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SUMMARY

In medical studies, a disease’s progress is often monitored through indicators that sig-
nify the improved or worsened condition of the patient. These are known as longitudinal
biomarkers, which are observed along with an event of importance. Together, they form
the framework of joint modeling, which has a longitudinal process and an inherently asso-
ciated time-to-event process. In clinical studies, the change in biomarkers is often moni-
tored in the form of a change in the patient’s plasma level after a drug is administered to
the patient. Again, in such studies, patients also withdraw from the trials prematurely or
at a later phase, thus giving rise to dropouts. In most cases, this dropout is not random
(Missing Not at Random). A joint model has been considered to incorporate this informa-
tive dropout in longitudinal response. To demonstrate this approach, a one-compartmental
pharmacokinetic (PK) nonlinear mixed-effects model consisting of time-dependent param-
eters has been used in this work. The dropout mechanism has been introduced using a
proportional hazard model. A Bayesian model framework is adopted to study the model’s
performance through detailed simulation. A PK study on the drug Divalproex subject to an
informative dropout model has been discussed.
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1 Introduction

Pharmacokinetic /Pharmacodynamics (PK/PD) studies have evolved out of the need to study the
efficacy of a new drug on a patient’s body or the efficacy of that drug over the other prevalent drugs
in the market. An integral part of this study is monitoring the concentration of drugs in patients’
blood over different time points. Hence, after a drug is administered to a patient’s body, the drug
concentration in blood over the follow-up visits over time serves as the longitudinal data in PK
modeling. This also acts as a marker for disease progress in a patient’s body, thus indicating whether
the particular treatment is effective. This longitudinal trajectory acting as a biomarker can further be
linear or nonlinear.

Again, in PK/PD studies, it is seen that patient dropout is a common feature. Patients under a
study trial can become impatient or depressed due to the ineffectiveness or severe side effects of
the drug administered to them and decide to leave or terminate the study. As a result, blood plasma
concentrations become unavailable over subsequent time points. Dropout, in clinical studies, can be
informative or non-informative. In PK modeling, it can be perceived that the likelihood of dropout
in most cases is inherently related to the underlying observed data. This dropout is non-ignorable,
and excluding this feature from the model may lead to gravely biased estimates. Thus, including
the dropout mechanism in the model procedure is very significant. Since the past decade, this
issue has been receiving much attention with the linear or generalized linear longitudinal submodel
(Fitzmaurice and Laird, 2000).

Studies on modeling dropout in longitudinal processes can be found in the works of Verbeke
et al. (2001), Yi and He (2009). Hogan et al. (2004) discussed regression-based modes for analyzing
dropouts in longitudinal data in different clinical studies. Diggle and Kenward (1994) combined
a multivariate linear model and a logistic regression model for modeling the dropout. Cuer et al.
(2022) handled informative dropout in longitudinal esophageal cancer clinical study data.

Frequently, it is seen in many clinical studies that the disease progress in the patient’s body
follows a nonlinear pattern. Nonlinear models have been explored in the area of PK modeling by
Sheiner et al. (1997), Wang et al. (2010), Hu et al. (2011), Bates (2005) and Owen and Fiedler-Kelly
(2014). Usually, these studies are concerned with constant absorption rate, but they should consider
a natural absorption process function and a disposition process function. The analysis of a nonlinear
mixed-effects model having time-dependent covariates in the pharmacokinetic field was previously
discussed by Lindstrom and Bates (1990) and Davidian and Giltinan (2003). Again, parametric
modeling of drug concentration was considered by Lindsey et al. (2000) for a class of generalized
nonlinear models. Further, mixed-effects modeling is considered relatable because there was a need
for accommodation of the subject-specific random effects. A one-compartment model for time-
varying covariates had been considered by Li et al. (2002) using a cubic spline. Again, Hu and Sale
(2003) discussed joint modeling of nonlinear longitudinal data along with informative dropout using
a shared random-effect model in the context of PK modeling on HIV and diabetic studies. The au-
thors explored different types of dropout models, i.e., informative and non-informative, influencing
the predictive ability of the joint model.

In drug development, the mixed-effects analysis of pharmacokinetic data is commonly known as
the population pharmacokinetic approach. This area includes the absorption, distribution, metabolism,
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and elimination of a drug over time after it is administered in the body. The basis of Pharmacokinet-
ics is how drugs move around the body and at which rate this movement occurs. After the drug is
administered in the body, it may be assumed that it achieves instantaneous distribution throughout
the body and instantaneously attains equilibrium between the body’s tissues. So, it can be said that
the body is depicted as a kinetically homogeneous unit (Gibaldi and Perrier, 1982) on which the
drug acts.

Further, it can be noted that the drug concentration-time profile shows a monophasic response
(monoexponential). This fact does not signify that the plasma drug concentration (Cp) is the same
as the tissue drug concentration. However, plasma concentration change influences the changes in
tissue concentration. Again, it is undeniable that the change in drug concentration holds signifi-
cance as far as disease progression in concerned, and thus, it is monitored at every visit. For this
reason, each patient is considered for an absorption and disposition process function to describe the
absorption and disposition phases of the drug in the body.

In our work, we have considered a nonlinear longitudinal mixed-effects model along with pa-
tient dropout information and a dropout time-to-event submodel in the context of a pharmacokinetic
study. As far as we know, not much work has been developed with applying pharmacokinetic data in
the framework of joint modeling. Here, a nonlinear mixed pharmacokinetic model is proposed for
monitoring the disease progression during 21 weeks. Pharmacokinetic parameters vary over time,
and including the subject-specific random effects ensures the accommodation of correlation and vari-
ation in the data. Direct modeling of the disease progression would result in erroneous conclusions
as some patients were untreated throughout the study. The dropout issue has been rationally incor-
porated into the joint model by developing the nonlinear mixed pharmacokinetic model, including
the assumption of informative dropout and shared subject-specific random effects. The drug’s phar-
macokinetics focused on characterization while considering the effects of various covariates and the
longitudinal model subject to dropout. In this work, joint longitudinal and time-to-event modeling
and patient dropout information are proposed in the context of pharmacokinetic modeling. Here,
the plasma drug concentration over time is considered the longitudinal observations, and the time-
to-event process is modeled via the Cox proportional hazards (PH) model. Bayesian framework is
adopted for the parametric estimation.

This work is organized as follows. Section 2 proposes joint modeling with one compartmental
mixed PK model as the longitudinal submodel and time-to-event submodel with the patient dropout
information. In Section 3, the proposed methodology is examined through a simulation study and is
illustrated by a data set on PK study of Divalproex. Section 5 presents an overall discussion.

2 Methods

2.1 Pharmacokinetic mixed model

The current study asserts that the drug’s pharmacokinetics resembles a one-compartment model. The
usual choices are a one-compartment model with first-order absorption or a two-compartment model
with zero-order absorption. Here, we can say that at the initial stage, when the drug is administered
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orally, all the drug is in the gut before it enters the ‘body’. Now, we let A1(t) and A2(t) signify
the amount of drug in the gut and the body at time t, respectively. Here ka and ke are first-order
absorption and elimination rates, respectively. Hence, we can express this under the differential
equation setup:

dA2(t)

dt
= kaA1(t)− keA2(t), A2(0) = 0,

dA1(t)

dt
= −kaA1(t), A1(0) = 1.

So, at time point t the concentration of drug in blood can be expressed by the relation Cp(t) =

A2(t)/V . Here, V signifies the apparent volume of the compartment, which is not a physiological
volume. Some drugs are likely to have a higher value than the blood plasma but can be larger to
a good extent than the body volume. These plasma concentrations are inherently regulated by the
absorption and elimination rate of the drug. These rates are naturally time-dependent.

Here, we consider a one-compartment PK model with a first-order absorption rate and consider
the differential equation, which can be expressed by dA1,i(t)

dt
dA2,i(t)

dt

 =

 −kai
(t) 0

kai(t) −kei(t)

 A1,i(t)

A2,i(t)

 .

Taking the idea from Li et al. (2002) the expression can be put as

dA(t)

dt
= G(ψ(t))A(t), (2.1)

Here, A(t) = (A1(t), A2(t))
′, ψ(t) = (ka(t), ke(t))

′ and G is a function of ψ(t).
Next, we consider a mixed-effects regression model for the longitudinal response

yij = g(x′
ijβi, tij) + eij .

Here, xij denotes the covariate vector for yij which is the longitudinal response for the ith indi-
vidual at the jth time point where i = 1, 2, . . . , n and j = 1, 2, . . . ,mi. Here, g(·) denotes a
nonlinear smooth function of x′

ijβ. Following Davidian and Giltinan (2003), the mean function can
be expressed as

g(x′
ijβi, t) = log

[A2i{kai
(t), kei(t), t}]
Vi

.

Here, Vi denotes ith individual’s apparent volume of the compartment. eij ∼ N(0, σ2
0). Again, we

can write
βi = Q(α, bi),

where βi is the PK parameter for the ith individual having bi as the subject-specific random effects
which can be expressed by the three dimensional functional Q. Again, βi = (kai(t), kei(t), Vi)

′
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and it is reasonably assumed that the subject-specific volume of an individual is independent of time.
Further, the components of Q can be expressed as

log kai
= x′

1iα1 + z′
1ib1i,

log kei = x′
2iα2 + z′

2ib2i,

log Vi = x′
3iα3 + z′

3ib3i,

where xi and zi respectively denote the design matrices for the fixed-effects and random-effects
respectively for the ith patient. Here, for the sake of computational convenience, the absorption rate
kai(t) and elimination rate kei(t) are assumed to be independent of time. Hence, in that situation,
equation (??) can be solved analytically where the amount of drug present in the body at time t may
be expressed as

A2,i(t) =
kai

kai − kei
[(e−keit − e−kait)].

We can clearly see that the expression above is a difference between two exponential terms where
the former is slower and the latter has a faster rate due to obvious reasons related to the mechanism
of bodily functions.

2.2 Dropout model

Dropouts arise in studies when an individual decides to leave or discontinue the treatment due to dis-
satisfaction or restlessness due to perceived ineffectiveness. Wu and Carroll (1988) was the pioneer
in bringing into light the issue of informative dropout, i.e., where the dropout mechanism depends
completely or partially on the observed or unobserved outcomes. A summary of this mechanism can
be found in Hogan and Laird (1997), and a classification can be found in Rubin (1976). The dropout
mechanism can be broadly classified into three categories, i.e., Missing Completely At Random
(MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR). MCAR occurs when
the dropout mechanism is independent on both observed and unobserved outcomes, MAR occurs
when the mechanism depends on observed but not on unobserved outcomes, and MNAR occurs
when the dropout mechanism depends on both observed and unobserved data (informative). Hence,
it is very evident that ignoring these kinds of dropouts where the reason is inherently linked to the
study or process leads to bias in inference.

To model the informative dropout, the Cox proportional hazards model has been used. We let
Ti be the dropout time for patient i since the start of the study and δi the censoring indicator, which
attains value 1 if the patient does not drop out of the study and 0 otherwise. Diggle and Kenward
(1994) in their work had proposed considering the dropout time as a survival variable. So we can
write

h(t) = lim∆t−→0
Prob(T < t+∆t|T > t)

∆t
,

where T signifies the dropout time and h(t) signifies the hazard function at time T = t. According
to the Cox model, we can formulate the hazard function at time Ti as

h(Ti) = h0(Ti) exp{ν1b1i + ν2bi2 + ν3bi3}.
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Here, h0(Ti) is the baseline hazard function and bi1, bi2 and bi3 are the components of the subject-
specific random-effects responsible for keeping the longitudinal and survival processes correlated.
Here, ν = (ν1, ν2, ν3)

′ reflects the strength of association between the two processes. Further, if the
patient remains in the study until time Tj , the survival probability is

S(Tj) = exp(−
∫ Tj

0

h(u)du).

A piecewise constant baseline hazard function is adopted for approximating the baseline hazard
function h0(Ti) by adopting a series of fixed cut points 0 = τ0 = τ1 < · · · < τm equivalent to
the number of clinic visits over all patients. Here, the baseline hazard is assumed to be constant
in each interval where h0 = (h0,1, h0,2, . . . , h0,m−1) where the last point in the interval, i.e., τm
signifies the maximum observation time in the dataset. The two submodels (longitudinal response
and time-to-dropout) are independent if bi is given.

The unknown parameter vector is say, Ψ = (α, σ2
0 , ρ,ν,h0). Hence, we can write the full

likelihood function for the joint model for the ith individual as:

LΨ(yi, Ti, δi, bi) = Ly(yi|bi)Ls(Ti, δi|bi)L(bi|ρ)

=

mi∏
j=1

f(yij)h(Ti)
δiS(Ti)f(bi|ρ),

where Ly and Ls signifies the likelihood contribution for the longitudinal and time-to-event whereas
L(bi|ρ) signifies the density function for the subject-specific random-effects for the ith individual.

2.3 Bayesian inference

The unknown parameters are inferred using Bayesian inference based on Markov chain Monte Carlo
(MCMC) simulations. The results are analyzed by looking at the posterior means and 95% credible
intervals (CI). For all the parameters, priors were selected to ensure non-informativeness. Standard
priors were chosen for all the parameters. The model is fitted by implementing BUGS programming
language where we specify the full likelihood and prior distributions for all the parameters. We run
multiple chains with overdispersed initial values, and the trace plots and autocorrelation function
indicate good convergence (Gelman et al., 1995). Priors with other distribution choices were also
considered to ensure the robustness of the results to prior specifications. The likelihood function
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along with the priors take the following form for the posterior distribution:

L(Ψ|yi, Ti, δi, bi), = L(yi, Ti, δi, bi|Ψ)L(Ψ),

= L(yi|bi)Ls(Ti, δi|bi)L(bi|ρ)L(Ψ),

=
( mi∏

j=1

f(yij)h(Ti)
δiS(Ti)f(bi|ρ)

)
f(α)f(σ2

0)f(ν)f(ρ)f(h0),

=
( mi∏

j=1

f(yij)h(Ti)
δiS(Ti)f(bi|ρ)

)
×

f(α1)f(α2)f(α3)f(σ
2
0)f(ν1)f(ν2)f(ν3)f(ρ)f(h0),

where αi
′
s are taken from normal distribution, ν

′
s, ρ and h0 taken from Uniform distribution and

σ2
0 from inverse gamma distribution. The posterior distribution is not a standard one from which

samples can be drawn easily. Gibbs sampling is implemented through OpenBugs which works on
the full likelihood and prior distributions thus specified. The software uses Metropolis algorithm to
generate a Markov chain by sampling from full conditional distributions. This includes probabilis-
tically choosing or throwing away samples at each step dependent on the data and parameter values
given at the previous step. The unknown parameters are thus inferred and the results are analyzed
looking at the posterior means and 95% credible intervals (CI). For all the parameters priors were
selected in a way to ensure non-informativeness.

We run multiple chains with overdispersed initial values and the trace plots and autocorrelation
function indicate good convergence (Gelman et al., 2004). Priors with other distribution choices
were also considered to ensure the robustness of the results to prior specification.

3 Simulation Study

A simulation study is conducted to investigate the performance of the model. We have generated
three data sets with n = 50, 200 and 500 individuals under two different sets of parameters. For
each individual, a varying number of observations are generated from Uniform(7, 10). True values
are assumed to be

Set I : α = (0.3, 0.4, 0.3)′, r = (0.5, 0.4, 0.5)′, ρ = 0.4, σb = 0.5

Set II : α = (0.8, 0.1, 0.8)′, r = (0.7, 0.8, 0.7)′, ρ = 0.1, σb = 0.9

A nonlinear mixed-effects model is considered for the longitudinal submodel. Continuous covariates
for fixed effects were generated from normal distribution, i.e., x1i ∼ N(1.2, 0.1), x2i ∼ N(1.2, 0.2)

and x3i ∼ N(1.1, 0.1). Continuous covariates for random effects were generated from a normal
distribution, i.e., z1i ∼ N(1.1, 0.1), z2i ∼ N(1.1, 0.2) and z3i ∼ N(1.1, 0.1). Again, the subject-
specific random effects for each individual have been assumed to follow a trivariate normal with
bi ∼ N(0,Σ) where Σ follows AR(1) structure i.e. Σ = σ2

b ((ρ
|i−j|)). Here, the longitudinal
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observations can be expressed as follows

yi = [
kai

kai
− kei

(e−kei − e−kai )]/Vi + ei.

Here ei ∼ Nni
(0, σ2

0I) where σ2
0 = 0.3. Here, the censoring information δi is taken as 1 if the ith

patient dropped out of the study and 0 if the patient remained until the end. Again, the time-to-event
submodel is modeled by a Cox proportional hazards model where the hazard is taken as

h(Ti) = keν1bi1+ν2bi2+nu3bi3 ,

where k ∼ Uniform(0.01, 10). Again ν1 ∼ N(0, 0.001), ν2 ∼ N(0, 0.001) and ν3 ∼ N(0, 0.001).
The data (yi, x1i, x2i, x3i, z1i, z2i, z3i, Ti, δ) is thus generated from these assumptions.

Bayesian framework is implemented for obtaining inference. Bayesian trace plots and autocor-
relation plots were examined from the OpenBUGS summary output and the appropriate number
of burn-in iterations was set as 5000. MCMC convergence and the mixing of the chains were ex-
amined. Three parallel MCMC chains with overdispersed initial values were taken and the final
inference was based on 10000 iterations. All the parameters exhibited rapid convergence with R̂
(Gelman Rubin diagnostic) to be within 1.1. The estimation results are reported in Tables below,
which display the True value, estimates, Bias, standard deviation, median and 95% equal-tailed
credible intervals. From the results under the two sets of parameters vector, it can be seen that the
estimates have low bias and standard deviation with tight confidence intervals.

Table 1: Summary Statistics parameter estimates under Set I for n = 50

Parameter True Value Estimate Bias SD 2.5% Median 97.5%

α1 0.3 0.5801 0.2801 0.2737 0.1197 0.6065 0.9848

α2 0.4 0.2309 0.1691 0.1192 0.1034 0.1969 0.5449

α3 0.3 0.188 0.112 0.07951 0.1024 0.1654 0.3867

r1 0.5 0.5488 0.0488 0.2593 0.1227 0.5452 0.976

r2 0.4 0.551 0.151 0.2602 0.1225 0.5503 0.978

r3 0.5 0.5498 0.0498 0.2594 0.1219 0.5507 0.976

ρ 0.4 0.2506 0.1494 0.1357 0.0169 0.2513 0.4832

σb 0.5 0.9952 0.4952 0.004649 0.9818 0.9966 1.005

4 An Application: Divalproex Study
A drug is often characterized by some fundamental parameters related to pharmacokinetics (Gibaldi
and Perrier (1982)), i.e., ka, ke, V , and also in terms of some derived parameters, i.e., the area
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Table 2: Summary Statistics parameter estimates under Set I for n = 200

Parameter True Value Estimate Bias SD 2.5% Median 97.5%

α1 0.3 0.7346 0.4346 0.2798 0.189 0.8767 0.9955

α2 0.4 0.311 0.089 0.1155 0.1197 0.3052 0.5679

α3 0.3 0.1846 0.1154 0.07786 0.1022 0.1618 0.3866

r1 0.5 0.5506 0.0506 0.2586 0.1239 0.5499 0.9775

r2 0.4 0.5509 0.1509 0.2608 0.1226 0.5506 0.9783

r3 0.5 0.551 0.051 0.2597 0.122 0.551 0.9778

ρ 0.4 0.04114 0.35886 0.03912 5.583× 10−4 0.0294 0.14515

σb 0.5 0.9999 0.4999 9.34× 10−5 0.994 0.9999 1.0068

Table 3: Summary Statistics parameter estimates under Set I for n = 500

Parameter True Value Estimate Bias SD 2.5% Median 97.5%

α1 0.3 0.6986 0.3986 0.221 0.2023 0.744 0.9892

α2 0.4 0.2917 0.1083 0.1608 0.1059 0.2508 0.6952

α3 0.3 0.3408 0.0408 0.1461 0.1176 0.3228 0.632

r1 0.5 0.5507 0.0507 0.2584 0.1242 0.5515 0.97585

r2 0.4 0.5506 0.1506 0.2598 0.1226 0.5489 0.9786

r3 0.5 0.5501 0.0501 0.2604 0.1232 0.5512 0.9778

ρ 0.4 0.2523 0.1477 0.1429 0.01374 0.2546 0.487

σb 0.5 0.9989 0.4989 0.001054 0.9922 0.9993 1.006
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Table 4: Summary Statistics parameter estimates under Set II for n = 50

Parameter True Value Estimate Bias SD 2.5% Median 97.5%

α1 0.8 0.5449 0.2551 0.2557 0.1246 0.5427 0.9754

α2 0.1 0.444 0.344 0.2354 0.114 0.4077 0.9358

α3 0.8 0.4714 0.3286 0.2262 0.1214 0.45 0.9329

r1 0.7 0.549 0.251 0.259 0.1226 0.5445 0.9774

r2 0.8 0.5472 0.4472 0.2597 0.1211 0.5453 0.9775

r3 0.7 0.5518 0.3482 0.2601 0.1224 0.5535 0.9768

ρ 0.1 0.2344 0.5656 0.1453 0.009969 0.2266 0.4856

σb 0.9 0.9536 0.0536 0.03204 0.8805 0.9588 0.998

Table 5: Summary Statistics parameter estimates under Set II for n = 200

Parameter True Value Estimate Bias SD 2.5% Median 97.5%

α1 0.8 0.5134 0.2866 0.26 0.1179 0.495 0.9725

α2 0.1 0.5805 0.4805 0.2444 0.1348 0.5946 0.9753

α3 0.8 0.7999 0.0001 0.1667 0.3806 0.8431 0.9936

r1 0.7 0.6456 0.0544 0.2603 0.1219 0.5445 0.9767

r2 0.8 0.5917 0.2083 0.2598 0.1236 0.5527 0.9795

r3 0.7 0.6496 0.0504 0.2598 0.1229 0.5511 0.9788

ρ 0.1 0.2127 0.1127 0.1424 0.007724 0.1944 0.4797

σb 0.9 0.9878 0.0878 0.0095 0.9643 0.9899 1.003
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Table 6: Summary Statistics parameter estimates under Set II for n = 500

Parameter True Value Estimate Bias SD 2.5% Median 97.5%

α1 0.8 0.5376 0.2624 0.2564 0.1221 0.531 0.9746

α2 0.1 0.4027 0.3027 0.2048 0.1134 0.3705 0.8356

α3 0.8 0.2304 0.5696 0.1075 0.1043 0.2046 0.4961

r1 0.7 0.5493 0.1507 0.2604 0.1219 0.5505 0.9782

r2 0.8 0.5501 0.2499 0.2599 0.1223 0.5509 0.9775

r3 0.7 0.5489 0.1511 0.2598 0.123 0.5494 0.9771

ρ 0.1 0.2042 0.1042 0.1427 0.007239 0.1798 0.4787

σb 0.9 0.996 0.096 0.00359 0.9849 0.9971 1.005

under the curve (AUC) and terminal half-life t 1
2

. The half-life is the time taken by the plasma
concentration of the drug to fall to half of its original value. Again, V converts the entire drug dose
in the compartment into the measured concentration. The drug that has a higher volume binds itself
strongly to protein, whereas the one having a smaller volume associates itself with the tissue outside
the vascular area. ka and ke for a drug indicate the speed with which the absorption and elimination
processes operate. The relative efficiency of different drug products is evaluated in terms of AUC
value (continuous setup) defined as

AUC =
1

V (t)

ka(t)

ka(t)− ke(t)

∫ ∞

0

(
e−ka(t)t − e−ke(t)t

)
dt.

In the case where the parameters are assumed to be independent of time, AUC = 1/V ke.
An active ingredient of the drug Depakote is Divalproex sodium, which is basically a com-

pound of Sodium valproate and Valproic acid. This drug is responsible for intensifying gamma-
aminobutyric acid in the patient’s brain. This acid produced by the body naturally, acts as a neuro-
transmitter thus enabling the nerves to communicate. There is lack of transparency in the fact about
how this drug (Depakote) affects the body of the patient consuming it. It is a matter of investigation
whether the drug is effective in reducing the adverse effects, thus increasing the concentration of
plasma in patients suffering from epileptic seizures. A study was carried out over 21 weeks on pa-
tients orally receiving this drug, and measurements of the actual plasma concentration were recorded
over the time points of 1st, 3rd, 8th, 14th, and 21st weeks. Here, patients were permitted to leave
the study whenever they desired due to ethical reasons. Progress in the disease was thus observed
for a patient at every visit.

In our Divalproex data study, we have patients ranging from 14-73 years with a median age
of 47. The vital signs of the patients were observed to be normal at the baseline level and after
the treatment, which indicates no significant change until the end of the study period. These signs
include mean pulse rate, respiratory rate, weight, body temperature, and blood pressure. Missing
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Table 7: Data Study. Divalproex Data.

Parameter Estimate SD Upper Lower

α1 0.9559 0.0534 0.8160 1.0020

α2 0.1000 0.0100 0.0907 0.1092

α3 0.1000 0.0100 0.0907 0.1093

ν1 0.5499 0.2577 0.1225 0.9787

ν2 0.5471 0.2598 0.1206 0.9783

ν3 0.5511 0.2593 0.1228 0.9788

ρ 0.3027 0.0215 0.2655 0.3411

σb 1.0000 0.0100 0.9907 1.0090

data in the form of patient dropouts were considered where dropouts may have occurred due to the
wariness of the patient due to the perceived ineffectiveness of the treatment. We denote by yij the
plasma concentration of the drug for the ith patient at the jth time point and then model it as:

yij = log
[A2i{kaij , keij}]

Vij
+ eij

log kaij = α1 + z1ijbi1

log keij = α2 + z2ijbi2

log Vi = α3 + z2ijbi3.

Here, eij
iid∼ N(0, σ2

e) and bi = (bi1, bi2, bi3)
′ iid∼ N(0,Σ). The structure of Σ is taken as AR(1)

in order to take into account the longitudinal variation. The time-to-event submodel is modelled by
Cox proportional hazards model where the dropout time for the ith patient is denoted as Ti and
piecewise hazards is applied to the hazard function of each patient. For the Bayesian analysis three
parallel MCMC chains with varying initial values are considered and initial 5000 were excluded as
burn-in. This has been identified by examining the trace plots and autocorrrelation plots from the
output summary. The inference is based on the next 5000 iteration values and they exhibited rapid
convergence with R̂ within 1.1. The results displayed in Table 7 display the estimates, standard
deviation and 95% credible intervals for all the parameters in the data study. It is to be noted that
derived PK parameters like absorption rate, elimination rate or apparent volume are patient as well
as time-dependent. From Table 7 it can be seen that 95% credible interval are very close for the
parameters α1, α2, α3 and sd. SD values are also within acceptable range for all the parameters.
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5 Discussion

Here, in this work, pharmacokinetic mixed model, along with patient dropout (informative) is jointly
modelled. The drug concentration in blood over time is modeled as mixed-effects pharmacokinetic
model with time-varying covariates. For modeling dropout, we have used a time-to-event submodel.
However, instead of a Cox PH model, a modified Kaplan-Meier or Kaplan-Meier estimator can
also be used in place of Cox proportional hazards if the non-parametric approach is desired. Here,
the absorption and elimination rate of a drug from the body is considered time-independent for
computational ease. In reality, they might be time-dependent. Thus it can also be taken as time-
varying parameters which might enhance computational challenge. An efficient algorithm is also
required to handle this complexity. Again, a sensitivity analysis can be done using different choice
of priors.
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