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SUMMARY

Asthma is the most common multifactorial chronic disease among children. Identifying
children at high risk of severe asthma outcomes, such as emergency department (ED) visits
and hospitalizations due to asthma exacerbation, is essential in asthma care and clinical
management. Existing studies have employed different machine learning methods to pre-
dict pediatric asthma occurrence or progression using electronic health records (EHR) data.
However, these studies often neglected the correlated nature of EHR data (e.g., repeated
clinic visits of the same patients). To address this issue, this research applied and evaluated
two types of machine learning-based methods for longitudinal or clustered data, including
random forests with mixed effects and generalized neural networks with mixed effects. We
applied these methods to the real-world large asthma EHR data obtained from the Chil-
dren’s Hospital of Pittsburgh in a four-year period expanded from pre to post-COVID-19
pandemic, focusing on predicting the chance of having ED visits due to asthma exacer-
bation and the length of stay (LOS) when hospitalized. Moreover, we characterized the
importance of predictors using the kernel SHAP metric and identified vulnerable patient
groups that are more likely to experience asthma exacerbation or have a longer LOS. Our
findings provide valuable guidance to improve pediatric asthma care by prioritizing the
protection of these vulnerable patients, especially when a disruptive health crisis occurs.
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1 Introduction

Asthma, a chronic and multifactorial respiratory disease, remains present worldwide, with 300 mil-
lion people affected (Lizzo and Cortes, 2019). In the United States, recent data from the Centers for
Disease Control and Prevention (CDC) reveals that 4,675,475 children under 18 years old were re-
ported to have current asthma. Uncontrolled asthma leads to recurrent Emergency Department (ED)
visits and hospitalizations, where 270,330 ED visits and 27,055 hospitalizations were reported in a
recent 12-month period. Moreover, managing asthma symptoms during the COVID-19 pandemic
is challenging due to the disruptions in normal hospital visits and patient care. It is important to
study the factors influencing pediatric asthma severe outcomes (e.g., ED visits and hospitalizations)
during and after the COVID-19 disruption.

Recently, the emergence of machine learning (ML) and deep learning (DL) methods has inspired
research in predicting pediatric asthma outcomes through data-driven approaches using electronic
health records (EHR) data. For example, AlSaad et al. (2022) employed recurrent neural networks to
predict the frequency of ED (categorized as no ED visits, 1-2 ED visits, and >2 ED visits) in the next
12 months among pediatric patients from the Cerner Health Facts EHR database. Sills et al. (2021)
used the H2O AutoML platform to build ensembled ML models to predict the need for hospitaliza-
tion among pediatric patients presenting at ED for asthma exacerbation using data from five hospital
emergency departments in Colorado. Wang et al. (2019) compared deep neural networks (DNN) and
penalized Lasso LR in predicting pediatric ED visits within 3 months using the Medicaid claims data
from Parkland Community Health Plan in 2012 to 2014, revealing similar performance between the
two methods. Patel et al. (2018) compared decision trees (DT), Lasso LR, RF, and gradient boosting
in predicting the need for hospitalizations using EHR data among pediatric patients who visited two
urban emergency departments affiliated with a single children’s hospital for asthma exacerbation in
2012 to 2015. The DT exhibited the lowest AUCs, while other methods demonstrated comparable
performance. Das et al. (2017) utilized EHR data in 2013 to predict frequent pediatric ED users (de-
fined as ≥2 ED visits for asthma exacerbation) in 2014 at Weill Cornell Medical Center. Notably,
all these papers ignored the potential correlations inherent in the EHR data. For instance, the same
patient might have multiple ED encounters during a specific follow-up period, while the previous
work either treated them independently or transformed the longitudinal binary ED occurrence into
the frequency (i.e., counts within a time period) in the analysis.

Multiple ML and DL methods have recently been extended to incorporate the longitudinal struc-
ture using a generalized linear mixed models (GLMM) framework. Tree-based methods have gained
increasing attention for their advantages of interpretation through the tree structure. For Gaussian
response data, linear mixed effects regressions through a single tree (e.g., MERT) or random forests
(RF) (e.g., MERF) have been developed (Hajjem et al., 2011; Ahlem Hajjem and Larocque, 2014),
while Sela and Simonoff (2012) proposed random effects expectation maximization trees (RE-EM)
to incorporate autocorrelation of errors within subjects. For non-Gaussian response data, several
groups have considered replacing the fixed effects with a single tree within the GLMM framework
(Hajjem et al., 2017; Fokkema et al., 2018; Fontana et al., 2021), while another group considered
incorporating RF to estimate fixed effects (Pellagatti et al., 2021). In addition, Bayesian methods
become popular due to their fast computation and ability to make inferences through posterior inter-
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vals. For example, Binary mixed effects model forest (BiMM Forest) (Speiser et al., 2019) focuses
on binary outcomes by employing a Bayesian GLMM to mitigate the convergence issues commonly
associated with traditional GLMMs.

Neural network (NN) methods have also been developed in building prediction models for lon-
gitudinal or clustered data. For example, DNN with feed-forward structures were considered to
approximate fixed and random components for Gaussian responses (Tandon et al., 2006; Simchoni
and Rosset, 2021; Maity and Pal, 2013). Recently, multiple works have been done to extend the
feed-forward DNN to model non-Gaussian responses (Wörtwein et al., 2023; Mandel et al., 2021) .
For example, Mandel et al. (2021) incorporated feed-forward neural networks into the mixed model
framework (GNMM), using stochastic gradient descent (SGD) to simultaneously update the random
effects, network weights, and biases by maximizing the quasi-likelihood function.

In this paper, we consider two outcomes: ED visits due to asthma exacerbation (a binary out-
come) and length of stay (LOS) for hospitalization (a continuous outcome). “ED exacerbation” is
defined as Yes if the patient visited ED for asthma exacerbation (evidenced by getting the albuterol
treatment during their asthma-related ED visit), while other types of visits are coded as No for
“ED exacerbation”. The LOS is calculated as the difference between the discharge date/time and
the hospitalization date/time for patients admitted to the hospital from ED visits with exacerbation.
All the patient visit data were recorded longitudinally. We consider both tree-based methods (i.e.,
BiMM Forest, MERF) and NN-based methods (i.e., GNMM) to build prediction models for ED
exacerbation and LOS, respectively. The RF and GNMM methods, without taking into account the
correlations among repeated visits, are also implemented to serve as benchmarks. In Section 2, we
introduce the pediatric asthma EHR data. Section 3 introduces the three prediction methods used
in this paper, including the BiMM Forest, MERF, and GNMM. Section 4 applies different predic-
tion models on the pediatric asthma EHR data and compares the performance in terms of prediction
accuracy. Subgroups with high risks for ED admission or hospitalization are also identified and
characterized. Section 5 concludes our analysis and discusses the findings.

2 Data Description

In this study, our EHR data were obtained from the Children’s Hospital of Pittsburgh (IRB:STUDY
22040043). The dataset curated more than 31,000 encounters (i.e., visits) for asthma-related symp-
toms from 13,264 children (aged between 2 to 21 years old) between January 2019 and January
2023. Patient demographics variables include age, sex (female and male), race (black, white, oth-
ers), state (live in Pennsylvania (PA) or not), written asthma action plan (WAAP) (yes or no), in-
fluenza vaccination (yes or no), the existence of chronic diseases (existence of any bronchomalacia,
bronchopulmonary dysplasia, immunodeficiency, pulmonary hypertension or tracheomalacia), exis-
tence of acute respiratory diseases (existence of acute bronchospasms or subcutaneous emphysema)
and pandemic period. WAAP is an educational intervention recommended by the National Heart,
Lung, and Blood Institute (NHLBI), which is tailored to the patient’s individual medical history and
symptoms for asthma self-care. At each visit, WAAP is recorded as Yes if the patient (or caregiver)
is provided with WAAP. Otherwise, it is recorded as No. For each encounter, we categorize it into
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three pandemic periods, defined as the pre-pandemic period (January 1, 2019, to March 14, 2020),
the pandemic period (March 15, 2020, to April 30, 2021), and the post-pandemic period (after May
1, 2021). The cut-off dates are based on the COVID-19 lockdown and major back-to-school dates.

Figure 1: Summary of pediatric asthma dashboard from January 2019 to January 2023 in Children’s
Hospital of Pittsburgh

In this dataset, 8,500+ encounters (from 5,348 patients) are ED visits due to asthma exacerbation
in which 3,810 (71.2%) patients had one ED visit and 1,538 (28.8%) patients had two or more ED
visits (Figure 1). Table 1 presents the patient characteristics grouped by ED exacerbation status. We
use ‘n’ to denote the number of patients and ‘N’ to denote the number of encounters. Four variables,
sex, race, PA, and existence of chronic diseases, do not change over time, while all the other variables
may change over time. The majority of patients live in PA (97.3%); 41.1% of patients are female;
more than two-thirds of the patients are white (68.4%); and the majority of patients are between 5
and 12 years old (53.5%). There are more black patients among those who had ED exacerbation
than among those who did not have ED exacerbation (40.6% vs. 12.2%), while there are more
white patients among those who did not have ED exacerbation than those who had ED exacerbation
(80.1% vs. 51.1%) (p < 0.001). Patients with ED exacerbation are younger than those without
ED asthma exacerbation (p < 0.001). The distributions of chronic diseases, influenza vaccination,
pandemic period, WAAP, acute respiratory diseases, and hospitalization are all significantly different
between the groups with and without ED exacerbation (all p < 0.001). For example, patients with
ED exacerbation are less vaccinated and have less chance of having WAAP (percentage of having
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influenza vaccination: 50.5% vs 68.8%, percentage of having WAAP: 21.1% vs 44.6%). Moreover,
in pre-and post-pandemic, more encounters are ED exacerbation visits than non-ED exacerbation
visits (35.3% vs. 31.6% in pre-pandemic, 52.5% vs. 45.3% in post-pandemic); while during the
pandemic, fewer encounters are ED exacerbation compared to non-ED exacerbation (12.3% vs.
23.1%).

Table 2 compares the LOS values across different covariate groups. Most covariates are signifi-
cantly associated with LOS values. For example, younger patients (5-12 years old) have shorter LOS
than older patients (13-21 years old) with the youngest group (2-4 years old) having the shortest LOS
(p < 0.001). Notably, the LOS is significantly different across three pandemic periods (p < 0.001).
Patients who were hospitalized during the pandemic have the shortest LOS while patients who were
hospitalized after the pandemic have the longest LOS (33.0 hours during-pandemic vs 38.5 hours
post-pandemic). In addition, patients who are male, live in PA, do not have chronic diseases have
significantly shorter LOS compared to their corresponding complementary group (all p < 0.001).
Note that WAAP is not included for analyzing LOS since WAAP was given after the hospitaliza-
tion, which does not impact the current LOS. These exploratory analyses reveal strong associations
between the covariates we explored and ED exacerbation or LOS. We decided to include all these
covariates into our prediction models.

3 Methods

This section describes the tree-based and neural-network-based methods we implemented for the
pediatric asthma EHR data. We also introduce the evaluation metrics to compare the model perfor-
mance.

3.1 Notation

The notations for the methods we described below are defined as follows. yij is the outcome for
cluster i at jth visit (j = 1, . . . , ni). In our application, each patient is considered as a cluster
(Section 4). Xij is the fixed effect covariate vector (of length p); Zij is the random effect covariate
vector (of length k) and bij is the associated unknown random effect coefficient vector.

3.2 Random Forests with Mixed Effects

BiMM Forest. For binary outcomes, the BiMM Forest model is defined by:

logit(yij) = β0 + β1RF (Xij) + ZT
ijbij ,

where logit(yij) = log(
yij

1−yij
) is the logistic link function; RF (Xij) is the predicted probability for

the ith cluster at the jth visit obtained from the standard Random Forest model. β0 represents the
coefficient for the intercept, while β1 is the coefficient for the RF (Xij).

The algorithm for BiMM Forest consists of three steps:
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Table 1: Patient characteristics by ED exacerbation status

ED Exacerbation (No)

(n=7,916)

(N=23,371)

ED Exacerbation (Yes)

(n=5,348)

(N=8,543)

Total

(n=13,264)

(N=31,914)

p-value*

Sex (n, %)

Female 3,280 (41.4) 2,171 (40.6) 5,451 (41.1) 0.628

Male 4,636 (58.6) 3,177 (59.4) 7,813 (58.9)

Race (n, %)

White 6,340 (80.1) 2,734 (51.1) 9,074 (68.4) <0.001

Black 968 (12.2) 2,173 (40.6) 3,141 (23.7)

Others 608 (7.7) 441 (8.2) 1,049 (7.9)

PA (n, %)

Yes 7,639 (96.5) 5,261 (98.4) 12,900 (97.3) <0.001

No 277 (3.5) 87 (1.6) 364 (2.7)

Existence of chronic diseases (n, %)

Yes 340 (4.3) 187 (3.5) 527 (4.0) <0.001

No 7,576 (95.7) 5,161 (96.5) 12,737 (96.0)

Age (N, %) <0.001

2 YR - 4 YR 4,414 (18.9) 3,338 (39.1) 7,752 (24.3)

5 YR - 12 YR 13,165 (56.3) 3,908 (45.7) 17,073 (53.5)

13 YR - 21 YR 5,792 (24.8) 1,297 (15.2) 7,089 (22.2)

Influenza vaccination (N, %)

Yes 16,082 (68.8) 4,310 (50.5) 20,392 (63.9) <0.001

No 7,289 (31.2) 4,233 (49.5) 11,522 (36.1)

Pandemic period (N, %)

Pre-pandemic 7,385 (31.6) 3,012 (35.3) 10,397 (32.6) <0.001

During-pandemic 5,410 (23.1) 1,048 (12.3) 6,458 (20.2)

Post-pandemic 10,576 (45.3) 4,483 (52.5) 15,059 (47.2)

WAAP (N, %)

Yes 10,422 (44.6) 1,804 (21.1) 12,226 (38.3) <0.001

No 12,949 (55.4) 6,739 (78.9) 19,688 (61.7)

Existence of acute respiratory diseases (N, %)

Yes 17 (0.1) 115 (1.3) 132 (0.4) <0.001

No 23,354 (99.9) 8,428 (98.7) 31,782 (99.6)
⋆p-values were computed using the Chi-square test.

n denotes the number of unique patients; N denotes the number of visits.
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Table 2: Comparison of LOS among hospitalized patients for each variable

Number of visits

(N=3,750)

LOS (hours)

Mean (SD)
p-value*

Sex (N, %) <.001

Female 1,534 (40.9) 39.0 (25.9)

Male 2,216 (59.1) 36.2 (23.7)

PA (N, %) 0.007

Yes 3,678 (98.1) 37.1 (24.5)

No 72 (1.9) 46.8 (29.1)

Race (N, %) 0.071

White 1,975 (52.7) 37.8 (25.7)

Black 1,484 (39.6) 37.3 (24.1)

Others 291 (7.7) 34.2 (19.6)

Age (N, %) <.001

2 YR - 4 YR 1,722 (46.0) 34.8 (23.6)

5 YR - 12 YR 1,596 (42.6) 38.8 (24.7)

13 YR - 21 YR 432 (11.4) 41.8 (27.5)

Existence of chronic diseases (N, %) <.001

Yes 246 (6.6) 50.7 (33.3)

No 3,504 (93.4) 36.4 (23.7)

Influenza vaccination (N, %) 0.007

Yes 2,106 (56.2) 38.2 (25.5)

No 1,644 (43.8) 36.1 (23.6)

Pandemic period (N, %) <.001

Pre-pandemic 1,235 (32.9) 36.8 (24.5)

During-pandemic 439 (11.7) 33.0 (21.8)

Post-pandemic 2,076 (55.4) 38.5 (25.3)

Existence of acute respiratory diseases (N, %) 0.365

Yes 93 (2.5) 40.0 (28.6)

No 3,657 (97.5) 37.2 (24.6)
⋆p-values were computed using the Chi-square test.
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• Step 1: Treat yij as independent observations and train the standard random forests using
covariates Xij and obtain the predicted probabilities RF (Xij).

• Step 2: Fit a Bayesian GLMM with yij as outcome and RF (Xij) from Step 1 as the fixed
effects covariate. Obtain a new predicted probability from Bayesian GLMM, denoted as qij .

• Step 3: Compute the updated binary response value y∗ij by adding the qij to the original yij
and applying a split function h(): y∗ij = h(yij + qij).

• Step 4: Repeat step 1 to 3 using y∗ij as the new outcome. The iteration ends until the change
of the posterior log-likelihood of Bayesian GLMM is below a tolerance value.

Three types of split functions, denoted as h1, h2, and h3, are employed in the algorithms. These
functions are designed to optimize different criteria, where h1 aims to maximize sensitivity, h2

targets specificity maximization, and h3 is intended to balance both sensitivity and specificity. For-
mulas of the three split functions can be found in section 3 of Speiser et al. (2019). Users can choose
the split function based on their preference. Source code available at github.com/bcjaeger/
bimm.

MERF . MERF is similar to the expectation–maximization algorithm used in the linear mixed-
effects model. The model is defined by:

yij = RF (Xij) + ZT
ijbij + ϵij ,

bi ∼ N(0, Di), ϵi ∼ N(0, Ri),

where RF (Xij) is the predicted value for the ith cluster at jth visit (j = 1, . . . , ni) obtained from
the standard Random Forest model; ϵi = (ϵi1, · · · , ϵini) is the ni × 1 vector of errors; Di is the
covariance matrix of bi = (bi1, · · · , bini

), and Ri is the covariance matrix of ϵi. It assumes that
bi and ϵi are independent of each other and only the between-cluster variation is considered in the
correlation, indicating that Ri is diagonal (i.e., Ri = σ2Ini

).
The MERF algorithm iterates through the following three steps:

• Step 1: Treat yij as independent observations and train the standard random forests using
covariates Xij and obtain the predicted values RF (Xij).

• Step 2: Calculate the estimated random effects b̂ij by applying a linear mixed effects model
with yij as outcome and RF (Xij) from step1 as the fixed effects component.

• Step 3: Compute y∗ij by subtracting the random component ZT
ij b̂ij estimated in step 2: y∗ij =

yij − ZT
ij b̂ij .

• Step 4: Repeat step 1 to 3 using y∗ij as the new outcome. The iteration ends until the change
of the generalized log-likelihood is below a tolerance value.

The algorithm reaches convergence when the generalized log-likelihood between two iterations
falls below a pre-specified threshold or the maximum number of iterations is reached. Source code
available at github.com/manifoldai/merf. The flowchart of the algorithms for BiMM For-
est and MERF are illustrated in Figure 2.

github.com/bcjaeger/bimm
github.com/bcjaeger/bimm
github.com/manifoldai/merf
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Figure 2: The flowchart of the algorithms used in BiMM Forest and MERF.

3.3 Generalized Neural Network Mixed Model (GNMM)

GNMM is a multi-layer neural network with covariates Xij being the input layer and µij being the
output layer depending on weights w(l), bias δ(l) across all layers l = 1, . . . , L + 1. The linear
predictor of the random effects ZT

ijbi is included in the final layer. An example of GNMM with
L = 2 hidden layers is shown in Figure 3. Specifically, when xij enters into the NN with L hidden
layers consisting of Kl nodes without random effects, we have

a
(1)
ij = g1{w(1)xij + δ(1)}, (3.1)

a
(l)
ij = gl{w(l)a

(l−1)
ij + δ(l)}, l = 2, ..., L, (3.2)

µb
ij = gL+1{w(L+1)a

(L)
ij + δ(L+1) + ZT

ijbi}, bi ∼ N(0, Di(θ)). (3.3)

Here, a(l)ij is the output of the layer l, gl(·) is the activation functions for layer l, δ(l) is the Kl × 1

bias vector. w(1) is a K1 × p weight matrix for the first layer in (3.1) while w(l) is a Kl × Kl−1

weight matrix for layer l = 2, . . . , L in (3.2). The final output µb
ij is produced by equations (3.1)

to (3.3), and the random effects coefficient vector bi is assumed to follow a multivariate normal
distribution with mean 0 and covariance Di. The covariance Di may depend on an unknown vector
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of variance components θ. gL+1(·) is the final activation function, which is the same as the link
function in GLMM. Specifically, the logit function is used to predict binary outcomes, while the
identity function is employed for continuous outcomes.

Figure 3: An example of GNMM with p = 6 input nodes xij fed into L = 2 hidden layers with
K1 = 3 and K2 = 2 nodes, respectively. The random effects ZT

ijbi are included in the final layer.

Instead of minimizing the cost function in traditional NN, GNMM maximizes the quasi-likelihood
by solving quasi-score equations through back-propagation. The quasi-likelihood is written as

exp {ql(w, δ, θ)} ∝

|D|−
1
2

∫
exp

 1

ϕ

m∑
i=1

ni∑
j=1

∫ µb
ij

yij

yij − u

αijv(u)
du− 1

2
bTD−1b− λ(wTw + δT δ)

 db,

where αij is a known constant, v(·) is a known variance function, and ϕ is a fixed dispersion pa-
rameter. w is a single column vector generated by the combined vectorization of w(1), ..., w(L+1),
δ is the concatenation of δ(1), ..., δ(L+1) and λ is the penalty term to avoid over-fitting. Since the
integration with respect to b does not have an analytical form, Laplace approximation is used for
that integration. The final objective function that GNMM maximizes is the approximated quasi-
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likelihood. Details can be found in section 2 of Mandel et al. (2021). Source code available at the
supporting information of Mandel et al. (2021).

Since our binary outcome has a large sample size with N > 30, 000, we implement batching in
the GNMM algorithm by creating batches containing subsets of samples to reduce the computational
burden. This adjustment enables GNMM to be trained on batches in each epoch. The batches are
generated by splitting the data at the patient level, ensuring that encounters from the same patients
are not separated into different batches.

3.4 Evaluation Metrics

To examine the model performance, we use the area under the receiver operating characteristic
(ROC) curve (AUC) to evaluate the model’s discriminatory power in predicting asthma ED exacer-
bation. The AUC values, ranging from 0 to 1, indicate the model’s predictive performance, where
an AUC greater than 0.5 suggests the predictive capability is better than a random guess.

Root mean squared error (RMSE) is used as the evaluation metric to assess the model perfor-
mance in predicting the continuous outcome LOS, where RMSE is defined as:

RMSE =

√∑n
i=1

∑ni

j=1 (yij − ŷij)2∑n
i=1 ni

where ŷij is the predicted value of jth encounter of the ith patient, ni is the number of encounters
of the ith patient and n is the total number of patients.

Variable importance (VIP) is calculated using the SHapley Additive exPlanation (SHAP) metric
introduced by Lundberg and Lee (2017). This method quantifies the contribution of each covariate to
the prediction of a specific sample. Specifically, the SHAP values for covariate xk, k = 1, 2, . . . , p,
represent the average difference in predicted values with and without the inclusion of xk across all
coalitions. We use the Kernel SHAP, an extended version of SHAP (Lundberg and Lee, 2017), to
compute VIP as it improves computational efficiency.

4 Application to Pediatric Asthma EHR Data

In the analysis of predicting asthma exacerbation, we applied three methods: standard RF, BiMM
Forest, and GNMM with the logit link. Similarly, in the analysis of predicting LOS, we also applied
three methods: standard RF, MERF, and GNMM with the identity link. For the GNMM method, we
tried with and without the inclusion of random effects during training. Specifically, BiMM Forest
was fitted with h1 using k = 0.1 as the split function (h1(yij+qij) = 1(yij+qij > k, 0 < k < 1)).
GNMM, with or without random effects, was fitted with 10 nodes in 1 hidden layer. For the ED
exacerbation prediction, due to the large sample size, we implemented the stochastic mini-batch
approach (with 25 batches) to save the computational load.

We applied the 5-fold cross-validation (CV) procedure for each method, which involves dividing
the data into five folds, with training on four folds and testing on the remaining one fold. We
repeated this process five times with different splits to ensure robust validation. We employed the
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fixed effects component of each method (i.e., extracted the random forest model from BiMM and
MERF, and the neural network without random effects from GNMM) to make predictions on the
testing data. We expect that incorporating mixed effects will assist in adjusting the fixed effects
models. Note that the data split in CV was performed based on individuals (not on encounters) to
avoid the separation of encounters from the same patients into different folds. After the comparison
of prediction performance across all models, the preferred model for each outcome was selected
for the downstream analysis, which includes calculating the VIP through kernel SHAP metric and
identifying the vulnerable subgroups using the top predictors.

4.1 Prediction Performance

Figure 4(A) presents the AUC values for the ED exacerbation prediction across four methods with
five data splits. It shows that the incorporation of random effects in the model training contributes to
an enhanced AUC. The average AUCs of GNMM, with or without random effects, are both 0.782,
which is slightly higher than the average AUC of BiMM Forest (0.778). However, BiMM Forest
shows a more stable prediction performance (i.e., more robust against different data splits) and is
notably more efficient in terms of computational time. As such, BiMM Forest is chosen as the
preferred method for predicting ED exacerbation. Figure 4(B) presents the RMSE of each method
for predicting LOS. RF and MERF show slightly better performance than GNMM, with an average
RMSE of 0.542. GNMM produces an average RMSE of 0.548, regardless of whether including the
random effects or not.

4.2 VIP and Top Predictors

Figure 5(A) presents the VIP of each covariate calculated by Kernel SHAP based on the BiMM
Forest model. Race, Age, and WAAP are the top three predictors, contributing significantly to the
model’s predictive performance. Figure 5(B-D) plots the distribution of predicted ED exacerbation
probabilities grouped by each top predictor. Compared to white patients or those of other races,
black patients have a higher probability of having ED visits due to asthma exacerbation, evidenced
by a significantly taller bar at probability around one. Similarly, patients with younger ages (2-4
years old) also show a higher risk of ED visits in comparison to patients aged 5-12 or 13-21 years
old. Patients who received WAAP show a reduced risk of having ED visits compared to those who
did not receive WAAP.

To examine the interaction effects by top predictors, we implemented the partial dependence
plots (PDP) to visualize the predicted probabilities of ED exacerbation due to asthma exacerbation
by individual covariates. Figure 6(A) presents the PDP of predicted probabilities by age and race.
Black patients exhibit significantly higher risks of ED exacerbation compared to white and other race
patients across all age groups. For white and other race patients, those aged 5 years or younger show
significantly higher risks of ED exacerbation compared to older patients (aged 5-21). In contrast,
both younger (5 years or below) and older (16 years or above) Black patients show higher risks
of ED exacerbation compared to those aged 5-16 years. Similarly, Figure 6(B) demonstrates that
WAAP aids in reducing the risk of ED exacerbation, especially among younger patient groups,
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Figure 4: (A) Dot plot of AUC for ED with exacerbation prediction. (B) Dot plot of RMSE for LOS
prediction.

as evidenced by the lower predicted probabilities of ED exacerbation in patients aged 5 years or
younger with WAAP. Additionally, the overall predicted probabilities of ED exacerbation are lower
in those with WAAP compared to those without it.

Figure 7(A) presents the VIP of each covariate calculated by Kernel SHAP based on the MERF
model. Among all predictors, age, pandemic period, and sex exhibit the highest absolute median
SHAP values. We identified two groups when fitting the Gaussian mixture model on the predicted
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Figure 5: Results for ED exacerbation from BiMM Forest: (A) VIP measured by Kernel SHAP. The
order of the covariate display is determined by the median of absolute Kernel SHAP values. (B-D)
Predicted probability densities by each top three VIP predictor.

LOS values, indicated by the short-LOS group and the long-LOS group (Figure 7(B)). We compared
the patient characteristics between the two groups in terms of the top three predictors. Among those
hospitalized patients, children with longer LOS are older compared to children with shorter LOS
(Figure 7(C), p < 0.001). The majority of patients with long LOS are hospitalized post-pandemic
(Figure 7(D), 62.1% high-risk are in post-pandemic, p < 0.001). This could be attributed to the
delayed hospital visits due to the pandemic, leading to worse symptoms and longer hospital stays
during the post-pandemic period. Additionally, patients who have longer LOS are female patients
compared to the low-risk group (Figure 7(E), 55.8% female in high-risk o vs 39.4% female in low-
risk, p < 0.001).

Figure 8(A) presents the PDP by pandemic period and age. Although the overall trends indicate
longer predicted LOS for older patients across all three pandemic periods, the increase in LOS with
age is more pronounced in the pre- and post-pandemic periods compared to during the pandemic.
Patients hospitalized during the pandemic were discharged quicker compared to those hospitalized
before or after the pandemic. Figure 8(B) illustrates the PDP by sex and age, showing that female pa-
tients are predicted to have longer hospital stays than male patients across most age groups, although
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Figure 6: Partial dependence between top three predictors: (A) Average predicted probability from
BiMM by race and age. (B) Average predicted probability from BiMM by WAAP and age.

the increase in LOS with age is more pronounced in males.

5 Conclusion and Discussion

In this paper, we introduced two types of machine learning-based methods for longitudinal or clus-
tered data: (1) BiMM Forest and MERF, which are the random forest-based models with random
effects for binary data and continuous data, respectively; (2) GNMM, which is the generalized neu-
ral network model with mixed effects. We applied all these models to the pediatric asthma EHR data
that involved repeated clinic visits. Specifically, we analyzed two severe asthma outcomes: ED visits
due to asthma exacerbation and length of stay after admission to the hospital. Among all methods,
random forest-based methods, i.e., BiMM Forest and MERF, outperform the other methods with
satisfactory and robust prediction performance and efficient computation. We also used the kernel



146 Liu et al.

Figure 7: Results for LOS from MERF: (A) VIP measured by Kernel SHAP. The order of the co-
variate display is determined by the median of absolute Kernel SHAP values. (B) Two clusters were
identified using the Gaussian mixture model. (C-E) Patient characteristics include age, pandemic
period, and sex, separated by two risk groups.

SHAP metrics to measure the variable importance and identified vulnerable subgroups at a high risk
of ED visits due to asthma exacerbation or longer LOS.

Our analysis suggests that patients who are younger, black, and not receiving the WAAP inter-
vention are more likely to experience asthma exacerbation. Moreover, among those patients who are
hospitalized after ED visits, older and female children are more likely to have a longer LOS. The
COVID-19 pandemic also impacts pediatric asthma care, with longer LOS observed post-pandemic.
These findings provide valuable insights for improving the surveillance strategy for pediatric asthma
care by prioritizing the protection of vulnerable patient subgroups, especially when a future disrup-
tive health crisis occurs.
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Figure 8: Partial dependence between top three predictors: (A) Average predicted log(LOS) by
pandemic and age. (B) Average predicted log(LOS) by sex and age.
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