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SUMMARY

Joint modeling of longitudinal outcomes and time-to-event data has become a major re-
search interest in the last thirty years. A joint model is useful since it helps (i) to under-
stand the evolution of the outcome(s) of interest over time, (ii) to understand the effects of
the outcomes on the time of occurrence of some event(s) of interest (e.g. death/relapse),
and (iii) to study the effects of the time-varying and time-invariant predictors on the lon-
gitudinal and time-to-event process. Traditional linear mixed models are routinely used
for modeling the longitudinal process. However, for non-Gaussian/skewed outcomes it is
more appealing to use quantile-regression models since such models do not assume any
specific probability distribution for the outcomes. In this article, we present a bivariate
quantile-regression approach for jointly modeling longitudinal process and time-to-event.
In a Bayesian setting we consider an Asymmetric Laplace Distribution (ALD) for model-
ing different quantiles of the outcomes, and a semi-parametric Proportional Hazards (PH)
model for time-to-event. Model parameters are estimated using Markov chain Monte Carlo
(MCMC) algorithm, and we discuss the computational complexities through several simu-
lation studies. Our numerical studies illustrate the usefulness of our model over the other
traditional models.

Keywords and phrases: Asymmetric Laplace Distribution (ALD), Bivariate longitudinal
data, Joint model, MCMC, Quantile regression.

1 Introduction
Joint modeling of longitudinal outcomes and time-to-event data has drawn attention of the re-
searchers in the last thirty years mainly because of its wide applications in various disciplines includ-
ing biomedical studies. For example, in the traditional clinical trials, some specific drugs are given
to a group of patients over a period of time, and the outcomes of interest are measured longitudinally
along with the time of occurrence of some event of interest (e.g. survival/relapse). In agricultural
studies, biomass of some plants are measured longitudinally and the time to get the first flower is
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observed for each plant. Such an experiment can reveal the effect of biomass on the reproductive
time of the plants. Statistical models have been developed for jointly modeling the longitudinal out-
comes and the time-to-event instead of modeling them separately. A joint model is more informative
than separate models since it helps to understand (i) how the outcomes of interest evolve over time,
(ii) the effects of the outcomes on the time of occurrence of the event, and (iii) the effects of the
covariates (time-varying and time-invariant) on the longitudinal and time-to-event process.

The literature on joint modeling is indeed quite rich. Henderson (2000) proposed a likeli-
hood based approach for jointly modeling univariate longitudinal outcome and an event-time. In
a Bayesian framework Wang and Taylor (2001) proposed a joint model for modeling CD4 count
and the time to progress into AIDS for HIV patients. In a similar setting, Guo and Carlin (2004)
developed joint models for comparing the efficacy of two drugs. Fiews and Verbeke (2004), Chi and
Ibrahim (2006), Rizopoulos and Ghosh (2011) developed joint models for multiple longitudinal out-
comes and an event-time. Das et al. (2012, 2016) developed a Bayesian model for jointly modeling
biomass and the reproductive time for soybean plants with a goal of identifying the genetic markers
controlling the biomass and the reproductive time. Rizopoulos et al. (2017) proposed an efficient
joint model for dynamically predicting the survival probability of each subject over time. More
recently, Kundu et al. (2024a) developed a Bayesian joint model for three important biomarkers
(white blood cell count, neutrophil count and platelet count) and time to relapse for acute lympho-
cytic leukemia (ALL). However, a common feature of all these works is that a linear mixed model
is used for the longitudinal process, assuming that the outcomes are Gaussian, and a proportional
hazards (PH) or an accelerated failure time (AFT) model is used for the time-to-event process.

In many real applications, we come across non-Gaussian outcomes; and the interest might be on
modeling (or predicting) some specific quantiles of the outcomes. For example, a medical researcher
might be interested in predicting the time-to-event for patients with a higher (or other extreme) value
of certain outcome(s) of interest. Traditional linear mixed models which rely on the normality for the
outcome of interest fail to handle such datasets. In such cases, quantile regression models are more
appropriate; and therefore, we present a (bivariate) quantile regression model for jointly modeling
the longitudinal and the time-to-event process. Koenker and Bassett (1978) developed quantile
regression model where the effects of the covariates can be assessed at different quantile levels.
Koenker (2004) also developed quantile regression model for longitudinal outcomes. Based on an
Asymmetric Laplace Distribution (ALD) Yu and Moyeed (2001) developed a Bayesian quantile
regression model, and Geraci and Bottai (2007) extended such models for longitudinal outcomes.
Kozumi and Kobayashi (2011) showed that an Asymmetric Laplace Distribution can be expressed as
a scale mixture of normals with an exponential scale distribution. Biswas and Das (2021) developed
a computationally efficient Gibbs sampler for modeling the quantiles of multivariate longitudinal
outcomes. Yang et al. (2019) proposed a Bayesian quantile joint regression model for predicting
the development of Huntington’s disease. Similar joint models are proposed in Zhang and Huang
(2020) for analyzing data from a Multicenter AIDS Cohort Study.

In this paper, we develop a Bayesian joint model for bivariate longitudinal outcomes and time-
to-event at different quantile levels. For the longitudinal process we consider a linear mixed model
but assume an Asymmetric Laplace Distribution for each outcome variable. The longitudinal de-
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pendence among the outcomes at different time points and the dependence between the outcomes
are simultaneously modeled by considering a Bivariate Brownian Motion (BBM) for the subject-
specific random effects. Proportional Hazards models are used for the time-to-event process, and
the model parameters are estimated by Gibbs sampler. We address various computational issues and
assess the effectiveness of the proposed approach by extensive simulation studies.

The rest of this paper is organized as follows. In Section 2, we discuss the motivation for our
joint quantile modeling. In Section 3, we describe the proposed model in detail and derive the joint
posterior distribution. The findings from two simulation studies are discussed and summarized in
Section 4. The proposed model is also compared with some other traditional models popularly used
in joint modeling literature. Finally, some concluding remarks are given in Section 5.

2 A Simulated Dataset and Motivation

We consider two simulated datasets in this paper to illustrate the effectiveness of our proposed quan-
tile regression model for jointly modeling bivariate longitudinal and time-to-event data. We note
that a real dataset could definitely be more appealing, but unfortunately due to the unavailability of
an appropriate dataset at hand we describe the usefulness of our proposed model through simulated
datasets.

Let us consider the scenario where two biomarkers are being recorded over time along with some
time-invariant covariates with a goal of modeling the relapse-time of a disease, and also to estimate
the effectiveness of the drugs used for preventing a relapse. We simulate bivariate longitudinal
outcomes for 281 subjects where the number of measurements differs from one subject to the other
but the starting time is the same for all subjects. We consider two time-varying covariates (which we
refer to as medicines/drugs) and four time-invariant covariates. The event of interest is referred to
a “relapse” which is typically the case for cancer patients, and the subjects are censored after some
subject-specific time points. So, each subject in the end can be classified either as a case of relapse
or a non-relapse.

Two outcomes are denoted by Ya and Yb, respectively, and in Figure 1 we show the bivariate
quantile-quantile (QQ) plot for two outcomes. The plot indicates that the sample quantiles differ
from the theoretical quantiles, indicating that the joint distribution of outcomes differs substantially
from a bivariate normal distribution. Because of that we cannot use a traditional linear mixed model
for modeling the longitudinal process.

Next, we show a contour plot in Figure 2. Contours are shown for some specific density levels
(e.g. 0.3, 0.2, 0.1, 0.05 etc.), and for each density level we use a different color. We use solid curves
for the subjects with a relapse and broken curves for those with no-relapse. The axes show five
different quantile levels (i.e. 0.10, 0.25, 0.50, 0.75 and 0.90) for two outcomes. We see that along
the green and the golden arrows solid curves dominate their broken counter-parts indicating that,
for the higher quantile levels of Ya, the probability of relapse increases. On the other hand, along
the black and the brown arrows the broken curves dominate their solid counter-parts indicating that
for the higher quantiles of Yb, there is a higher chance of no-relapse. Hence, in one way this figure
shows that the occurrence of the event (relapse/no relapse) depends on the longitudinal outcomes,
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and hence a joint modeling is meaningful. At the same time it also illustrates that the probability of
the occurrence of the event differs from one quantile level to the other, and thus a quantile-specific
joint model is more appropriate here. Thus, for jointly modeling the longitudinal outcomes and time-
to-event, we recommend a QQ plot and a contour plot for understanding the underlying complexity
in the dataset.

0 5 10 15

0
1
0

2
0

3
0

4
0

5
0

Multi−normal Q−Q Plot (Y_a,Y_b)

χ2 quantiles

M
a
h
a
la

n
o
b
is

 d
is

ta
n
ce

s 
2

2754

3485

Figure 1: Quantile-Quantile plot for two outcomes in the simulated dataset.

3 Proposed Joint Model

As discussed in the earlier section, we propose a Bayesian quantile-specific joint model for bivariate
longitudinal data and time-to-event. We note that the proposed methodology can be extended to a
multivariate setting in a straightforward way.

We consider two longitudinal outcomes, hereafter referred to as biomarkers. We define a quantile
level τ = (τa, τb), where τk denotes the quantile level of the k-th biomarker, k = a, b. This notation
illustrates that our proposed approach can handle different quantile levels for different biomarker,
and hence quite flexible. Our proposed model has two parts, (i) a quantile-specific longitudinal
submodel, and (ii) a time-to-event submodel with a semi-parametric proportional hazards model
adjusted for each quantile level. Let Yijk denote the k-th biomarker measured from the i-th subject
at the j-th time point (j = 1, 2, . . . , ti), and the quantile-specific hazard for the i-th subject at time
t is denoted by λ(τ )(t). In addition, we define si = min(Ti, Ci), where Ti denotes the relapse-time
and Ci denotes the censoring time of the i-th subject, and thus si is considered as the survival time.
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Figure 2: Contour plot of Ya and Yb for simulated dataset, with solid contours representing density
levels for the candidates with a relapse, and broken curves for the candidates with no-relapse. Here,
Qa(u) and Qb(u) represent the u-th quantile of Ya and Yb, respectively.

We define the indicator variable δi=1 when Ti < Ci; and 0, otherwise.

3.1 Longitudinal submodel

For simultaneously modeling the quantiles of the two biomarkers, we use the traditional linear mixed
model following Wang and Taylor (2001), Rizupoulos and Ghosh (2011), Kundu et al. (2024b).
Such models consider fixed effects of the covariates along with subject-specific random effects. In
our setting, the biomarker quantiles (denoted by Q(τ )(Yijk)) are modeled as follows:

Q(τ )(Yijk) = g
(τ )
k (tij) + β

(τ )T
k xij + η

(τ )T
k zi + ω

(τ )
ik (tij), (3.1)

where g is the biomarker-specific general effect of time, and it can be modeled either by polynomial
functions, or by splines, wavelets etc. For simplicity and computational ease, we consider a poly-

nomial function of unknown order r, and model it as follows: g(τ )k (t) =
r∑

l=0

ζ
(τ )
lk tl. The unknown

order r is obtained based on the information criteria, e.g. AIC, BIC, DIC etc. The regression coeffi-
cients, β(τ )

k and η
(τ )
k , are the quantile-specific fixed effects of two time-varying covariates (xij) and
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the time-invariant covariates (zi), respectively. The subject-specific random effects ω
(τ )
ik (tij) cap-

ture the longitudinal dependence among the biomarkers at different times points and the dependence
between two biomarkers over time.

We express equation (3.1) as follows:

Yijk = g
(τ )
k (tij) + β

(τ )T
k xij + η

(τ )T
k zi + ω

(τ )
ik (tij) + ϵijk, (3.2)

where ϵijk are random errors. Regression coefficients of this quantile regression model, for each
fixed k, are estimated by minimizing the following quantile loss function:

L =
[
(1− τk)

∑
Yijk<Q(τ)(Yijk)

(Yijk −Q(τ)(Yijk)) + τk
∑

Yijk>Q(τ)(Yijk)

(Yijk −Q(τ)(Yijk))
]
. (3.3)

Koenker and Bassett (1978) proposed a convex optimization approach for minimizing the above
loss function. Yu and Moyeed (2001), Geraci and Bottai (2007), Kulkarni et al. (2019) noticed
that by assuming an Asymmetric Laplace Distribution (ALD) with location parameter=0, scale
parameter=σk, and skewness parameter=τk, (k = a, b) for the random errors ϵijk and then by maxi-
mizing the log-likelihood function, one can get exactly the same estimates.

Kozumi and Kobayashi (2011) showed that ALD can be written as a scale mixture of normals
with exponential scales. Based on that we can write ϵijk as follows:

ϵijk = θ1keijk + θ2k
√
σkeijkvijk,

where θ1k = (1− 2τk)/{τk(1 − τk)}, and θ2k =
√
2/{τk(1− τk)} , eijk

ind∼ Exp(1/σk), and

vijk
iid∼ N(0, 1). Biswas and Das (2021) used the similar representation for modeling quantiles

of multivariate longitudinal outcomes. Thus, conditional on ω
(τ )
ik (tij) and eijk, the outcomes Yijk

follow a normal distribution. In particular, we get the following hierarchical structure:

Yijk|eijk, ω(τ )
ik (tij) ∼ N

(
g
(τ )
k (tij) + β

(τ )T
k xij + η

(τ )T
k zi + ω

(τ )
ik (tij) + θ1keijk, θ

2
2kσkeijk

)
,

eijk|σk ∼ exp(
1

σk
).

The random effects ω
(τ )
ik (tij) play an important role in modeling longitudinal outcomes since

they handle both the inter-outcome and intra-outcome dependence over time. Traditionally, subject-
specific random intercepts and random slopes (of time) are used to capture the inter-biomarker de-
pendence and the biomarker-specific longitudinal dependence (Das 2016, Kulkarni et al. 2019,
Kundu et al. 2024a). Specifically, one may consider the following structure: ω

(τ )
ik (tij) = cik +

diktij , where cik are the subject-specific random intercepts and dik are the subject-specific random
slopes. Let Ri = [cik, dik]

T , and assume that Ri independently follow multivariate normal distribu-
tion with mean vector=0, and covariance matrix=ΣR. Different inter-outcomes and intra-outcomes
dependence are captured by matrix ΣR. Although this is the most commonly used approach for
modeling random effects, such specifications allow the deviations of the subject-specific outcomes
from their respective means to follow a straight line path, and that is quite restrictive (Wang and
Taylor 2001).
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We follow an alternative and more flexible approach for modeling ω
(τ )
ik (tij) as proposed in

Kundu et al. (2024b) where no additional restriction on the deviations is imposed. Wang and Taylor
(2001) used Integrated Ornstein-Uhlenbeck (IOU) process for the random effects, and Kundu et al.
(2024b) considered a Bivariate Brownian Motion (BBM) for the same. We write ω

(τ )
ik (tij) by step

functions,

ω
(τ )
ik (t) =

M∑
j=1

w
(τk)
ijk 1(twi,j−1≤t<twij)

;

where twi0 = ti1, twi1, . . . t
w
i,M−1 are (M − 1)-point Gauss-Kronrod points in the interval (ti1, si),

and twi,M > si. Additionally, [w(τ )
i11 , w

(τ )
i12 ]

T = w
(τ )
i1 ∼ N2(0, t

w
i,0Στ ), and w

(τ)
ij = w

(τ)
i,j−1 +√

twi,j−1 − twi,j−2U
(τ)
ij , with U

(τ)
ij

iid∼ N2(0,Στ ) , j = 2, . . . ,M . In practice, the value of M is
taken from 10 to 20, although in principle, it can be any value sufficiently large. Here, we take
M=16 for our computation. This choice considers different covariance specification between the
longitudinal outcomes at different quantile levels which is typically the case for multivariate quantile
regression model, as noted by Biswas and Das (2021), and Alfo et al. (2021).

3.2 Event-time submodel

One of the major goals of joint modeling is to assess the effects of the biomarkers and the covariates
on the time-to-event. Therefore, while modeling time-to-event using the popularly used proportional
hazards (PH) model or accelerated failure time (AFT) model, the biomarkers are used as covariates.
However, the existing works on joint modeling have shown that the bias in the estimates of the
regression coefficients can be reduced by considering the expected biomarker values rather than the
observed biomarker values (Henderson 2000, Wang and Taylor 2001, Das 2016, and the references
therein).

In our setting the association between the biomarkers and the time-to-event possibly differs from
one quantile level to the other (as indicated in Figure 2). Yang et al. (2019), Zhang and Huang (2020)
proposed quantile-specific joint models, and we build our model based on their works. We consider
a PH model for quantile-specific hazards assuming that the hazard rate at any time point is associated
with the estimated biomarker quantiles along with the time-invariant covariates.

We propose two different formulations of the PH model. First, assume that the time-varying
covariates (i.e. medicine doses, for example) only affect the biomarker values, and can have only
indirect effects on the time-to-event through the biomarkers (Kundu et al. 2024a). This assumption
is realistic for many biomedical applications where the event-time is not directly controlled by the
medicine doses. However, the medicine doses control the biomarker values which affect the time-
to-event. For such situations, our model will be as follows:

λ
(τ )
i (t) = λ

(τ )
0 (t)exp

[
Ψ(τ )TQ

(τ )
i (t) + γ(τ )T zi

]
, (3.4)

where Q
(τ )
i (t) = [Q

(τ )
i1 (t), Q

(τ )
i2 (t)]T , and Q

(τ )
ik (t) = g

(τ )
k (t) + β

(τ )T
k xit + η

(τ )T
k zi + ω

(τ )
ik (t); for

k = a, b. Here λ0 denotes the baseline hazard, and Ψ and γ, respectively, denote the effects of the
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biomarker quantiles and the time-invariant covariates on the hazard rate. The baseline hazard func-
tion λ

(τ )
0 (t) can be modeled in many different ways. For example, Rizopoulos (2016) used a cubic

B-Spline and used the following expression log(λ
(τ )
0 (t)) =

Q∑
q=1

γ
(τ )
0,q Bq(t, ν), where Bq(t, ν) is the

q-th basis function of B-splines with knots ν1, ν2, . . . , νQ (typically taken as equal percentiles of the
event-times). For our illustration, however, we consider a constant baseline hazard for simplicity.

Second, if we assume that the time-varying covariates can directly affect the time-to-event (or
hazard rate) as well, then these covariates can be taken as two additional covariates (time-dependent)
in the PH model. The hazard rate is now modeled as follows:

λ
(τ )
i (t) = λ

(τ )
0 (t)exp

[
Ψ(τ )TQ

(τ )
i (t) + γ(τ )T zi +α(τ )T xi(t)

]
, (3.5)

where xi(t) = [xi1(t), xi2(t)]
T .

For real applications, sometimes, it might not be possible to figure out which of the above two
choices will be better. Therefore, we recommend considering both the models given in equations
(3.4) and (3.5), and then selecting the one which gives the better fit to the data. Goodness of fit can
be assessed by the standard measures, for example, AIC, BIC, LPML etc. On the contrary, if the
main objective of the study is prediction then one can train both the models on the data and use a
super learner (Naimi and Balzer 2018) for better prediction.

3.3 Joint likelihood and Bayesian inference

We use a Bayesian approach and estimate the regression coefficients based on the joint posterior
distribution. We first derive the joint likelihood function as follows.

From longitudinal submodel, considering the mixture representation of ALD, we get the follow-
ing conditional distributions:
Yijk|eijk, ω(τ )

ik (tij) ∼ N
(
g
(τ )
k (tij) + β

(τ )T
k xij + η

(τ )T
k zi + ω

(τ )
ik (tij) + θ1keijk, θ

2
2kσkeijk

)
,

eijk|σk ∼ exp( 1
σk

).

Let ω(τ )
i = {ω(τ )

ik }, Y = {Yijk}, s = {si}, and Θ denotes the set of all model parameters (from
the longitudinal and the event-time submodels). The joint likelihood is expressed as follows:

L(Θ|Y, s,ω(τ )
i ) =

N∏
i=1

[ ni∏
j=1

∏
k=a,b

(
{f1(Yijk|eijk, ω(τ )

ik (tij)} × {f2(eijk|σk)}
)
×l(ω

(τ)
i )×l(si|Θ)

]
,

(3.6)
where f1 and f2, respectively, denote the (conditional) density of Yijk|eijk, ω(τ )

ik (tij); and the con-
ditional density of eijk|σk. Here,

l(ω
(τ)
i ) =

1√
2π|ti1Στ |

× exp
(
− 1

2
wT

i1(ti1Στ )
−1wi1

)
×

16∏
j=2

1√
2π|Ωij |

× exp
(
− 1

2
(wij − wi,j−1)

TΩ−1
ij (wij − wi,j−1)

)
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is the likelihood contribution from the random effects, and

l(si|Θ) =
(
λ
(τ )
i (si)

)Ii × exp
(
−

si∫
0

λ
(τ )
i (t)dt

)

is the likelihood contribution (for the i-th individual) from the event-time submodel. Here, Ωij is
the 2 × 2 variance-covariance matrix for dependent Weiner process, i.e. wij , where Ωij = (twij −
twi,j−1)Στ ; j = 1, . . . ,M − 1. For our computation, we take M=16 since we did not see any
change in the estimates for the values higher than 16.

In the Bayesian setting some prior distributions are assumed for Θ, and then the joint posterior
distribution is derived as follows: π(Θ|Y, s) ∝ L(Θ|Y, s,ω(τ )

i ) × π(Θ), where π(Θ) is the joint
prior distribution for the set of all model parameters. Assuming independent prior distributions for
different model parameters we derive the full conditional distribution for each regression coefficient
from the joint posterior distribution, and sample from the full conditional distributions for imple-
menting Markov Chain Monte Carlo (MCMC) algorithm. We use the more recently developed R
JAGS which can automatically run the MCMC algorithm without manually sampling from each full
conditional distribution. R JAGS also provides the diagnostic checks for the convergence of the
chains. We note that joint models are typically implemented using JMBayes software developed by
Rizupoulos et al. (2017). However, JMBayes is less flexible and therefore, we use R JAGS and also
recommend using it for Bayesian joint modeling.

In many real applications, the longitudinal biomarker values might be missing at some time
points. Missingness might happen when the some subject under the study become unavailable at
some time points. Joint models can impute missing outcomes effectively (Kundu et al., 2024a), and
in our setting we can also impute the missing biomarkers within each MCMC iteration. We simply
treat the missing values as unknown parameters, and then keep updating those in each MCMC
iteration assuming that the missingness is “ignorable”. In particular, we assume “missing at random”
(MAR) setting where the missing observations depend only on the observed data points.

In our notation, Θ denotes the set of all model parameters. Let Θ(m) be the updated Θ in the
m-th iteration. Based on Θ(m), we sample the random effects ωik for a fixed time point, say t. Next,
conditional on ωik, we sample the missing biomarker values for one specific biomarker conditional
on the other biomarker and the model parameters. This will preserve the underlying dependence
between the two biomarkers, and we repeat this for each biomarker and for each time point. This
gives us a complete dataset with no missing biomarker. We use this complete dataset for updating
Θ from Θ(m) to Θ(m+1). By considering M iterations, we obtain M complete datasets based
on which we estimate the model parameters. As shown in Kundu et al. (2024a), such a method
improves the accuracy of the estimates, and therefore, we recommend this method for each quantile
level τ in our setting. However, for our numerical illustrations we do not consider missing biomarker
values.
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4 Numerical Studies

We perform two simulation studies to illustrate the usefulness of the proposed quantile regression
approach to longitudinal joint modeling. In the first simulation study, we illustrate the interpretation
of the results from the analysis. In the second study we show that for a skewed distribution (of
the biomarkers) quantile-regression joint modeling performs better than the traditionally used linear
mixed joint model.

4.1 Simulation study 1

We consider two longitudinal biomarkers, Ya and Yb, with two time-varying covariates and six time-
invariant covariates. The time-varying covariates, which we refer to as medicines (for illustration
only), are denoted by X1 and X2. For each subject and for each time point we sample X1 and
X2 values from a Beta (2,2) and Beta (4,2) distribution, respectively. Time-invariant covariates
are denoted by Z1, Z2, . . . , Z6, and those are generated from different probability distributions as
summarized and shown in Table 1. We consider 281 subjects for which the biomarkers are mea-
sured at different time points. We consider an irregular setting (which is more practical) where the
number of measurements are different for different subjects. Total number of measurements from
the i-th subject is ni, and we take ni = (IVi=1Poisson(3) + IVi=0Poisson(10)) + 5, with Vi ∼
Binomial(1, 0.3). The first time of measurement is same for all subjects, i.e. ti1 = 1, and the differ-
ence in two consecutive time points i.e. tij−ti,j−1 are sampled as: tij−ti,j−1 ∼ Binomial(1, 0.5)+
4. The censoring times Ci are sampled as Ci ∼ Binomial(5, 0.5)× 4+ 280, with at least one of the
Ci is 300. The longitudinal biomarkers are sampled using equation (3.2) with g as a linear function
of time, and for sampling time-to-event we use equation (3.4). We consider five different quantile
combinations i.e. τ = (0.25, 0.25), (0.25, 0.75), (0.50, 0.50), (0.75, 0.25), (0.75, 0.75).

Table 1: Simulation setting for time-invariant covariates in Simulation 1.

Covariate Distribution

Z1 Binomial (1,0.7)

Z2 Binomial (2,0.7) × 0.5

Z3 Binomial (3,0.3) × 0.5

Z4 Binomial (4,0.2) × 0.5

Z5 N(0, 1)

Z6 N(0, 1)

4.1.1 Computational Details

We use Bayesian computation for estimating the model parameters, as discussed earlier, and there-
fore, we consider prior distributions for the model parameters. For each component of β, η, ζ in
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equation (3.1), and for γ, we take N(0, 1000) prior distribution. For the covariance matrix Στ ,
we take Inverse Wishart (I3, 2) prior, and for σk we take Inverse Gammma (0.05,0.05) prior. We
select the flat prior distributions typically used in the existing Bayesian literature where the hyper-
parameters have minimal effect on the final estimates. We perform a sensitivity analysis with differ-
ent choices of the hyper-parameters and noticed that the final estimates did not change.

We use MCMC iterations for the parameter estimation. We take 6,000 iterations from two dif-
ferent chains (with different starting values). We discard the first 1,000 iterations as burn-in, and
thin the chains by saving every 10-th iteration. This results in 1,000 remaining iterations used for
the estimation. Model parameters are estimated by their respective sample means computed from
MCMC iterations. The convergence of the chains are assessed by trace plots which we directly get
in JAGS. In Figure 3 we show the trace plots for the association parameters (γ) for different quantile
levels. These plots show a good convergence of the respective chains. In addition, scale reduction
factors (Brooks and Gelman 1998) were also computed by JAGS, and the values are all smaller than
1.1 indicating a good convergence of the chains. Similar results are obtained for the other model
parameters (results not shown).

4.1.2 Results and Interpretations

In Figure 4, we show the quantile-specific effects of the six time-invariant covariates for two biomark-
ers and time-to-relapse. For the biomarker Ya, we see that across all the five quantile-levels variables
1, 5 and 6 have positive effects. Variable 4 has negative effects for τ = (0.25, 0.25), (0.50, 0.50),

(0.75, 0.25), and no significant effect for the other two levels. Across all five quantile levels, vari-
ables 2 and 3 have no effect on Ya. For the second biomarker Yb, variable 5 has positive effects
across all quantile levels, and variable 6 also has positive effects except for the quantile levels (0.25,
0.75) and (0.75,0.75). Variable 3 has negative effect for τ = (0.75, 0.75). On the other hand, for
the relapse-time, variable 5 has positive effects except for τ = (0.25, 0.25), variable 1 has posi-
tive effects at τ = (0.25, 0.75), (0.75, 0.75), variable 2 has positive effect for τ = (0.25, 0.75),
variable 3 has negative effects for τ = (0.25, 0.25), (0.50, 0.50), (0.75, 0.25). We see that none
of the covariates has significant effect on two outcomes for all quantile levels, and also there is no
covariate with no effect on any outcome at any quantile-level. This illustrates the usefulness of a
quantile-regression modeling in the way that it identifies the covariates effect at different quantiles
of the data distribution.

Figure 5 shows the quantile-specific effects (and the estimated 95% credible intervals) of two
medicines on two biomarkers. We see that for Ya, across all quantile levels medicine 1 has con-
sistent negative effects, but the medicine 2 has slightly positive effects with the credible inter-
vals containing zero. For the second biomarker Yb, medicine 1 has mostly insignificant effect
except for the level τ = (0.50, 0.50), and medicine 2 has significantly positive effects for τ =

(0.25, 0.25), (0.75, 0.25), (0.50, 0.50). For the other two levels the estimated effect is close to zero.
This figure also indicates that the effects of the medicines change from one quantile level to the
other, and therefore, quantile-based modeling is really meaningful. In real data application, such
a plot indicates how the dose of the medicines could be adjusted for a higher (or lower) values of
certain biomarker.
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Figure 3: Trace plots for the association parameters in Simulation Study 1.

In Figure 6 the estimated association parameters and the corresponding 95% credible intervals
are shown for different quantile-levels. We see that the estimated association parameters for Ya are
slightly positive and the credible intervals do not contain zero. However, for Yb, the estimates are
mostly negative, and the credible intervals do not contain zero except for the level (0.75,0.25). While
the estimates for Ya are mostly similar, those for Yb differ across quantiles. This figure indicates that
a higher values of Ya increases relapse probability but higher values of Yb increases the probability
of no-relapse. We note that Figure 2 indicated the similar thing which is re-established in Figure
6. For cancer patients, occurrence of a relapse might be affected by some specific biomarkers (for
example, platelet count, red blood cell count etc.) and such a plot would be extremely helpful in
deciphering the underlying cancer dynamics.

In Figure 7 we show the estimated median non-relapse probabilities for five quantile-levels.
Here the covariates are fixed at their respective median values, and the random effects (based on
the bivariate Brownian motion) are averaged over all subjects. We see that the survival (non-relapse



A quantile-regression approach to bivariate longitudinal joint modeling 123

Var1

Var2

Var3

Var4

Var5

Var6

25_25
25_75

50_50
75_25

75_75

Y_a

Var1

Var2

Var3

Var4

Var5

Var6

25_25
25_75

50_50
75_25

75_75

Y_b

Var1

Var2

Var3

Var4

Var5

Var6

25_25
25_75

50_50
75_25

75_75

Relapse−Time

Significant

Negatively

Not

Positively

Figure 4: Quantile-specific effects of the fixed covariates in Simulation Study 1.

probability) curves for the levels (0.75,0.75) and (0.25,0.75) are uniformly higher than the curves for
the other levels, and the survival probabilities are higher than 0.90. On the other hand, the curve for
the level (0.75,0.25) is uniformly lower than all the other curves, and the survival probability goes
down to 0.55 in the end. This figure illustrates that irrespective of the quantile level of Ya, if Yb is
at the higher level then the survival probability is towards the higher side. On the other hand, when
Yb is at lower levels, the survival probability is lower even if Ya is at a higher level. This indicates
that the biomarker Yb is more important and more informative for a relapse. Detection of such a
biomarker is very important in a real biomedical application.

Finally, in Figure 8 we show the estimated quantiles for Ya and Yb at levels 0.25, 0.50 and 0.75.
It is seen that the estimated quantile values for a higher quantile level is indeed higher, and hence
there is no quantile cross in our case. This illustrates that our model results in meaningful estimates
of the quantiles and therefore can be used in real application.
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Figure 5: Quantile-specific effects of the two medicines and the respective 95% credible intervals in
Simulation Study 1.

4.2 Simulation study 2

We perform a second simulation study for assessing the effectiveness of the quantile regression joint
model (QRJM) over the linear mixed joint model (LMJM) when the biomarkers are generated from
a skewed distribution. We simulate two longitudinal biomarkers (Yijk) from the model given in
equation (3.2), without g (the general effect of time). We consider two time-varying covariates,
i.e. xij = [xij1, xij2], and four fixed covariates, i.e. zi = [zi1, zi2, zi3, zi4]. All the covariates are
generated from a standard normal distribution, and the subject-specific random effects are generated
from a bivariate normal distribution with mean vector=0, and the covariance matrix=Σ. The variance
components in the matrix Σ are 1.5, 2.5; and the correlation between the two biomarkers is 0.65. The
random errors are generated from a standard normal distribution and from an asymmetric Laplace
distribution with twp different skewness parameters, i.e. τk = 0.25 and τk = 0.50 .

For generating time-to-event we use the model given in equation (3.4), with a constant baseline
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Figure 6: Quantile-specific association parameters and the respective 95% credible intervals for
Simulation Study 1.

hazard. We consider fifteen longitudinal measurements for each subject, and then subjects are fol-
lowed for the next fifteen time points. At T=30, subjects are all censored. We consider the following
three cases.
Case I: Random errors are generated from ALD with τk=0.25, k = 1, 2 (right-skewed distribution).
Case II: Random errors are generated from ALD with τk=0.50, k = 1, 2 (symmetric distribution
with heavy tails).
Case III: Random errors are generated from a standard normal distribution (symmetric distribution).

For each of the above three cases we generate 200 datasets, and for each dataset we consider
100 subjects. We fit both QRJM and LMJM, and use MCMC for parameter estimation. We note
that for LMJM, we use the model in equation (3.2) without τ , and the errors ϵijk are independent
N(0, σ2) random variables, and for equation (3.4) we replace Q

(τ )
i (t) by E(Yijk) obtained from

equation (3.2), and there is no τ here as well. In other words, LMJM considers the effects of the
mean outcomes on time-to-event, and also aims to assess the effects of the covariates on the mean
biomarkers.

For evaluating the discriminative power of a model we compute the area under the receiver
operating characteristic curve (AUC) for different models. The AUC measures how effectively a
joint model discriminates the subjects for which a relapse occurs from the subjects with no relapse
(Rizopoulos 2016, Kundu et al. 2024b). Let πi(t+∆t|t) be the probability that for the i-th subject
there is no relapse upto time t+∆t given that it is event-free (no relapse) until time t. For any pair
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Figure 7: Median estimated non-relapse probability curves for different quantile combinations.

of subjects [i, j] who are event-free until time t, the discriminative power of a model is assessed by:
AUC = P [πi(t+∆t|t) < πj(t+∆t|t)|(Ti ∈ (t, t+∆t]) ∩ (Tj > t+∆t)], where Ti and

Tj , respectively, denote the actual event-time for the i-th and the j-th subject. This means that
for a fixed time-interval (t, t + ∆t] if a relapse occurs for the i-th subject but the j-th subject is
event-free upto time t+∆t, then the model must assign a higher non-relapse probability to the j-th
subject.

Table 2: AUC values for different models under different settings in the Simulation Study (values
are rounded upto two decimal places).

Predicted AUC(t,∆t)

Data Distribution t ∆t True AUC(t,∆t) QRJM(τ=(25,25) QRJM(τ=(50,50) LMJM

ALD(τk=0.25) 15 5 0.85 0.83 0.82 0.75

8 0.88 0.87 0.85 0.77

10 0.92 0.91 0.89 0.81

ALD(τk=0.50) 15 5 0.84 0.83 0.85 0.80

8 0.89 0.88 0.89 0.84

10 0.90 0.89 0.88 0.85

N(0, 1) 15 5 0.83 0.80 0.83 0.84

8 0.87 0.84 0.86 0.87

10 0.91 0.87 0.89 0.89
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Figure 8: Estimated quantiles for the two biomarkers in Simulation Study 1.

We consider t=15, and for three different values of ∆t (i.e. ∆t=5,8,10) we compute the true
AUC (based on the simulated dataset) and the predicted AUC for three different models. Results
(average AUC values from 200 datasets) are summarized in Table 2. We note that for data generated
from ALD with τk=0.25, QRJM provides a better prediction (i.e. higher AUC values) than LMJM.
For data generated from ALD with τk=0.50, we observe the similar results. For data generated from
a standard normal distribution, the predictive power of LMJM and a QRJM with τ=(0.50,0.50) give
similar results. Thus, in general, we notice that QRJM provides a better prediction than LMJM.

We note that for assessing the performance of a prediction model Brier scores are popularly use.
Brier score provides the overall model performance. In the joint modeling of longitudinal outcomes
and time-to-event it is of interest to evaluate models based on the discriminative power. Therefore,
AUC has been used popularly in the joint modeling literature. However, we note that for obtaining
a better predictive power Rizopoulos and Taylor (2024) proposed a super learner approach where
several models are combined altogether and the resulting super learner provides a better prediction
than any of the individual model. These authors used Integrated Brier Scores (IBS) for assessing
the models under investigation. We exclude these methods in this work for the ease of presentation
and also because we consider simulated datasets only, but for a real application Brier Scores can be
extremely helpful.
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5 Discussion

Joint modeling is a very useful tool in biomedical research, and it can provide scientifically meaning-
ful statistical inferences in an effective way. However, the traditional linear mixed model based ap-
proach fails to provide efficient inference when the outcomes of interest come from a non-Gaussian
and/or a skewed distribution. In this article, we illustrate a Bayesian quantile-regression based joint
model which can handle such datasets. Our numerical studies have shown the practical usefulness
and merits of this approach over the linear mixed joint models used commonly in the existing lit-
erature. We are quite confident that in many real applications the proposed model can be used for
powerful statistical inferences. Also, our model can automatically handle missing biomarker values
without much computational difficulty.

There are, however, certain limitations of the proposed model and these limitations are quite
common for Bayesian quantile regression models in general. First, we assume an Asymmetric
Laplace Distribution with some specific scale parameter for the given dataset for modeling one par-
ticular quantile level. For modeling a different quantile level, we assume a different scale parameter
for the same dataset, and this results in a lack of compatibility. In addition, although we do not
come across a quantile cross in our numerical illustrations, there is no theoretical justification which
can state that one would not come across such a problem in our modeling approach. Also quantile
regression models are typically problematic in higher dimensions. All these typical issues of a quan-
tile regression model are there in our proposed QRJM, unfortunately. However, as illustrated in this
article, QRJM is able to handle non-Gaussian data in a more effective way than LMJM.
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