in Davidian and Giltinan (1995), Fitzmaurice et al. (2012), McCulloch and Searle
(2004), Vonesh (2014), Pinheiro and Bates (2006), Wu (2009), and Lavielle (2014), among others.
Joint modeling for longitudinal data and survival data is reviewed in Rizopoulos (2012), Elashoff
et al. (2016), among others. Since there has been sufficient reviews of joint models for longitudinal
and survival data, in this article we will focus on joint models for longitudinal data. References
will be given in the corresponding sections. The article is organized as follows. In Section 2, we
will describe several common situations where joint models are desirable. In Section 3, we present
several examples to illustrate the joint models. We conclude the article with some discussion in
Section 4.

2 Joint Models for Longitudinal Data

In this section, we briefly review several situations where joint models are desirable. As noted in
Section 1, we focus on GLMM and NLME models since they include LME models as special cases
and the usual multivariate models may not be easy to specify.

2.1 GLMM with covariate measurement errors

Let yi = (yi1, yi2, . . . , yini)
T be the ni repeated measurements of the response y for individual i,

i = 1, 2, . . . , n. We consider a time-dependent covariate w, which is measured with errors. Let
wi = (wi1, wi2, . . . , wini)

T denote the repeated measurements of the error-prone covariate w for
individual i. In addition to wi, we may also consider other covariates, denoted as xi and zi, which
can be either baseline or time-dependent variables without measurement errors. A general GLMM
for the response y can be written as

h(E(yij)) = βww
∗
ij + xT

i β + zTi bi, (2.1)

bi ∼ N(0, B), i = 1, 2, . . . , n, j = 1, 2, . . . , ni,

where h(·) is a known link function, such as the logit link for binary responses, w∗
ij denotes the true

but unobserved value of covariate wij , βw and β are fixed parameters, bi represents random effects,
and B is a covariance matrix. We assume that, conditioning on the random effects bi, the repeated
measurements yi1, yi2, . . . , yini

are independent and each follows a distribution in the exponential
family, which includes binomial distributions, Poisson distribution, and normal distributions. Note
that, when the link function h(y) = y, the above GLMM reduces to an LME model.

To address measurement errors, we consider the following NLME model for covariate wij ,
which may also be viewed as a classic measurement error model (Carroll et al., 2006; Yi, 2017),

wij = g(tij ,α,ai) + eij ≡ w∗
ij + eij , (2.2)

ai ∼ N(0, A), ei ∼ N(0, σ2Ini
), i = 1, 2, . . . , n, j = 1, 2, . . . , ni,

where g(·) is a linear or nonlinear function, α is a vector of fixed parameters, ai is a vector of ran-
dom effects, w∗

ij = g(tij ,α,ai) is the unobserved true covariate value, and ei = (ei1, . . . , eini
)T
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are the covariate measurement errors. We assume that ai and ei are independent. Note that when the
function g(·) is linear in the random effects ai, the above NLME model reduces to an LME model.
In some applications, an NLME model may be derived based on the underlying data generation
mechanisms, such as HIV viral dynamic models (Wu and Ding, 1999; Wang et al., 2020). Such an
NLME covariate measurement error model is more desirable than the usual empirical LME covari-
ate measurement error model, since the NLME model is a mechanistic model which may provide
better predictions of the unobserved true covariate values than an empirical LME model. In such
situations, the advantages of an NLME model are more obvious when the repeated measurements
are infrequent, since the NLME model should hold even when data are not available.

The above two models (2.1) and (2.2) are linked through the shared (unobserved) variable w∗
ij ,

so they may be viewed as a joint model. We consider a (joint) likelihood method for estimating
all model parameters simultaneously. Let f(·) denote a generic density function, and let θ be the
collection of all parameters in models (2.1) and (2.2). Then, the joint likelihood for all observed
data is given by

Lo(θ) =

n∏
i=1

∫ ∫
f(yi|w∗

i ,bi,θ)f(wi|ai,θ)f(ai|θ)f(bi|θ) dai dbi,

which is often intractable since it involves a high-dimensional integral and generally does not have
a closed-form expression. Thus, a major challenge in likelihood inference is the evaluation of the
intractable likelihood Lo(θ). This computational issue is shared by other joint models. So we will
discuss the common computational issues in a later section.

2.2 Joint models for several longitudinal processes

In a longitudinal study, suppose that we are interested in two or more possibly associated longitudi-
nal processes and the nature of the association. For example, the longitudinal processes may arise
from (i) repeated measurements on two or more correlated variables such as CD4 and viral load, or
(ii) repeated measurements on a single variable at different phases of the study, such as viral load
measurements during an antiviral treatment and after treatment interruption. For simplicity, here we
focus on two longitudinal variables. Suppose that one variable may be modelled by a GLMM (2.1),
and another variable may be modelled by an NLME model (2.2). To incorporate the association be-
tween these two processes, we may consider the following approaches: (a) the two models share the
same random effects since the longitudinal measurements on the two variables are made on the same
individuals in the study; (b) the random effects from the two models are correlated, which is less
restrictive than (a); and (c) at each time point tij , the two models share a latent variable γj , which
induces the association between the two processes. As an illustration, in the following we consider
case (ii) and two continuous variables. Extensions to other cases are conceptually straightforward.
In case (ii), we may be interested in investigating, say, whether the individual viral decay rates during
treatment are associated with the individual viral rebound rates after treatment interruption.

Let yij be a continuous longitudinal response value for individual i at time tij in an early time
period, i = 1, 2, . . . , n, j = 1, 2, . . . , ni. Let wil be a continuous longitudinal response value for
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the same individual i at a later time uil, i = 1, 2, . . . , n, l = 1, 2, . . . ,mi, and uil > ti,ni
for all l’s.

The first NLME model for the earlier time period is given by

yij = g(tij ,β,bi) + eij , (2.3)

bi ∼ N(0, B), ei ∼ N(0, σ2
1Ini), i = 1, 2, . . . , n, j = 1, 2, . . . , ni,

where g(·) is a linear or nonlinear function, β is a vector of fixed parameters, bi is a vector of random
effects, and ei = (ei1, . . . , eini)

T are the random errors of within-individual measurements. The
second NLME model for the later time period is given by

wil = h(uil,α,ai) + ϵil, (2.4)

ai ∼ N(0, A), ϵi ∼ N(0, σ2
2Imi

), i = 1, 2, . . . , n, l = 1, 2, . . . ,mi,

where h(·) is a linear or nonlinear function and may be different from g(·), α is a vector of fixed
parameters, ai is a vector of random effects, and ϵi = (ϵi1, . . . , ϵimi

)T are the random errors of
within-individual measurements. Since the two NLME models are assumed for the same individu-
als, the individual-specific characteristics of the two longitudinal processes may be associated. For
example, the viral decay rates during a treatment may be associated with the viral rebound rates after
treatment interruption. Thus, we may assume that the two NLME models (2.3) and (2.4) are linked
through correlated random effects, i.e., we assume thatai

bi

 ∼ N

0,

A CT

C B

 , (2.5)

where the covariances of interest are contained in the matrix C, i.e., C ̸= 0 implies that the random
effects ai and bi may be correlated. Alternatively, we may use the random effects bi in the first
NLME model as “covariates” in the second NLME model. In both cases, the two NLME models
may be viewed as a joint model.

For the above joint model, we can estimate all parameters simultaneously based on the joint
likelihood for all observed data. Let θ be the collection of all model parameters. The observed-data
joint likelihood for the joint model can be written as

Lo(θ) =

n∏
i=1

∫
f(yi|bi,θ)f(wi|ai,θ)f(ai,bi|θ)d(ai,bi), (2.6)

which is again intractable, so it offers similar computational issues as noted earlier. Note that the
above joint model can be extended to other cases, such as two joint GLMMs or a joint GLMM and
NLME model. Again, a GLMM or NLME model includes LME models as special cases.

2.3 Joint models with shared latent process

In a longitudinal study, it may be reasonable to assume an (unobserved) latent process which governs
several observed longitudinal processes, and thus induces the association among these processes.
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For example, in a vaccine study, each individual may receive multiple vaccinations over time, say,
every six months. After each vaccination, longitudinal data on several immune response biomarkers
are observed, which may be governed by individuals’ (unobserved) true immune statuses. An indi-
vidual’s true immune status, called “hidden state” here, may change from “low” to “high” and then
from “high” to “low” before next vaccination. This process may be assumed to follow a first-order
Markov process since the current state only depends on the immediate previous state. Thus we may
consider a hidden Markov mixed effects model for the “hidden states”. That is, the assumed Markov
process is a latent process which governs the observed immune status data. Hidden Markov mixed
effects models are reviewed in Altman (2007) and Bartolucci and Farcomeni (2019), among others.

Specifically, let zij be the hidden state for subject i at time tij , i = 1, 2, . . . , n; j = 1, 2, . . . , ni,
and let zi = (zi1, zi2, . . . , zini

)T . We assume that there are K + 1 hidden states, i.e., zij =

0, 1, . . . ,K. For simplicity, here we focus on K = 1, i.e., two immune statuses “high” or “low”.
We also focus on two observed longitudinal processes. Let y(p) be the immune response biomarker
p, p = 1, 2. We may consider an NLME model for y(p). Given the hidden state zij = k at time tij ,
we assume

y
(p)
ij = gp(tij ,β

(p)
k ,b

(p)
i ) + e

(p)
ij , i = 1, 2, . . . , n; j = 1, 2, . . . , ni, p = 1, 2, (2.7)

where the parameters β(p)
k depend on the hidden state k, and other notation is similar as in previous

sections. For individual i, we assume that the hidden states zi1, . . . , zini
follow a first-order Markov

chain:

P (zi) = P (zi0)

ni∏
j=1

P (zij |zi,j−1),

where zi0 denotes the initial state. Let

pij(kl) = P (zij = l|zi,j−1 = k)

be the transition probability from state k at time ti,j−1 to state l at time tij , and let pi0 = P (zi0) be
the initial distribution. Note that the transition probability pij(kl) may vary across individuals and
may also depend on covariates such as age and immunocompromised status. Thus, we assume the
following generalized linear mixed model (GLMM):

logit(pij(kl)) = αkl0 +wT
1iαkl +wT

2ibi, i = 1, 2, . . . , n; j = 1, 2, . . . , ni, k, l = 0, 1, . . . ,K,

(2.8)
where w1i,w2i are vectors of covariates, and αkl0,αkl are vectors of fixed effect parameters. In
model (2.8), the transition probability pij(kl) is assumed to depend on the random effects bi =

(b
(1)
i ,b

(2)
i ) from the two NLME models. This is because the random effects bi represent individual-

specific characteristics of the longitudinal biomarker process which may influence the transition
probabilities.

The (joint) likelihood for all observed data is given by

Lo(θ) =

n∏
i=1

∫ {∑
zi

f(y
(1)
i |zi,b(1)

i ,θ)f(y
(2)
i |zi,b(2)

i ,θ)f(zi|θ)f(bi|θ)
}
dbi,

where θ denotes collection of all parameters. Again, it involves an intractable integration.
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2.4 Joint models for mean and variance of longitudinal data

For many longitudinal data in practice, a major feature is that the within individual repeated measure-
ments exhibit significant variations and these variations appear to change over time. It is important
to understand the nature of the within-individual systematic and random variations, since they al-
low us to conduct more efficient inferences, such as obtaining narrower confidence intervals for key
parameters of interest and detecting significant treatment effects which may otherwise be masked
by the large variations or noises. To understand the nature of the within-individual systematic and
random variations, we may model the within-individual variations, together with the model for the
mean. In other words, we may jointly model the mean and the variance of the longitudinal data.
Such a joint model also allows us to conduct robust inferences against outliers, as described below.
Related literature in this direction may be found at Lin et al. (1997), Pourahmadi (1999), Hedeker
et al. (2008), German et al. (2022), and Ye and Wu (2024).

We again consider an NLME model

yij = g(tij ,β,bi) + eij , or E(yij |bi) = g(tij ,β,bi), (2.9)

bi ∼ N(0, B), eij ∼ N(0, σ2
ij), i = 1, 2, . . . , n, j = 1, 2, . . . , ni,

where the notation is similar to those in previous sections. In NLME model (2.9), we assume a
more flexible error distribution eij ∼ N(0, σ2

ij), where the within-individual longitudinal data vari-
ance σ2

ij is allowed to be individual-specific and time-dependent. To better understand the nature of
the within-individual variation σ2

ij , we can model the variance process σ2
ij and investigate whether

within-individual repeated measurements variation may be partially explained by time-varying co-
variates (say) xij . We can also introduce an additional random effect to the variance model for σ2

ij

to incorporate possible correlations of the variances over time and the between-individual variabil-
ities. That is, we consider the following model for the variance of the within-individual repeated
measurements σ2

ij :

log(σ2
ij) = α1 +αT

2 xij + ηai, i = 1, . . . , n, j = 1, 2, . . . , ni, (2.10)

where vector α = (α1,α2) and η are fixed parameters, and ai is a random effect. We may assume
that exp(ai) follows an inverse gamma distribution or ai ∼ N(0, 1). In the variance model (2.10),
if we assume that

exp(ai) ∼ k/χ2
k,

i.e., the inverse χ2
k distribution, which is a special case of an inverse gamma distribution, then the

random errors eij in the NLME model (2.9) follow a t(k)-distribution with degrees of freedom
k. Since a t(k)-distribution has heavier tails than the standard normal distribution, the joint model
(2.9) and (2.10) may be used for robust inference against outliers in the within-individual repeated
measurements.

Likelihood inference for all parameters, denoted by θ, can be based on the following (joint)
likelihood

Lo(θ) =

n∏
i=1

∫ ∫
f(yi| bi,θ)f(σ

2
i |α, ai)f(bi, ai|θ) d(ai,bi),
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which again involves a high-dimensional intractable integration. With a second model for variance,
the likelihood computation may involve other challenges such as convergence issues. Moreover, for
unbiased estimation of the variance, we may consider restricted MLEs (REML) of the parameters.
The computationally efficient h-likelihood method (Lee et al., 2018) allows one to obtain REML
easily.

2.5 Joint models for longitudinal and survival data

In the analysis of longitudinal data, we are often also interested in certain events, such as dropouts
or infections of disease or deaths. We may then consider a survival model for the time to event of
interest. In this case, joint modelling for the longitudinal data and survival data is necessary. There
is a large literature on joint models for longitudinal and survival data, as reviewed in Rizopoulos
(2012) and Elashoff et al. (2016), among others. In the following, we briefly illustrate such joint
models in the context of survival analysis with measurement errors in a time-dependent covariate.
Similar joint models can also be used in the analysis of longitudinal data with informative dropouts
and other applications.

For individual i, let si be the survival time or event time, subject to right censoring, i =

1, 2, . . . , n. We assume that the censoring is non-informative. Let ci be the censoring time. Due
to censoring, we only observe ti = min{si, ci}. Let δi = I(si ≤ ci) be the censoring indicator such
that δi = 0 if the survival time for individual i is right censored and δi = 1 otherwise. Let wi(t)

be an error prone time-dependent covariate whose unobserved true value is w∗
i (t). We consider the

following survival model

λi(t) = λ0(t) exp(w
∗
i (t)β1 + xT

i β2), i = 1, . . . , n, (2.11)

where λi(t) is the hazard function for individual i, λ0(t) is the baseline hazard, xi contains other
covariates, and β = (β1,β2) are unknown regression parameters. We may consider NLME model
(2.2) as a measurement error model for wi(t), which includes LME models as a special case. The
joint likelihood based on observed longitudinal data and survival data is given by

Lo(θ) =

n∏
i=1

∫ { [
λ0(ti) exp{w∗

i (ti)β1 + xT
i β2}

]δi
× exp

[
−
∫ ti

0

λ0(u) exp{w∗
i (u)β1 + xT

i β2}du
]

× f(wi|ai,α)f(ai|A)

}
dai.

The computation here can be more challenging than the joint models in previous sections since the
baseline hazard is often unspecified.

Since there is a large literature on joint models for longitudinal and survival data, here we omit
the details. Interested readers may find reviews in Rizopoulos (2012), Wu et al. (2012), and Elashoff
et al. (2016).
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2.6 Computation issues

The observed-data likelihoods for the joint models in previous sections all involve high-dimensional
and intractable integration, especially when the models are nonlinear in the (unobservable) random
effects. In the joint model literature, much attention has been on the computational side for likeli-
hood inference. We briefly review some of these methods as follows:

• Numerical integration methods. Numerical integration methods such as the Gaussian Hermite
quadrature method may work well when the dimension of the integration is not high (say,
no more than two dimensions). When the dimension of the integration is high, numerical
integration methods can be tedious and computationally very intensive.

• EM algorithms. The EM algorithm is often used for likelihood inference of GLMM and
NLME models, treating the random effects as “missing data”. Since GLMM and NLME
models are nonlinear in the random effects, the E-step of the EM algorithm again involves
an intractable integration. Monte Carlo methods or other approximate methods have been
used in the E-step of the EM algorithm, leading to different types of EM algorithms such
as Monte Carlo EM (MCEM) algorithm (Wei and Tanner, 1990; Wu, 2009) and Stochastic
approximation EM (SAEM) algorithm (Delyon et al., 1999; Lavielle, 2014; Comets et al.,
2017). The SAEM is computationally more efficient than MCEM and is implemented in
software “Monolix” – see more details below.

• Approximate methods. Various computationally efficient approximate methods have also been
proposed in the literature, such as the linearization method (Lindstrom and Bates, 1990) and
h-likelihood method (Lee et al., 2018). These methods avoid evaluating the intractable in-
tegration based on either Laplace approximations or Taylor series approximations. These
approximate methods are computationally much more efficient than numerical integration
methods and EM algorithms, but they may be less accurate, since numerical integration meth-
ods and EM algorithms may be made more accurate by increasing (say) quadrature points or
numbers of Monte Carl samples (in the expense of computational time) while this may not be
possible for the approximate methods.

As an example, we briefly describe the SAEM for the GLMM (2.1) with covariate measurement
error model (2.2) as described earlier. By treating the random effects as “missing data”, we have
“complete data” {(yi,wi,ai,bi), i = 1, 2, . . . , n}. The log-likelihood of this “complete data” can
be written as

lc(θ) ≡
n∑

i=1

lc(θ;yi,wi,bi,ai)

=

n∑
i=1

{
log f(yi|wi,bi,θ) + log f(wi|ai,θ) + log f(bi|θ) + log f(ai|θ)

}
.

The E-step is to compute the conditional expectation of the complete data log-likelihood given the
observed data and the current parameter estimates. Beginning with some starting values, assum-
ing that the current parameter estimate is θ(k) at the k-th EM iteration, where k = 1, 2, . . ., the
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conditional expectation at the (k + 1)-th EM iteration can be written as:

Qk(θ|θ(k)) =

n∑
i=1

E
[
lc(θ;yi,wi,bi,ai)

∣∣ yi,wi,θ
(k)

]
=

n∑
i=1

∫ ∫ {
log f(yi|wi,bi,θ

(k)) + log f(wi|ai,θ(k)) + log f(bi|θ(k))+

log f(ai|θ(k))
}
× f(bi,ai|wi,yi,θ

(k)) dbi dai,

which usually does not have a closed-form expression.
There are different approaches to evaluate the above E-step in the literature. The MCEM is

to use Monte Carlo simulations to approximate the E-step Q(θ|θ(k)), which requires large Monte
Carlo samples from the conditional distribution f(bi,ai|wi,yi,θ

(k)) for the approximation to work
well. Thus, MCEM can be computationally very intensive. The SAEM, on the other hand, evaluates
Q(θ|θ(k)) by a stochastic approximation procedure, which only samples a small number mk (often
mk = 1) from the conditional distribution f(bi,ai|wi,yi,θ

(k)) in the E-step. Then Q(θ|θ(k)) is
updated based on the following approximation:

Qk(θ) = Q(θ|θ(k)) ≈ Qk−1(θ) + γk

[ 1

mk

mk∑
j=1

{
log f(yi|wi,b

(j)
i ,θ(k)) + log f(wi|a(j)i ,θ(k))

+ log f(b
(j)
i |θ(k)) + log f(a

(j)
i |θ(k))

}
−Qk−1(θ)

]
,

where {γk}k≥1 is a sequence of positive step size and (a
(j)
i ,b

(j)
i ) is the j-th sample from the con-

ditional distribution f(bi,ai|wi,yi,θ
(k)). The M-step is to maximize Q(θ|θ(k)) to obtain up-

dated parameter estimates θ(k+1), which can be based on a standard optimization method. De-
lyon et al. (1999) shows that, under standard regularity conditions, the SAEM algorithm con-
verges to a (local) maximum of the likelihood. The SAEM is implemented in software Monolix
(https://monolix.lixoft.com/), with the corresponding R package saemix. See a sam-
ple implementation at https://github.com/Sihaoyu1220/JointModel.

Based on our experience, when the dimensions of the random effects in the joint models are not
low (say, more than two), approximate methods and SAEM may be more desirable.

3 Examples

In the following, we present several examples to illustrate joint models based on real datasets from
HIV/AIDS studies.

3.1 Example I: A joint model for two longitudinal processes

In this example, we consider a longitudinal dataset collected at two different phases of the study:
we model viral decay during treatment and viral rebound after treatment interruption and study their

https://monolix.lixoft.com/
https://github.com/Sihaoyu1220/JointModel
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association. This allows us to possibly predict viral rebound characteristics after treatment based
on viral decay during treatment, so that early intervention may be considered. This dataset consists
of 76 patients followed over time, with the longest follow-up period being 3233 days, the shortest
being 503 days, and the mean being 1582 days. The number of repeated measurements through the
entire study period on each patient varies, with a minimum of 10 measurements, a maximum of 48
measurements, and a mean of 25 measurements.

Let yij be the log10-transformed viral load for patient i at time tij during treatment, i =

1, 2, . . . , n, j = 1, 2, . . . , ni. We consider the following NLME viral decay model during treat-
ment (Wu and Ding, 1999):

yij = log10
(
eP1i−λ1itij + eP2i−λ2itij

)
+ eij , (3.1)

P1i = P1 + b1i, P2i = P2 + b2i, λ1i = λ1 + b3i, λ2i = λ2 + b4i,

bi ∼ N(0, B), eij ∼ N(0, σ2
1), i = 1, 2, . . . , n, j = 1, 2, . . . , ni,

where bi = (b1i, b2i, b3i, b4i)
T are random effects, λ1 is the first-phase viral decay rate, λ2 is the

second-phase viral decay rate, and the quantity log10(e
P1 + eP2) is typical viral load value at the

start of treatment.

For viral rebound after treatment interruption, let wil be the log10-transformed viral load for the
same patient i at a later time uil since treatment interruption, i = 1, 2, . . . , n, l = 1, 2, . . . ,mi. We
consider the NLME viral rebound model by Wang et al. (2020) with some modifications. Since viral
rebound after ART interruption is very complicated, it may be more flexible to allow the individual-
specific rate of viral decline β5i to be time-dependent, say β5il for individual i at time uil, and then
β5il may be modelled nonparametrically. In addition, random effects are needed for this parameter
due to the large between-individual variations. Therefore, we consider the following semiparametric
NLME viral rebound model:

wil =
β1iuil

uil + exp(β2i − β3iuil)
+

β4i

1 + exp(β5iluil)
+ ϵil, (3.2)

β5il = β5z
∗
il + r(uil) + vi(uil), vi(t) ∼ GP (0, γ),

βki = βk + τki, i = 1, 2, . . . , n, l = 1, 2, . . . ,mi, k = 1, . . . , 5,

where z∗il is the true (but unobservable and possibly mis-measured) CD4 count, τi = (τ1i, . . . , τ5i)’s
are random effects, ϵil ∼ N(0, σ2

2) contains within-individual random error, and r(uil) and vi(uil)

are unknown smooth fixed and random functions. The fixed effects β1 represents setpoint after
rebound, β2 controls the timing of viral rise, β3 characterizes the rate of viral rebound, and β4

denotes initial viral load value at the start of rebound. Since CD4 reflects immune status and is
known to be measured with substantial errors, it may be useful to use the true CD4 value z∗il to
partially explain the large variations in β5il.

Since the viral decay trajectories during ART and the viral rebound trajectories after ART inter-
ruption may be associated, we assume that the NLME viral decay model (3.1) and the viral rebound
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model (3.2) are linked through correlated random effects, i.e., we assume thatbi

τi

 ∼ N

0,

B CT

C Σ

 , (3.3)

where C ̸= 0 contains the covariance between the random effects.
Table 1 presents the resulting parameter estimates and standard errors, obtained using the joint

likelihood and SAEM algorithm. Table 2 summarizes the estimated correlations between the random
effects of the two models. We find that b4i is negatively associated with τ3i with a correlation of
−0.645, suggesting that a faster second phase viral decay during treatment may be associated with
a slower viral rebound rate following treatment interruption. In addition, the initial viral decay rates
during treatment appears to be negatively associated with the viral setpoints following treatment
interruption with a correlation of −0.637, suggesting that the faster the viral decay after the start
of treatment, the lower the setpoints following treatment interruption. These results agree with the
findings in Gao et al. (2022), where the random effects in the viral decay model are treated as
“covariates” in the viral rebound model.

Table 1: Parameter estimates for the joint model in Example II.

Parameter Estimate SE z-value p-value

P1 17.479 0.428 40.844 0.000

λ1 4.082 0.288 14.194 0.000

P2 2.967 0.419 7.077 0.000

λ2 0.058 0.026 2.218 0.027

β1 3.379 0.103 32.889 0.000

β2 8.615 1.036 8.319 0.000

β3 3.428 0.405 8.458 0.000

β4 1.272 0.107 11.91 0.000

β5 -0.104 0.002 -64.209 0.000

3.2 Example II: GLMM with covariate measurement error

The dataset consists of 46 patients who were followed over time, both during an anti-HIV treatment
and after treatment interruption. Viral loads and CD4 counts were repeatedly measured on these
patients, with the longest follow-up period being 196 days and the shortest being 51 days. As shown
in Figure 1, viral load declines during treatment and then rebounds after treatment interruption. The
number of viral load measurements on each patient varies, with a minimum of 2 measurements and a
maximum of 9 measurements. On average, each patient has 6.74 repeated viral load measurements.
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Table 2: Estimated correlations between random effects of the joint models (3.1) and (3.2).

Random Effects b3i b4i τ1i τ3i

b3i 1.000 0.416 -0.637 -0.353

b4i 0.416 1.000 -0.038 -0.645

τ1i -0.637 -0.038 1.000 0.257

τ3i -0.353 -0.645 0.257 1.000

Regarding CD4 data, out of the 361 observations, 254 observations (70.36%) exhibit observed CD4
counts above 200 cells/mm3, which is a commonly used threshold. Both viral load and CD4 are
typically measured with errors.

Let y∗ij be the observed CD4 value for individual i at time tij , i = 1, 2, . . . , n, j = 1, 2, . . . , ni.
We define a new binary response yij = 0 if the observed CD4 is less than 200, and yij = 1 otherwise.
The objective is to investigate the relationship between the dichotomized CD4 value y and viral load
w, which is subject to measurement errors, both during and after treatment. For simplicity, here we
ignore left censoring in viral load. We treat y as a response and w as a time-dependent covariate and
consider the following GLMM (Gao and Wu, 2024)

log

(
P (yij = 1)

P (yij = 0)

)
= (β0 + b0i) + βww

∗
ij , i = 1, 2, . . . , n, j = 1, 2, . . . , ni, (3.4)

where w∗
ij represents the (unobserved) true viral load value for individual i at time tij . The key

parameter βw measures the strength of the association between viral load and CD4. To estimate the
true viral load w∗

ij , we consider an NLME model for viral decay during treatment (Wu and Ding,
1999) and an NLME model for viral rebound after treatment interruption (Wang et al., 2020). Both
NLME models are derived based on the underlying data-generation mechanisms and thus allow us to
better address measurement errors than empirical LME models. We then consider a unified NLME
model as follow:

wij =
[
log10

(
eα1i−α2itij + eα3i

)]
I(tij < Ti) +

[
α4it

∗
ij

t∗ij + exp(α5i − α6it∗ij)
+ α7i

]
I(tij ≥ Ti) + eij

≡ w∗
ij + eij , (3.5)

αki = αk + aki, i = 1, 2, . . . , n, j = 1, 2, . . . , ni, k = 1, . . . , 7,

where I(·) is an indicator function, the vector α = (α1, . . . , α7)
T consists of fixed effect param-

eters, and the random effects are represented by ai = (a1i, . . . , a7i)
T ∼ N(0, A), with A being a

covariance matrix. The term eij denotes measurement error, and Ti represents the (known) treat-
ment interruption time for individual i, while t∗ij = tij − Ti indicates the measurement time since
treatment interruption. We assume that the random effects ai and the measurement error eij are
independent, and eij are i.i.d. ∼ N(0, σ2), given the random effects.
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We consider likelihood inference for the above joint model based on a SAEM algorithm, im-
plemented in software “monolix”. Table 3 presents the estimated parameters. The estimated value
of the parameter of interest, βw = −1.773, indicates a negative association between CD4 and viral
load (p-value < 0.001). For example, a subject with viral load of 50 has an estimated probability of
0.996 for the corresponding CD4 count to exceed 200. We see that estimate of the key parameter βw

suggests that lower viral loads are significantly associated with higher probabilities of CD4 counts
exceeding the critical threshold of 200 cells/mm3.

Table 3: Parameter estimates for joint models (3.4) and (3.5).

Parameter Estimate Standard error z-value p-value

α1 11.497 0.190 60.642 0.000

α2 0.272 0.021 12.720 0.000

α3 5.536 0.285 19.455 0.000

α4 1.274 0.244 5.229 0.000

α5 14.161 4.103 3.452 0.001

α6 0.237 0.065 3.628 0.000

α7 2.656 0.168 15.796 0.000

β0 9.125 1.092 8.356 0.000

βw -1.892 0.225 -8.426 0.000

3.3 Example III: Joint models for mean and variance

This dataset includes 1791 individuals, with the median follow-up being 320 days and the range
between 73 and 365 days. The median number of repeated measurements is 6 (ranging from 4 to
15). We consider a joint model for the mean and variance and compare the effectiveness of different
regimens. To model the viral dynamics in the early stage of treatment, we consider the following
one-compartment exponential viral decay NLME model

yij = β1 + (β2 + u2i)e
−(β3+u3i)tij + eij , i = 1, . . . , n, j = 1, . . . , ni, (3.6)

where yij is the log10-transformed viral load measured at time tij for individual i, β = (β1, β2, β3)
T

contains fixed parameters, ui = (u2i, u3i)
T denotes random effects, and eij’s are the within-

individual random errors. We allowed the variation of the within-individual repeated measurements
to be time-dependent and individual-specific, i.e., we assumed

eij ∼ N (0, σ2
ij).

We also assumed ui ∼ N(0, D). To avoid very large/small estimates, which may be unstable, the
time variable tij was re-scaled to be between 0 and 1.
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To understand if the large and time-varying variations σ2
ij of the within-individual viral load

repeated measurements may be partially explained by time-varying CD4 counts, which may lead to
more efficient inference and thus more accurate estimate of the viral decay rates, we modeled the
variance as follows

log(σ2
ij) = α0 + α1z

∗
ij + ai, (3.7)

where z∗ij denotes the “true” but unobservable (square-root-transformed) CD4 cell count at time
tij for individual i, α = (α0, α1)

T are fixed parameters and ai is a random effect. Note that the
CD4 cell count values were square-root-transformed to achieve a roughly symmetric distribution.
We assumed exp(ai) ∼ k/χ2

k to address potential outliers in the viral load data. The degrees of
freedom k was pre-specified to be a small number, i.e., k = 3, to allow for relatively heavy tails of
the t-distribution. To address measurement errors in CD4 cell count values, we modeled the CD4
cell count process based on the following empirical LME model

zij ≡ z∗ij + εij = (γ0 + b0i) + (γ1 + b1i)tij + (γ2 + b2i)t
2
ij + εij , (3.8)

for i = 1, . . . , n, j = 1, . . . , ni, where the true CD4 cell count was assumed to be z∗ij = (γ0+b0i)+

(γ1 + b1i)tij + (γ2 + b2i)t
2
ij , bi = (b0i, b1i, b2i)

T denote the random effects in the CD4 cell count
model, and εij’s are the measurement errors. We assumed that bi ∼ N (0, B) and εij ∼iid N (0, ω2)

are independent.
We consider both the joint model (JM) and the two-step (TS) method using the h-likelihood to

estimate parameters. For comparison purposes, we also consider a commonly used linearization
method for NLME models based on Lindstrom and Bates (1990), denoted by LB, without modeling
the variance σ2

ij . The objective is to evaluate treatment effectiveness. Thus we focus on estimating
the initial decay rate β3. The results based on one of the treatment group are shown in Table 4.
Overall, the estimates based on the JM and TS methods were close to each other. However, the LB
method produced quite different results, especially for the parameter of primary interest β3. More
importantly, the standard errors (SE) of β̂3 differ substantially across the three methods. The LB
method, which did not model the within-individual variances, produced the largest SE of β̂3. The
JM and TS methods, on the other hand, produced smaller SEs (i.e., more efficient) and thus smaller
p-values. These results demonstrated the advantages of modeling the within-individual variations.
We see that, by modeling the variance of the within-individual errors, the JM and TS methods lead
to more efficient estimates (i.e., smaller SE’s) of the parameters than the LB method which does
not model the variance. Moreover, estimates of the parameters in the variance model allowed us
to better understand the systematic component in the within-individual variation, since we see that
CD4 cell count values partially explained this variation and this variation decreased with CD4 cell
count values over time.

3.4 Example V: A Comparison of Joint Model with Separate Models

We show a simple example of efficiency gain from a joint model for longitudinal and survival data,
compared with separate models, based on Zhang and Wu (2019). The dataset is from an HIV/AIDS
study, and the details of the dataset and more complete data analysis can be found in Zhang and Wu
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Table 4: Parameter estimates for regimen NNRTIs

Method β1 β2 β3 α0 α1 γ0 γ1 γ2

LB Est 1.46 1.77 4.71

SE 0.013 0.063 0.263

TS Est 1.54 2.21 9.99 3.82 -1.16 5.89 0.69 -0.37

SE 0.003 0.050 0.147 0.254 0.041 0.035 0.092 0.087

JM Est 1.54 2.22 10.03 4.44 -1.27 5.87 0.78 -0.43

SE 0.003 0.050 0.149 0.250 0.041 0.032 0.056 0.053

Table 5: Efficiency gain from the joint model over separate analysis.

Parameter Separate analysis Joint model

Estimate Standard error Estimate Standard error

α1 5.45 0.23 5.34 0.21

α2 8.64 0.28 8.62 0.25

α3 49.72 4.68 47.14 4.51

(2019). We consider the covariate measurement error problem for a time-dependent covariate (viral
load) in a Cox survival model for time to first CD4:CD8 decline.

Specifically, we consider the following survival model for time to first CD4:CD8 decline

λi(t) = λ0(t) exp(β1zi + β2x
∗
i (t)),

where x∗
i (t) is the true viral load value at time t, zi is treatment indicator such that zi = 1 for arm

I and zi = 0 for arm II. The observed viral load data for individual i at time tij is denoted by xij

(log10 transformed), which is subject to measurement error, i = 1, 2, . . . , n; j = 1, 2, . . . , ni. To
address measurement errors in viral loads, we consider the following NLME model

xij = log10{eα1+a1i + e(α2+a2i)−(α3+a3i)∗tij}+ eij ≡ x∗
ij + eij ,

ai = (a1i, a2i, a3i) ∼ N(0, A), eij ∼ N(0, σ2),

where (α1, α2, α3)
T is a vector of fixed effects, aki’s are random effects, and eij represents measure-

ment error. Part of the data analysis results is shown in Table 5. We see that estimates based on the
joint model have smaller standard errors than those based on separate analysis, showing efficiency
gain from the joint model over separate analysis.
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4 Discussion

In the analysis of longitudinal data, joint models are desirable when two or more different types of
variables are associated. Joint models are also desirable when the longitudinal models for several
variables are nonlinear in the random effects. In both cases, multivariate models such as multivariate
LME models may be difficult to specify. Ignoring the associations between the variables may lead
to less efficient statistical inference and possible biased estimation, compared to jointly modeling
these variables simultaneously. The associations between the variables may be incorporated in dif-
ferent ways, such as shared or correlated random effects from different models or treat one variable
as a covariate in the model for the other variable. When jointly modelling different types of vari-
ables, mixed effects models are natural choices for the longitudinal data. The maximum likelihood
method is a standard approach for statistical inference of joint models, but the computation can be
challenging since the likelihoods often involve a high-dimensional and intractable integration. Two
step methods are computationally simpler and may use existing software, but they may lead to less
efficient and possibly biased inference. Various modified two-step methods have been proposed in
the literature, such as using bootstrap methods to obtain standard errors of the estimates.

Outliers are common in longitudinal data, and they may lead to incorrect inference if not ad-
dressed (Sinha, 2004; Sinha and Sattar, 2014). It is known that MLEs are sensitive to outliers. In
this case, one may consider M-estimators for robust inference or replace the assumed normal dis-
tributions by heavy-tail t-distributions. Longitudinal data may also be censored, such as data below
detection limits, or may be missing. In these cases, models may be assumed for the censored data
or missing data, leading to more complicated joint models (Yu et al., 2018).

Another issue is mis-specified distributions for the random effects and random errors (Sattar
and Sinha, 2021). In this case, one may consider pseudo-likelihood methods or generalized esti-
mating equation (GEE) methods. A main advantage of GEE methods is that they do not require
distributional assumptions. We only need to correctly specify the mean structure, and use working
correlations for repeated measurements. In the case of joint models, a challenge for GEE methods
is to simultaneously specify the association between different types of variables and the association
among the repeated measurements. This may lead to complicated GEE joint models.

Bayesian methods may also be considered for joint models. Bayesian methods may particularly
be attractive when the sample size is small or prior information is available. Another attractive
feature of Bayesian methods is that many existing software are available, such as WinBUGS and
Integrated nested Laplace approximation (INLA).

Although there has extensive literature in joint models, much research remains to be done. For
example, parametric mixed effects models may be extended to semiparametric or nonparametric
mixed effects models for longitudinal data. Various survival models may also be considered, such
as accelerated failure time models and competing risk models (Li and Yang, 2016).
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