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SUMMARY

Several methods have been proposed in the literature for computing unbiased and efficient
estimates of the parameters of generalized linear models when the covariates are measured
with error. However, to our knowledge, no documented research on computational tech-
niques for parameter estimation currently exist in the literature when the data is a longitudi-
nal count data influenced by an unobservable latent variable and observable covariates that
are measured with error. In this paper, we propose a nonstationary conditionally Poisson
mixed model for such data and develop unbiased estimating equations with iterative meth-
ods for computing estimates of the effect of the covariates, variance of the latent variable
and the correlation index parameter. The performance of the iterative methods are exam-
ined through extensive simulation studies. The results show that the methods performed
well when the magnitude of the measurement error is not so large as to dominate or mask
the effect of the true covariates. Using observed longitudinal count data on the number of
patents awarded to 168 firms in the United States from 1974 to 1979 along with associ-
ated covariate information on the type of firm, log of the book value of capital in 1972 and
research and development (R & D) expenditures we have demonstrated how the methods
proposed in this paper can be applied to a real data. In addition, we derive the influence
function of the estimator of the covariate effect and discuss the asymptotic properties of the
estimator.

Keywords and phrases: Asymptotic normality, Generalized quasilikelihood, Generalized
method of moments, Measurement error.

1 Introduction

Measurement errors usually occur when observed values of some or all variables in a study, namely
response and covariates, are not measured or recorded accurately. This is sometimes due to human
or sampling error, faulty instruments or a combination of issues associated with the data collection
process. It has been well established in the literature that measurement errors in variables induce
inconsistency and bias in parameter estimates of the model used in fitting the data. Several real
life examples where measurement error are a concern can be found in Schneeweiss and Augustin
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(2006), Cheng and Ness (1999) and Buonaccorsi (2010) and in their references. This has led to
an extensive amount of work in the literature on methods for assessing the impact of measurement
errors and the development of techniques for correcting bias in parameter estimates, in particular
when the responses are assumed to be Gaussian and independent. Some of the techniques that have
been proposed in the literature include corrected score estimators (Rosner, Willett and Spiegelmann
1989, Nakamura 1990), moment based approaches (Wansbeek 2001), regression calibration meth-
ods (Gleser 1990), likelihood based techniques (Schafer 1993, Rabe-Haskett, Pickles and Skrondal
2003), simulation based methods (Cook and Stefanski 1994) and techniques based on modifying
estimating equations (Stefanski 1985, Buornaccosi 2010). These authors considered a variety of
regression functions and measurement error models under a wide range of assumptions. For in-
stance, some authors made assumptions on the distribution of the observed values of the covariate
x given the true values z leading to the popular functional model. Some have assumed that the
observed covariate is fixed but that the true covariate X is random. The measurement error model
is then referred to as the Berkson model. The most common assumption on the response y is that it
is measured exactly. See for instance, Jowaheer, Sutradhar and Fan (2013), Nakamura (1990) and
Stefanski (1985). These studies were however limited to the independent setup.

The existence of a large body of computational methods for correcting bias in parameter esti-
mates of generalized linear models with measurement error in covariates and/or the response may be
attributed to the fact that the bias in the parameters of linear models, in general, are relatively easier
to address than biases caused by measurement error in models for longitudinal count or binary data.
In this paper, we consider a situation where the ith, i = 1, . . . ,K subject or experimental unit pro-
vided a small number T ≥ 2 of repeated count responses yit collected at equally spaced time points
t = 1, 2, . . . , T along with associated p-dimensional covariate information xit = (xit1, . . . .xitp)

′

that are measured with error. Clearly, in this longitudinal setup the repeated responses from each
of the experimental units will not be independent but will be serially correlated. As an example,
consider the data on longitudinal count responses on the number of patents awarded to 168 firms
in the United States from 1974 to 1979 along with associated covariate information on the type of
firm, log of the book value of capital in 1972 and the time dependent research and development (R
& D) expenditures from 1971 to 1979. In this example, K = 168, p = 6 and T = 6. In addi-
tion to the influence of the covariates on yit, we also assume that there exist latent variables which
also influence the repeated responses. In this case, the longitudinal correlation structure induced
by the repeated count responses will then be conditional on the subject specific random effect. To
our knowledge, computational techniques for unbiased and efficient estimation of the parameters of
longitudinal models with such mixed effects on count data with measurement error in time depen-
dent covariates have not been developed in the literature due to the complexity of the problem. The
complexity of the problem arise from the dependence of the basic properties of the responses such as
mean, variance and covariance functions on the time dependent covariates which are measured with
error and on the variance parameter of the unobservable subject specific random effect. Also, the
correlation between observations must be taken into account when developing methods for efficient
estimation of the model parameters. Furthermore, one has to also address the difficult problem of
estimating the variance parameter of the random effect. One of the significant contributions of this
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paper, is the development of bias corrected estimating equations along with iterative methods for
computing efficient estimates of the effects of the covariates, the variance of the random effect and
the correlation index parameter of a dynamic longitudinal Poisson mixed model for count data when
the observed covariate vector xit is measured with error.

There is a long history of using random effects to account for the lagged correlation in repeated
Gaussian responses. See for instance McCullagh and Nelder (1989) and Verbeke and Molenbergh
(2000) and their references. This approach, which assumes that the unobservable random effect on
subjects are the same at each time point was also adopted by some authors such as Carroll, Lin
and Wang (1997) and Buonaccorsi, Demidenko and Tosteson (2000), amongst others, to address
the problem of measurement errors in covariates in longitudinal Gaussian data. One limitation of
such a model is that it does not account for the effect of time on the correlation between pairs of
observations. It also limits the correlation between pairs of responses to the equicorrelation structure.
Such an extended model is however more suitable for data in which measurements yij as well as
covariate information are collected from the jth, j = 1, . . . , ni, member of the ith, i = 1, . . . ,K

family. The random effect γi, then represents the common unobservable effect of the ith family
on the measurements. In this case, there is no time effect to consider but the model accounts for
the effect of the familial correlation between responses from members of the same family when
estimating the model parameters.

In order to account for the effects of time and covariates on the correlation between observed
longitudinal responses, some authors have proposed and studied dynamic models for longitudinal
Gaussian (see Schmid, Segal and Rosner 1994 and Bun and Carree 2005), count (McKenzie 1988,
Oyet and Sutradhar 2013, Zhang and Oyet 2014) and binary (Kanter 1975, Qaqish 2003, Sutradhar
2011) data. For instance, in the context of a longitudinal branching process with immigration,
Oyet and Sutradhar (2013) considered a situation where K communities are at risk of an infectious
disease. At time t = 1, yi1 individuals in the ith community were observed to have developed the
disease. Aside from the effect of the covariate vector xi1 = (xi11, . . . , xi1p)

′ on yi1, they argued
that other latent variables denoted by γi exist that may also influence the count at any time point t.
Conditional on γi, let yi1 follow a Poisson distribution with mean µ∗

i1 = exp(x′
i1β + γi), where β

is the covariate effect common to all communities. Then, in the more general case, one may model
the count at t = 2, . . . , T as,

yit |γi
=

yi,t−1∑
j=1

Bj(nt, ρ)|γi
+ dit|γi

, (1.1)

where Bj(nt, ρ) is a binomial random variable, with parameters nt and probability of success ρ,
representing the number of offsprings reproduced by the jth individual infected at time t − 1. The
average number of offsprings reproduced by one individual is commonly referred to as the repro-
duction number in the infectious disease literature. Thus, the estimation of the model parame-
ters is an important subject in branching processes with immigration. It was also assumed that (a)
γi ∼ N(0, σ2

γ), (b) dit |γi
∼ Poi(µ∗

it − ρntµ
∗
i,t−1), for t = 2, . . . , T , where µ∗

it = exp(x′
itβ + γi),

for all t = 1, . . . , T ; (c) dit |γi
and yi,t−1 |γi

are independent for t = 2, . . . , T .
Wang, Carroll and Liang (1996) considered a situation where the covariates in a generalized
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linear regression model are replicated and the measurement errors in the replicated covariates are
correlated. They however assumed that the responses corresponding to the replicated covariates
collected from a large number of individuals were independent. This, was therefore not a longitudi-
nal measurement error problem. During the same period, Sutradhar and Rao (1996) considered the
problem of measurement errors in the covariates of a generalized linear model (GLM) for cluster
correlated data. Cluster correlated data is a set of independent multivariate responses with covariates
associated with each response. They developed a bias corrected method for estimating the parame-
ters under the assumption that the measurement error variance is known or estimable by extending
the approach of Stefanski (1985). In a related development, Wansbeek (2001) studied and devel-
oped necessary conditions for obtaining consistent bias corrected generalized method of moments
(BCGMM) estimate for the parameters of a linear model with serially correlated errors for panel
data with measurement errors in covariates. Xiao et al (2007) then established the efficiency proper-
ties of the BCGMM estimator of Wansbeek (2001). Later, Fan, Sutradhar and Rao (2012) noted that
the repeated continuous responses in the panel data with measurement error in covariates may also
be influenced by some unobservable individual random effect. Thus, they considered a linear mixed
model with serially correlated errors to fit the data and proposed a bias corrected generalized quasi
likelihood (BCGQL) method for parameter estimation. Through a simulation study, they found that
the BCGQL estimates were more efficient than the BCGMM estimates. A more detailed review of
early developments in measurement error models and methods can be found in Schneeweiss and
Augustin (2006). Recently, Sutradhar and Rao (2016) considered a longitudinal fixed effects model
for count data with measurement errors in covariates. They introduced a bias corrected generalized
quasilikelihood (BCGQL) method for estimating the regression parameter β of the model.

In what follows, we establish the notations for the dynamic mixed model we have considered in
Section 2 and derive the unbiased estimators of the basic properties of the model. These unbiased
estimators were then used in Section 3 to modify the naive generalized quasilikelihood (NGQL)
estimating equation for the regression parameter and the naive generalized method of moments
(NGMM) estimating equations for the variance and correlation index parameters of the model. Fur-
thermore, in order to facilitate the study of the effect of the magnitude of the measurement error
vit = (vit1, . . . , vitp)

′ on the proposed methods, we have assumed that vit consist of two com-
ponents, one which is time independent and another that is time dependent. Specifically, we will
assume that vitu = ku + eitu, where ku ∼ N(0, σ∗2

u ) and eitu ∼ N(0, σ∗2
e(u)) are independent,

u = 1, . . . , p. So that, cov(vitu, viru) = σ∗2
u and ϕu = corr(vitu, viru) = σ∗2

u /σ2
u > 0, where

σ2
u = var(vitu) = σ∗2

u + σ∗2
e(u), u = 1, . . . , p. It is clear that as a result of these assumptions, addi-

tional information on the measurement error variance σ2
u and correlation ϕu parameters are required

for the unique and efficient estimation of the regression parameters. Some authors have assumed
that these measurement error variances are constant or known. See for instance Staudenmayer and
Buonaccorsi (2005). Others have proposed estimating the error variances. We note that this later
approach is more realistic. In Section 3, we have discussed one approach for estimating the mea-
surement error variance σ2

u and correlation ϕu parameters in the context of longitudinal count data.
However, our focus is on estimating the model parameters of the longitudinal mixed model. We
have also derived a measure of the influence of an observation on the regression parameter estimate
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in Section 3 and discussed the asymptotic properties of the estimate based on the influence function.
The performance of the proposed modified estimating equations and iterative methods is examined
through a simulation study in Section 4. The results of an application to real data are discussed in
Section 5.

2 Nonstationary Conditionally Poisson Autoregressive Mixed Model
Subject to Measurement Error

When nt = 1, the model (1.1) can be written as,

yit |γi =

yi,t−1∑
j=1

bj(ρ)|γi + dit|γi , (2.1)

where P [bj(ρ) = 0] = 1 − ρ and P [bj(ρ) = 1] = ρ. Let xit = (xit1, . . . , xitp)
′ be the

time dependent observed covariate vector with measurement error vit and zit be the time depen-
dent true covariate vector, so that xit = zit + vit. If the true covariate vector were known,
it can be shown that the count random variable Yit in (2.1) is conditionally Poisson. That is,
σ∗
iz,tt = V ar(Yit|γi) = µ∗

iz,t. It can also be shown that conditional on γi, the lag k autoco-
variance function is given by σ∗

iz,t,t+k = Cov(Yit, Yi,t+k|γi) = ρkσ∗
iz,tt, t = 1, 2, . . . , T − 1;

k = 1, 2, . . . , T − t. The unconditional basic properties of the mixed model (2.1) are then obtained
by averaging the conditional moments over the distribution of γi. The mixed model in (2.1) is non-
stationary in the sense that the unconditional basic properties of the model are functions of the time
dependent covariates zit (see Fuller (1996, Section 1.2, Pg. 4 and Pg. 475)). More specifically, the
unconditional mean, variance and autocovariance functions are given by

µiz,t = E(Yit) = exp(z′
itβ + σ2

γ/2); σiz,tt = V ar(Yit) = µiz,t + µ2
iz,t(e

σ2
γ − 1),

σiz,t,t+k = Cov(Yit, Yi,t+k) = ρkµiz,t + µiz,tµiz,t+k(e
σ2
γ − 1), (2.2)

respectively. Then, the lag k autocorrelation function of the count responses becomes

ρiz,t,t+k =
ρkµiz,t + µiz,tµiz,t+k(e

σ2
γ − 1)

√
σiz,tt

√
σiz,t+k,t+k

.

In particular, if σ2
γ = 0, we have that

σiz,tt = µiz,t = exp(z′
itβ), σiz,t,t+k = ρkµiz,t, and ρiz,t,t+k = ρk

√
µiz,t

µiz,t+k

as in Sutradhar and Rao (2016). Thus, the longitudinal model for count data discussed by Sutradhar
and Rao (2016) is a special case of the mixed model (2.1).

When the true covariates zit are measured without error, Oyet and Sutradhar (2013) have shown,
empirically, that a consistent and efficient estimate of the regression parameter vector β can be
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obtained by solving the GQL estimating equation,

K∑
i=1

∂µiz

∂β
Σ−1

iz (yi − µiz) = 0, (2.3)

where yi = (yi1, . . . , yiT )
′, µiz = (µiz,1, . . . , µiz,T )

′ and Σiz is the covariance matrix of yi. Now,
define Uiz = diag(µiz,1, . . . , µiz,T ), Aiz = diag(σiz,11, . . . , σiz,TT )

′, and Σiz = A
1/2
iz CizA

1/2
iz

where,

Ciz =



1 ρiz,1,2 ρiz,1,3 · · · ρiz,1,T

1 ρiz,2,3 · · · ρiz,2,T

1 · · · ρiz,3,T
...

...
...

· · · 1


,

is a T × T correlation matrix. Let qiz,rj be the rjth element of Qiz = C−1
iz . One can then verify

that the GQL estimating equation (2.3) can be expressed as,

h1(z, y;µ, σγ , ρ)− h2(z;µ, σγ , ρ) = 0, (2.4)

where

h1(z, y;µ, σγ , ρ) =

K∑
i=1

Z ′
iUizA

−1/2
iz QizA

−1/2
iz yi

=

K∑
i=1

T∑
j=1

T∑
r=1

exp[(zir − zij)
′β/2]qiz,rjd

−1/2
iz,rj ziryij , (2.5)

and

h2(z;µ, σγ , ρ) =

K∑
i=1

Z ′
iUizA

−1/2
iz QizA

−1/2
iz µiz

=

K∑
i=1

T∑
j=1

T∑
r=1

exp[(zir + zij)
′β/2] exp(σ2

γ/2)qiz,rjd
−1/2
iz,rj zir. (2.6)

In (2.5) and (2.6), Zi is a T × p matrix with rows z′
ir, r = 1, . . . , T and

diz,rj = 1 + (µiz,r + µiz,j)[exp(σ
2
γ)− 1] + µiz,rµiz,j [exp(σ

2
γ)− 1]2. (2.7)

2.1 Unbiased estimators of basic properties of the mixed model

It is clear that in practical computations the estimating equations have to be expressed in terms of
the observed covariates xit. Now, such a naive estimating equation, for example h1(x, y;µ, σγ , ρ)−
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h2(x;µ, σγ , ρ) = 0, will clearly lead to a biased estimate of the model parameters since xit was mea-
sured with error. However, if we can find a modified estimating equation, say H(x, y;µ, σγ , ρ) =

ha(x, y;µ, σγ , ρ)−hb(x;µ, σγ , ρ), such that E[H(x, y; · · · )] ≈ h1(z, y;µ, σγ , ρ)−h2(z;µ, σγ , ρ) =

0, it is possible to develop unbiased estimating equations for consistent and eficient estimation of the
model parameters. It turns out that in order to find H(x, y;µ, σγ , ρ), unbiased estimates of moments
of Yit expressed in terms of the unobserved true covariates zit are required. Therefore, we will begin
by deriving unbiased estimates of some moments of the count response random variable Yit.

Now, in terms of the observed covariate vector xit, the conditional and unconditional means
of the count response variable Yit are µ∗

ix,t = exp(x′
itβ + γi) = exp(z′itβ + v′

itβ + γi) and
µix,t = exp(x′

itβ + σ2
γ/2), respectively. Let Λ = diag(σ2

1 , . . . , σ
2
p) and κ = β′Λβ. Averaging the

unconditional mean over the distribution of the measurement error vector vit, then yields

E[µix,t] = exp(z′itβ + κ/2 + σ2
γ/2) = µiz,t exp(κ/2).

Therefore, in terms of the observed covariates xit, an unbiased estimator of µiz,t is

µ̂iz,t = µix,t exp(−κ/2), t = 1, . . . , T. (2.8)

Similarly, it can be easily verified that

µ̂2
iz,t = µ2

ix,t exp(−2κ) = {µ̂iz,t}2 exp(−κ), t = 1, . . . , T, (2.9)

is an unbiased estimator of µ2
iz,t. Then, for fixed σ2

γ , it follows from (2.2) that

σ̂iz,tt = µix,t exp(−κ/2) + µ2
ix,t exp(−2κ)(eσ

2
γ − 1), (2.10)

is an unbiased estimator of σiz,tt.
Next we obtain the estimator of the product term µiz,tµiz,u. First, we note that µiz,tµiz,u =

exp{(zit + ziu)
′β + σ2

γ}. So, we explore the expectation, over the measurement error vector,

Ev[exp{(xit + xiu)
′β + σ2

γ}] = µiz,tµiz,u exp(κ+ κϕ),

where κϕ = β′Λϕβ, with Λϕ = diag(σ2
1ϕ1, . . . , σ

2
pϕp). Thus,

̂µiz,tµiz,u = µix,tµix,u exp{−(κ+ κϕ)} = µ̂iz,tµ̂iz,u exp(−κϕ), (2.11)

is the unbiased estimator of the product term µiz,tµiz,u in the expression for the covariance (2.2).
Therefore, it follows from (2.2), that

σ̂iz,t,u = ρ|t−u|µ̂iz,t + ̂µiz,tµiz,u(e
σ2
γ − 1), (2.12)

is the unbiased estimator of the unknown covariance function σiz,t,u.
We now turn our attention to other components of h1(·) and h2(·) in (2.5) and (2.6), respectively.

We note that h1(·) and h2(·) contain the expressions

zir exp[(zir − zij)
′β/2] and zir exp[(zir + zij)

′β/2],
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respectively, which cannot be computed since the covariates zij are unobserved. Now, define the
functions

g1
∗(xir,xij ;β,Λ, ϕ) = µ

1/2
ix,rµ

−1/2
ix,j [xir − (Λ− Λϕ)β/2] exp[−β′(Λ− Λϕ)β/4]

g∗2(xir,xij ;β,Λ, ϕ) = µ
1/2
ix,rµ

1/2
ix,j exp(−σ2

γ/2)[xir − (Λ + Λϕ)β/2] exp[−β′(Λ + Λϕ)β/4].

(2.13)

Then, following Lemma 3 of Sutradhar and Rao (2016), we have that

E[g∗1(xir,xij ;β,Λ, ϕ)] = zir exp[(zir − zij)
′β/2], and

E[g∗2(xir,xij ;β,Λ, ϕ)] = zir exp[(zir + zij)
′β/2]. (2.14)

We remark that if σ2
γ = 0, diz,rj = 1 in (2.5) and (2.6). We also note that diz,rj can be estimated by

d̂iz,rj = 1 + (µ̂iz,r + µ̂iz,j)[exp(σ
2
γ)− 1] + ̂µiz,rµiz,j [exp(σ

2
γ)− 1]2. (2.15)

3 Estimating Equations and Iterative Procedures for Comput-
ing Estimates of β, σ2

γ and ρ

In this section we develop equations for estimating the parameters of model (2.1) with measure-
ment error in xit. Since the equations are nonlinear, we have also proposed Newton-Raphson-type
iterative methods for obtaining numerical solutions to the equations.

3.1 Modified GQL estimating equation for covariate effect

Using the unbiased estimating equations (2.8) - (2.15) it is clear that, for known values of qiz,rj , we
have

E[g∗1(xir,xij ;β,Λ, ϕ)qiz,rj d̂
−1/2
iz,rj ] ≈ zir exp[(zir − zij)

′β/2]qiz,rj d̂
−1/2
iz,rj .

It follows that an approximate unbiased estimator of h1(·) in (2.5) can be written as

ĥ1 =

K∑
i=1

T∑
j=1

T∑
r=1

µ
1/2
ix,rµ

−1/2
ix,j [xir − (Λ− Λϕ)β/2] exp[−β′(Λ− Λϕ)β/4]qiz,rj d̂

−1/2
iz,rj yij .

In developing the R codes for actual computations in our simulation studies and applications to real
data, we found that it was computationally convenient to express ĥ1 in matrix notations. For this
purpose, we let m1 = exp[−β′(Λ−Λϕ)β/4], B1ϕ = (Λ−Λϕ)/2 and define the following matrices
Diz,k = diag(d̂iz,k1, d̂iz,k2, . . . , d̂iz,kT ) : T × T , and M1ϕ = diag(m1, . . . ,m1) : p× p. Also, let
Jk be the T × T matrix with 1 as the kth diagonal element and zeros elsewhere. Then, the matrix
JkU

1/2
ix QizU

−1/2
ix will only have nonzero elements in the kth row. The expression for ĥ1 can then

be written in matrix notations as,

ĥ1 =

K∑
i=1

M1ϕ[X
′
i −B1ϕ(β ⊗ 1′

T )]

T∑
k=1

JkU
1/2
ix QizU

−1/2
ix D

−1/2
iz,k yi, (3.1)
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where 1T is a T ×1 vector with elements 1 and ⊗ is the kronecker product. Furthermore, for known
values of qiz,rj , we have that

E[g∗2(xir,xij ;β,Λ, ϕ)qiz,rj d̂
−1/2
iz,rj ] ≈ zir exp[(zir + zij)

′β/2]qiz,rj d̂
−1/2
iz,rj ,

Then, an approximate unbiased estimator of h2(·) in (2.6) can be written as

ĥ2 =

K∑
i=1

T∑
j=1

T∑
r=1

µ
1/2
ix,rµ

1/2
ix,j [xir − (Λ + Λϕ)β/2] exp[−β′(Λ + Λϕ)β/4]qiz,rj d̂

−1/2
iz,rj .

Proceeding as before, it can be verified that one can rewrite ĥ2 in matrix notations as

ĥ2 =

K∑
i=1

M2ϕ[X
′
i −B2ϕ(β ⊗ 1′

T )]

T∑
k=1

JkU
1/2
ix QizU

−1/2
ix D

−1/2
iz,k µix. (3.2)

In (3.2), B2ϕ = (Λ+Λϕ)/2 and M2ϕ = diag(m2, . . . ,m2), where m2 = exp[−β′(Λ+Λϕ)β/4].
It follows that the bias corrected GQL estimating equation for the regression parameter β is

f(x, y; β̂, σγ , ρ) = ĥ1(x, y; β̂, σγ , ρ)− ĥ2(x; β̂, σγ , ρ) = 0, (3.3)

where ĥ1(x, y;µ, σγ , ρ) and ĥ2(x;µ, σγ , ρ) are given by (3.1) and (3.2), respectively.
We note that the estimating equation (3.3) is a function of the measurement error variance pa-

rameters ϕu, and σ2
u, u = 1, . . . , p, the regression parameter β, variance of the random effect σ2

γ

and the correlation index parameter ρ. It is clear that the measurement error variance parameters ϕu,
and σ2

u are parameters of the observed covariates xit and not that of the repeated count responses
yit. Thus, the estimation of ϕu, and σ2

u can be based entirely on xit. Following Sutradhar and Rao
(2016, eqns (5.10) and (5.11)), σ2

u and ϕu, u = 1, . . . , p can be estimated as,

σ̂2
u =

1

KT

K∑
i=1

T∑
t=1

(xitu − x̄iu)
2, and

ϕ̂u =
1

KT (T − 1)

K∑
i=1

T∑
t=1

T∑
r ̸=t

(
xitu − x̄iu

σ̂u

)(
xiru − x̄iu

σ̂u

)
,

respectively, where x̄iu =
∑T

t=1 xitu/T .

Let θ = (ϕ1, . . . , ϕp, σ
2
1 , . . . , σ

2
p,β, σ

2
γ , ρ)

′. We observe that a closed form solution for β cannot
be obtained from (3.3). Therefore, for fixed ϕu, σ2

u, σ2
γ and ρ, we computed estimates of β by the

Newton-Raphson iteration method

β(r+1) = β(r) −
(
∂f

∂β

)−1

θ=θ(r)

f(θ(r)), (3.4)
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where f is given by (3.3) and ∂f
∂β = ∂ĥ1

∂β − ∂ĥ2

∂β . Now, define

H1,irj = −m1(xir −B1ϕβ)β
′B1ϕ, W1,irj = −m2(xir −B2ϕβ)β

′B2ϕ,

H2,irj = m1B1ϕ, W2,irj = m2B2ϕ

H3,irj =
m1

2
(xir −B1ϕβ)(xir − xij)

′, W3,irj =
m2

2
(xir −B2ϕβ)(xir + xij)

′.

Then, it can be shown that

∂ĥ1

∂β
=

K∑
i=1

T∑
j=1

T∑
r=1

µ
1/2
ix,rµ

−1/2
ix,j [H1,irj −H2,irj +H3,irj ]qiz,rj d̂

−1/2
iz,rj yij , and

∂ĥ2

∂β
=

K∑
i=1

T∑
j=1

T∑
r=1

µ
1/2
ix,rµ

1/2
ix,j [W1,irj −W2,irj +W3,irj ]qiz,rj d̂

−1/2
iz,rj .

3.2 Modified GMM estimating equation for variance of random effect

The generalized method of moments estimating equation for computing σ2
γ we have constructed in

this section is based on a function of squared and cross-product terms of all observations defined as

G(y) =

K∑
i=1

T∑
t=1

Y 2
it + 2

K∑
i=1

T∑
t=1

T∑
u<t

YiuYit. (3.5)

Since the true covariates zit are unknown, we will use the unbiased estimators we obtained in Sec-
tion 2.1 to express the GMM estimating equation

E[G(y)]−G(y) = exp(σ2
γ)

{
K∑
i=1

T∑
t=1

µ2
iz,t + 2

K∑
i=1

T∑
t=1

T∑
u<t

µiz,uµiz,t

}
(3.6)

+

{
K∑
i=1

T∑
t=1

µiz,t + 2

K∑
i=1

T∑
t=1

T∑
u<t

ρt−uµiz,u

}
−G(y) = 0, (3.7)

in terms of the observed covariates xit. Using equations (2.8), (2.9) and (2.11), it can be shown that
an unbiased GMM estimating equation for σ2

γ can be written as G = G1 + G2 −G(y) = 0, where

G1 = exp(σ2
γ)

{
exp(−2β′Λβ)

K∑
i=1

T∑
t=1

µ2
ix,t

+ 2 exp[−β′(Λ + Λϕ)β]

K∑
i=1

T∑
t=1

T∑
u<t

µix,uµix,t

}
,

G2 = exp(−β′Λβ/2)

{
K∑
i=1

T∑
t=1

µix,t + 2

K∑
i=1

T∑
t=1

T∑
u<t

ρt−uµix,u

}
.
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Again, in our simulation studies and in our application to real data we computed solutions to the
GMM estimating equation for σ2

γ by iterating the Newton-Raphson procedure

σ2(r+1)
γ = σ2(r)

γ −
(

∂G
∂σ2

γ

)−1

θ=θ(r)

G(θ(r)), (3.8)

to convergence (see Tables 2, 3 and 4). Using the terms

∂{exp(σ2
γ)µ

2
ix,t}

∂σ2
γ

= 2µ2
ix,t exp(σ

2
γ),

∂µix,t

∂σ2
γ

= µix,t/2, and

∂{exp(σ2
γ)µix,uµix,t}
∂σ2

γ

= 2µix,uµix,t exp(σ
2
γ),

it can be shown that ∂G/∂σ2
γ = 2G1 + (1/2)G2, in (3.8).

3.3 Modified GMM estimating equation for correlation index parameter

We begin by defining the lag-1 standardized autocovariance function of Yit as,

St,t+1 =
1

K(T − 1)

K∑
i=1

T−1∑
t=1

(
Yit − µiz,t

σiz,t

)(
Yi,t+1 − µiz,t+1

σiz,t+1

)
,

where σiz,t =
√
σiz,t,t. Then, using (2.2) we have that

E[St,t+1] =
1

K(T − 1)

K∑
i=1

T−1∑
t=1

ρµiz,t + µiz,tµiz,t+1(e
σ2
γ − 1)

σiz,tσiz,t+1
.

Similarly, we can show that E[St,t] = 1, where

St,t =
1

KT

K∑
i=1

T∑
t=1

(
Yit − µiz,t

σiz,t

)2

.

Now, if zit were known, an approximate GMM estimating equation for the correlation index param-
eter ρ can be written as

St,t+1

St,t
− 1

K(T − 1)

K∑
i=1

T−1∑
t=1

µ
1/2
iz,tµ

−1/2
iz,t+1[ρ+ µiz,t+1(e

σ2
γ − 1)]d

−1/2
iz,t,t+1 = 0, (3.9)

where µiz,t and diz,t,t+1 are given by (2.2) and (2.7), respectively. Following the approach of Sec-
tion 2.1, it can be shown that the unbiased estimators of U1,iz,t = µ

1/2
iz,tµ

−1/2
iz,t+1, U2,iz,t = µ

1/2
iz,tµ

1/2
iz,t+1

and Viz,t = σiz,tσiz,t+1 are, respectively given by

Û1,iz,t = m1U1,ix,t, Û2,iz,t = m2U2,ix,t, and V̂iz,t = Û2,iz,td̂
1/2
iz,t,t+1,
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where m1 and m2 are defined in §3.1. Using these unbiased estimators in (3.9) and solving for ρ,
we obtained estimates of ρ by iterating

ρ̂ =

[
Ŝt,t+1

Ŝt,t
− 1

K(T−1)

∑K
i=1

∑T−1
t=1 Û2,iz,t(e

σ2
γ − 1)d̂

−1/2
iz,t,t+1

]
1

K(T−1)

∑K
i=1

∑T−1
t=1 Û1,iz,td̂

−1/2
iz,t,t+1

, (3.10)

to convergence, for fixed β and σ2
γ , where

Ŝt,t =
1

KT

K∑
i=1

T∑
t=1

(y2it − 2yitµ̂iz,t + µ̂2
iz,t)

σ̂iz,t,t
, and

Ŝt,t+1 =
1

K(T − 1)

K∑
i=1

T−1∑
t=1

(yityi,t+1 − yitµ̂iz,t+1 − yi,t+1µ̂iz,t + ̂µiz,tµiz,t+1)

Û2,iz,td̂
1/2
iz,t,t+1

.

3.4 Asymptotic properties of regression parameter estimate based on the in-
fluence function

Plug-in estimates of the influence function of a statistic have been shown to be useful in computing
estimates of the variance of the statistic and for measuring the influence of an observation or a set of
observations on the statistic. See for instance Hampel (1974), Devlin, Gnanadesikan and Kettenring
(1975) and Wasserman (2006, Section 2.3). More recently, Selvaratnam, Oyet, Yi and Gadag (2017)
derived the asymptotic properties of the maximum likelihood estimators (MLE) of the parameters
of a generalized linear mixed model for response adaptive designs based on the influence function
of the MLE and introduced an influence function approach for parameter estimation. They found
that estimates based on the influence function approach will in general have smaller bias. Given the
influence of measurement errors on parameter estimates, we will in this section adopt the approach
based on the influence function to discuss the asymptotic properties of the bias corrected GQL
estimate of the regression parameter β.

Let Y1,Y2, · · · ,YK be a sequence of independent random vectors with joint distribution func-
tion F (t), t = (t1, t2, . . . , tT ). Define the empirical distribution function of the observed responses
y1,y2, · · · ,yK as

FK(t) =
1

K

K∑
i=1

δyi
(t),

where δyi
(t) is the indicator function

δyi
(t) =

 1, if yi1 ≤ t1, yi2 ≤ t2, . . . , yiT ≤ tT

0, otherwise.

Then, using (3.1) and (3.2) the bias corrected estimating equation (3.3) for β can be written as

f(x, y; β̂, σγ , ρ) =

∫
[h∗

1(FK)− h∗
2(FK)]dFK(y) = 0, (3.11)
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where

h∗
1(F ) = M1ϕ(F )[X ′ −B1ϕ{β(F )⊗ 1′

T }]
T∑

k=1

JkU
1/2
x (F )QzU

−1/2
x (F )D

−1/2
z,k (F )y,

h∗
2(F ) = M2ϕ(F )[X ′ −B2ϕ{β(F )⊗ 1′

T }]
T∑

k=1

JkU
1/2
x (F )QzU

−1/2
x (F )D

−1/2
z,k (F )µx.

(3.12)

Clearly, any solution to (3.11) will be a function of FK(t) and hence can be written as β(FK). Since
the true value of β is also a solution to the estimating equation (3.3) we have that∫

[h∗
1(F )− h∗

2(F )]dF (y) = 0, (3.13)

and represent the true value as β(F ). Using these results, we show that the covariate effect estimate
obtained from (3.11) is consistent and asymptotically normal in distribution. The results are outlined
in Theorem 1. The proof can be found in the Appendix.

Theorem 1. Let Y1,Y2, · · · ,YK be a sequence of independent random vectors with distribu-
tion function F (y). Let FK(y) be the empirical distribution function of the observed responses
y1,y2, · · · ,yK . For an arbitrary distribution function G and ϵ > 0, define Fϵ = (1 − ϵ)F + ϵG

to be the ϵ-contaminated distribution function of F . If h∗
1(F ), h∗

2(F ), ∂h∗
1(F )/∂β and ∂h∗

2(F )/∂β

are given by (3.12) and (A.2) respectively, then,

(a) the influence function of β at F is

IF (y,β, F )] = −
{
EF

[
∂h∗

1(F )

∂β
− ∂h∗

2(F )

∂β

]}−1

[h∗
1(F )− h∗

2(F )] . (3.14)

(b) by the weak law of large numbers, β(FK) −→ β(F ) as K −→ ∞.

(c) by Linderberg’s central limit theorem,
√
K(β(FK) − β(F ))

d−→ N{0,Σ} as K −→ ∞,
with Σ = EF [IF (y,β, F )IF (y,β, F )′].

4 Simulation Studies

In this section, we examined the effect of measurement errors in covariates on the performance of
the estimating equations and iterative methods we proposed for computing unbiased estimates of
the parameters of the conditionally Poisson model (2.1). The results were obtained using an R code
developed by the author for implementing the techniques.
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4.1 Data generation

For the purpose of our simulation studies, we generated data from (2.1) using a combination of
parameter values. First, we choose K = 100 subjects, T = 4 time points, p = 2 covariates
and generated the true covariates from zit1 ∼ N(0, 1) and zit2 ∼ (χ2

(4) − 4)/
√
8. We note that in

general, the true covariates can be time dependent. We then fixed zit = (zit1, zit2)
′ for each cycle of

1000 simulations. Next, for a fixed vector β, chosen from the set {(0, 0), (0.3, 0.1)}, we computed
µ∗
iz,t = exp(z′itβ + γi) in (2.1), i = 1, . . . ,K, t = 1, . . . , T with γi generated from γi ∼ N(0, σ2

γ)

for a fixed value of σ2
γ . The values of σ2

γ we used were 0.25, 0.5, 0.75. The next step was to generate
yi1 ∼ Poi(µ∗

iz,1), for all i, using µ∗
iz,1. To generate the remainder of the data from model (2.1) we

note that the mean of the Poisson random variable dit|γi
must be non-negative. This implies that ρ

must satisfy the condition 0 ≤ ρ ≤ µ∗
iz,t/µ

∗
iz,t−1, for all t = 1, . . . , T . Thus, we first computed the

ratio µ∗
iz,t/µ

∗
iz,t−1 in the R code we developed for our simulation studies. Then, we used a value of

ρ that is less than min{µ∗
iz,t/µ

∗
iz,t−1}Tt=1 − 0.005 to generate yit, i = 1, . . . ,K, t = 2, 3, . . . , T .

The values of ρ we used are shown in Tables 1, 2, 3 and 4. We note that when β = (0, 0)′, we have
that 0 ≤ ρ ≤ 1. In this case we used ρ = 0.3, 0.5 and 0.8 in our simulation. See Tables 3 and 4.

Now, in practice the longitudinal count data yit and data on the covariates xit with measurement
errors will be available to the practitioner. However, data on the associated true covariates zit will
not be available. So, in our simulation studies our estimation was based on xit’s. We recall that
xitu = zitu + vitu, where vitu = ku + eitu ∼ N(0, σ2

u), u = 1, 2, . . . , p. Consequently, we fixed
ϕu = corr(vitu, viru) and σ2

u. Then, for σ∗2
e(u) = (1− ϕu)σ

2
u, we generated eitu ∼ N(0, σ∗2

e(u)) and
for σ∗2

u = ϕuσ
2
u, we generated ku ∼ N(0, σ∗2

u ). We note that when ϕu = 1, σ∗2
e(u) = 0. In this case,

the measurement error in the covariate is contributed by only the component ku and therefore may
not be large. Therefore, in order to assess the impact of the magnitude of the measurement error on
the parameter estimates, we considered (ϕ1, ϕ2) = (1, 1), (0.25, 0.5) in our simulation studies. We
also used (σ2

1 , σ
2
2) = (0.1, 0.3), (0.3, 0.3), (0.5, 0.2).

Once a longitudinal data has been generated, we used β = (0, 0)′, σ2
γ = 0 and ρ = 0 as starting

values to iterate the Newton-Raphson procedure (3.4), for β estimation to convergence. Next, the
improved estimate of β was used to iterate the procedure (3.8), for σ2

γ estimation to convergence.
The updated estimates of β and σ2

γ were then used in (3.10) to compute a modified GMM estimate of
ρ. These improved estimates of β, σ2

γ and ρ were then used to repeat the iterative process described
above, until overall convergence to three decimal places was achieved. We then computed the mean
and standard errors of the estimates obtained from 1000 simulations under various combinations of
true parameter values. The results are reported in Tables 1 to 3. For the purpose of highlighting the
need for bias correction we also estimated the model parameters using the naive GQL and GMM
estimating equations in (2.4), (3.7) and (3.9). The simulated mean, absolute bias and mean squared
errors of the naive and bias corrected estimates are shown side-by-side in Tables 4 and 5 for ease of
comparison. We also examined the effect of small (T = 25) and large (T = 300) data on the estimates.
Results from this comparison are shown in Table 6.
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Table 1: Simulated means (SM) and standard errors (SSE) of modified GQL estimates of β obtained
from 1000 simulations, for selected values of σ2

γ , ρ, measurement error variances σ2
u = (σ2

1 , σ
2
2)

and correlations ϕ1, ϕ2.

ϕ1 ϕ2 β′ σ2
γ ρ σ2

u β̂

1 1 (0,0) 0.25 0 (0.1,0.3) SM (0.0010,-0.00006)

SSE (0.0496,0.0561)

(0.3,0.3) SM (-0.00009,-0.0014)

SSE (0.0528,0.0535)

0.3 (0.5,0.2) SM (0.0023,-0.0018)

SSE (0.0433,0.0492)

0.5 (0.3,0.3) SM (0.00025,-0.0013)

SSE (0.0389,0.0374)

0.8 (0.5,0.2) SM (-0.000068,-0.00082)

SSE (0.0194,0.0235)

(0.3,0.1) 0.25 0 (0.1,0.3) SM (0.3042,0.1122)

SSE (0.0487,0.0514)

(0.3,0.3) SM (0.3069,0.1055)

SSE (0.0653,0.0477)

0.3 (0.1,0.3) SM (0.3005,0.1059)

SSE (0.0475,0.0461)

(0.5,0.2) SM (0.3158,0.1081)

SSE (0.0713,0.0478)

0.75 0 (0.1,0.3) SM (0.3001,0.1028)

SSE (0.0459,0.0422)

(0.3,0.3) SM (0.3025,0.1054)

SSE (0.0507,0.0440)

0.3 (0.5,0.2) SM (0.3023,0.1024)

SSE (0.0454,0.0376)

0.25 0.5 (0.3,0.1) 0.25 0 (0.1,0.3) SM (0.2810,0.0934)

SSE (0.0462,0.0419)

(0.2,0.2) SM (0.2616,0.0996)

SSE (0.0486,0.0435)

0.75 0 (0.1,0.3) SM (0.2800,0.0912)

SSE (0.0439,0.0371)

0.2 (0.2,0.2) SM (0.2628,0.0936)

SSE (0.0420,0.0323)
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Table 2: Simulated means (SM) and standard errors (SSE) of β̂ and σ̂2
γ obtained from 1000 sim-

ulations, for selected values of ρ, measurement error variances σ2
u = (σ2

1 , σ
2
2) with correlations

ϕ1 = ϕ2 = 1.

β′ σ2
γ ρ σ2

u β̂ σ̂2
γ

(0,0) 0.25 0 (0.1,0.3) SM (0.0015,-0.0026) 0.233

SSE (0.049,0.053) (0.084)

(0.3,0.3) SM (0.0008,-0.0005) 0.239

SSE (0.049,0.055) (0.087)

0.3 (0.5,0.2) SM (0.0013,-0.0014) 0.230

SSE (0.044,0.043) (0.097)

0.5 (0.3,0.3) SM (0.0002,-0.0010) 0.223

SSE (0.038,0.036) (0.111)

0.7 (0.5,0.2) SM (-0.0000,-0.0025) 0.235

SSE (0.027,0.031) (0.120)

0.5 0 (0.3,0.3) SM (-0.0009,-0.0027) 0.477

SSE (0.049,0.047) (0.128)

0.3 (0.5,0.2) SM (-0.0007,-0.0036) 0.468

SSE (0.037,0.042) (0.130)

0.75 0 (0.1,0.3) SM (-0.0001,0.0003) 0.709

SSE (0.044,0.045) (0.180)

(0.3,0.1) 0.25 0 (0.1,0.3) SM (0.284,0.089) 0.242

SSE (0.048,0.042) (0.088)

(0.3,0.3) SM (0.262,0.084) 0.257

SSE (0.050,0.050) (0.093)

0.3 (0.1,0.3) SM (0.280,0.083) 0.245

SSE (0.045,0.043) (0.102)

(0.5,0.2) SM (0.218,0.096) 0.260

SSE (0.042,0.042) (0.103)

0.5 0.3 (0.3,0.3) SM (0.230,0.087) 0.498

SSE (0.044,0.036) (0.141)

0.75 0.3 (0.3,0.3) SM (0.235,0.079) 0.737

SSE (0.039,0.034) (0.189)



Nonstationary Longitudinal Autoregressive Mixed Model for Count Data . . . 167

4.2 Performance of estimation procedures

The performance of the estimates computed using the iterative procedures were examined in stages.
First, we computed only the MGQL estimate of the effect of the covariates β, using (3.4), under the
assumption that the true values of all other parameters are known. The simulated means and standard
errors we obtained are shown in Table 1 under various combinations of the model parameters. The
results in Table 1 show that the proposed iterative procedure for the MGQL approach performed
well in estimating the effect of the covariates in the presence of measurement error in the covariates,
in particular, when the magnitude of the measurement error is not too large (i.e. when ϕ1 = ϕ2 = 1

as in Sutradhar and Rao, 2016). For instance, when ϕ1 = ϕ2 = 1 which implies that σ∗2
e(u) = 0,

u = 1, 2, with β′ = (0.3, 0.1)′, σ2
γ = 0.75, ρ = 0.3, and σ2

u = (0.5, 0.2), the MGQL estimates
were found to be β̂ = (0.3023, 0.1024)′ with standard errors sβ̂ = (0.0454, 0.0376)′. Also, when
ϕ1 = 0.25, ϕ2 = 0.5 (σ∗2

e(u) ̸= 0), with β = (0.3, 0.1)′, σ2
γ = 0.75, ρ = 0, and σ2

u = (0.1, 0.3), we

obtained β̂ = (0.2800, 0.0912)′ with standard errors sβ̂ = (0.0439, 0.0371)′.
Next, we examined the performance of the proposed methods when the effect of the covariates

β and the variance of the random effect σ2
γ are estimated. In this case, the MGQL and MGMM

estimates we obtained are shown in Table 2. Again, we see that the MGQL and MGMM methods
performed well in estimating β and σ2

γ , respectively. As an example, when the true values of the
model parameters are β = (0, 0)′, σ2

γ = 0.5, ρ = 0.3, and σ2
u = (0.5, 0.2), the MGQL estimate

of β was β̂ = (−0.0007,−0.0036)′ with standard errors sβ̂ = (0.0370, 0.0419)′, whereas, the
MGMM estimate of σ2

γ was 0.468 with standard error 0.130. Furthermore, when β = (0.3, 0.1)′,
σ2
γ = 0.25, ρ = 0.3, and σ2

u = (0.1, 0.3), the MGQL estimate of β was β̂ = (0.280, 0.083)′ with
standard errors sβ̂ = (0.0448, 0.0429)′, while the MGMM estimate of σ2

γ was 0.245 with standard
error 0.102.

In Table 3, we show the results obtained when all 3 parameters, namely, β, σ2
γ , and ρ, are

estimated for (ϕ1, ϕ2) = (1, 1) and (ϕ1, ϕ2) = (0.25, 0.5). We see that when β = (0, 0)′, increasing
the bias in the covariates does not appear to affect the performance of the estimates. As an example,
when σ2

u = (0.3, 0.3), β = (0, 0)′, σ2
γ = 0.25 and ρ = 0.8, the MGQL estimate was β̂ =

(0.0001,−0.0008)′ with standard errors sβ̂ = (0.024, 0.024)′, while, the MGMM estimates of σ2
γ

was 0.245 and of ρ was 0.795 with standard errors 0.113 and 0.040, respectively. Also, when σ2
u =

(0.5, 0.2), β = (0, 0)′, σ2
γ = 0.25 and ρ = 0.5, the MGQL estimate was β̂ = (−0.0003,−0.0014)′

with standard errors sβ̂ = (0.036, 0.038)′, while, the MGMM estimates of σ2
γ was 0.204 and of ρ

was 0.522 with standard errors 0.106 and 0.068, respectively. On the contrary, the results in Table
2 appear to suggest that when β ̸= (0, 0)′ the bias in the estimates will increase as the magnitude
of the error in the covariates increases. For instance, if β = (0.3, 0.1)′, σ2

γ = 0.25 and ρ = 0.3,
but σ2

u is increased from (0.1, 0.3) to (0.5, 0.2), the MGQL estimate of β1 (β̂1 = 0.218) and the
MGMM estimate of σ2

γ (σ̂2
γ = 0.260) become more biased. The increase in bias as the magnitude

of the error in the covariates increases becomes even more evident when the results in Table 4
are compared to the results in Table 5. Recall that the magnitude of the error in the covariates
based on (ϕ1, ϕ2) = (1, 1) used in computing the results in Table 4 is less than that based on
(ϕ1, ϕ2) = (0.25, 0.5) used for Table 5. As an example, when σ2

u = (0.1, 0.3),



168 Oyet

Table 3: Simulated means (SM) and standard errors (SSE) of modified GQL and GMM estimates of
β, σ2

γ and ρ respectively, from 1000 simulations, for selected values of measurement error variances
σ2
u = (σ2

1 , σ
2
2)

′ and correlations ϕ1, ϕ2.

ϕ1 = ϕ2 = 1

β′ σ2
u σ2

γ ρ β̂′ σ̂2
γ ρ̂

(0,0) (0.3,0.3) 0.25 0.8 SM (-0.0001,0.0009) 0.255 0.794

SSE (0.027,0.028) (0.116) (0.037)

0.5 0.8 SM (-0.0005,-0.0012) 0.458 0.805

SSE (0.024,0.022) (0.139) (0.046)

0.75 0.8 SM (-0.0002,-0.0001) 0.664 0.809

SSE (0.023,0.026) (0.172) (0.053)

(0.5,0.2) 0.25 0.3 SM (0.0016,-0.005) 0.182 0.336

SSE (0.054,0.047) (0.108) (0.087)

0.5 SM (-0.0011,-0.0029) 0.195 0.518

SSE (0.041,0.040) (0.113) (0.069)

0.8 SM (0.0000,0.0009) 0.245 0.790

SSE (0.025,0.027) (0.120) (0.038)

ϕ1 = 0.25, ϕ2 = 0.5

β′ σ2
u σ2

γ ρ β̂′ σ̂2
γ ρ̂

(0,0) (0.3,0.3) 0.25 0.8 SM (0.0001,-0.0008) 0.245 0.795

SSE (0.024,0.024) (0.113) (0.040)

0.995 SM (0.0002,0.0004) 0.269 0.994

SSE (0.009,0.009) (0.112) (0.005)

0.5 0.8 SM (0.0001,-0.0005) 0.451 0.806

SSE (0.023,0.022) (0.135) (0.045)

(0.5,0.2) 0.25 0.3 SM (-0.0016,-0.0017) 0.179 0.346

SSE (0.040,0.051) (0.102) (0.085)

0.5 SM (-0.0003,-0.0014) 0.204 0.522

SSE (0.036,0.038) (0.106) (0.068)

0.8 SM (0.0011,-0.0011) 0.242 0.795

SSE (0.022,0.029) (0.114) (0.039)
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the absolute value of the bias in the bias corrected estimates for β = (0.3, 0.1)′ and σ2
γ = 0.25,

in Table 4 was (0.004,0.011). In Table 5, the absolute bias increases to (0.019,0.014). When σ2
γ

increases to 0.5 the absolute bias in Table 4 was (0.001,0.009) whereas the absolute bias in Table 5
was (0.017,0.013). The mean squared errors in Tables 4 and 5 for the same parameters were however
about the same in magnitude.

Furthermore, when compared to the bias corrected estimates in Table 4, the estimates obtained
from the naive estimating equations appear to be unstable in the sense that it seems to perform well
in some cases and then suddenly performs badly in other cases. This makes the naive estimates
to be unreliable. For instance, when σ2

u = (0.3, 0.3)′, σ2
γ = 0.75 and ρ = 0.305, the naive

estimates β̂ = (0.299, 0.092)′, σ̂2
γ = 0.715 and ρ̂ = 0.328, respectively, appear to perform well.

The bias corrected estimates, β̂ = (0.306, 0.106)′, σ̂2
γ = 0.675 and ρ̂ = 0.268, respectively, also

performed well. However, for the same value of σ2
u, σ2

γ = 0.5 and ρ = 0.292, the naive estimates
β̂ = (0.263, 0.077)′, σ̂2

γ = 0.173 and ρ̂ = 0.479, respectively, do not perform well. The estimates
are also highly biased when compared to the bias corrected estimates in Table 4. The bias corrected
estimates in this case, β̂ = (0.310, 0.109)′, σ̂2

γ = 0.460 and ρ̂ = 0.269, respectively, continue
to perform well. Similarly, for the same value of σ2

u, with σ2
γ = 0.25 and ρ = 0.200, the naive

estimates β̂ = (0.277, 0.083)′, σ̂2
γ = 0.045 and ρ̂ = 0.356, respectively, do not perform well and

again highly biased when compared to the bias corrected estimates. The same unstable pattern can
be seen in the naive estimates when σ2

u = (0.5, 0.2)′. In all of these cases, the mean squared errors
of both the naive and bias corrected estimates were about the same in magnitude. Also, the results
in Tables 4 and 5 show that the bias corrected estimates will in general, perform better than the
naive estimates as the bias in the covariates is increased by setting ϕ1 = 0.25 and ϕ2 = 0.5. For
instance, when σ2

u = (0.1, 0.3), β = (0.3, 0.1)′, σ2
γ = 0.5 and ρ = 0.250, the naive estimates were

β̂ = (0.279, 0.089)′, σ̂2
γ = 0.387 and ρ̂ = 0.330, respectively; whereas, the bias corrected estimates

were β̂ = (0.283, 0.087)′, σ̂2
γ = 0.411 and ρ̂ = 0.303. Also, when σ2

u = (0.5, 0.2), β = (0.3, 0.1)′,
σ2
γ = 0.5 and ρ = 0.262, the naive estimates were β̂ = (0.209, 0.083)′, σ̂2

γ = 0.392 and ρ̂ = 0.398,
respectively; whereas, the bias corrected estimates were β̂ = (0.228, 0.101)′, σ̂2

γ = 0.424 and
ρ̂ = 0.277.

Overall, the values of the estimates based on our proposed bias corrected methods, where close to
their true values. In some cases, the bias of σ2

γ and ρ increased as the magnitude of the measurement
error variances σ2

u and the variance of the random effect σ2
γ increased. The results also show that the

bias corrected estimates will be more reliable and stable when compared to the naive estimates as
shown in Tables 4 and 5. In addition, the results appear to demonstrate that if the magnitude of the
error in xit is too large, then the observed values of the covariates will be dominated by the error and
the estimates obtained based on these covariates will be highly biased and unreliable, in particular
σ̂2
γ and ρ̂.

In order to assess the impact of having a large or small number of subjects K on the accuracy
of the estimates, we used the modified estimating equations to compare the estimates when K = 25

and 300 with ϕ1 = 0.25, ϕ2 = 0.5. The results are shown in Table 6. The estimates were computed
for K = 300, T = 4 due to the time it takes to complete 1000 simulations with K = 1000, T = 4.
We found that when K = 300, T = 4, σ2

u = (0.1, 0.3), β = (0.3, 0.1)′, σ2
γ = 0.25
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and ρ = 0.190, the estimates were β̂ = (0.284, 0.092)′, σ̂2
γ = 0.204 and ρ̂ = 0.225 with mean

square errors, (0.0009, 0.0007)′, 0.006 and 0.002, respectively. Also, with σ2
u = (0.3, 0.3), β =

(0.3, 0.1)′, σ2
γ = 0.5 and ρ = 0.278, the estimates were β̂ = (0.247, 0.090)′, σ̂2

γ = 0.442 and
ρ̂ = 0.288 with mean square errors (0.0034, 0.0006)′, 0.009 and 0.005, respectively. Whereas,
with K = 25, T = 4, σ2

u = (0.1, 0.3), β = (0.3, 0.1)′, σ2
γ = 0.25 and ρ = 0.190 we obtained,

β̂ = (0.270, 0.068)′, σ̂2
γ = 0.195 and ρ̂ = 0.236 with mean square errors (0.0086, 0.0154)′, 0.022

and 0.019, respectively. When K = 25, T = 4, σ2
u = (0.3, 0.3), β = (0.3, 0.1)′, σ2

γ = 0.5 and
ρ = 0.278, we found that β̂ = (0.243, 0.085)′, σ̂2

γ = 0.408 and ρ̂ = 0.295 with mean square errors
(0.0119, 0.0091)′, 0.056 and 0.024, respectively. These results show clearly that the estimates for
K = 300 are more efficient than the estimates obtained with K = 25, in the sense that the mean
square errors were much smaller in magnitude. In addition, though the magnitude of the errors in
the covariates was large, the estimates when K = 300 were closer to the true values than when
K = 25. This indicates that the modified estimates performs better as K increases.

5 Application To Real Data

In this section, we use longitudinal count responses on the number of patents awarded to 168 firms
in the United States from 1974 to 1979 along with associated covariate information on the type of
firm, log of the book value of capital in 1972 and research and development (R & D) expenditures
from 1971 to 1979, to demonstrate how the methods we have proposed in this paper can be applied
to a real data. The patent count data has also been analyzed by Haussman, Hall and Griliches (1984),
and Sutradhar (2011). In the data, the code used to identify firms that were considered to be non-
scientific was 0 while scientific firms were coded as 1. Aside from the covariates, the patent counts
may also be influenced by some unobservable random effects γi such as internal or bureaucratic
processes that may lead to delays in registration of patents in a given year. A close examination of
the data shows that measurement error could be an issue in the data as some firms may have reported
a lower or higher R & D expenditures. Furthermore, since the repeated patent counts of a firm are
likely to be longitudinally correlated and the R & D expenditures are changing with time,

Following the notations in this paper, for this data we have K = 168, T = 6 with the year
1974 corresponding to t = 1. As far as covariates are concerned, we considered p = 6 covariates,
xit = (xit1, xit2, xit3, xit4, xit5, xit6)

′, where the first four covariates xit1 to xit4 are the R & D
expenditures at time points t, t−1, t−2 and t−3, respectively. The estimated parameters associated
with the R & D expenditures will provide information to the analyst on the effect of the expenditures
in the current year (lag 0) and in the past 3 years (lags 1, 2 and 3) on the number of patents awarded
to firms. The fifth (xit5) and sixth covariates (xit6) are type of firm and log book value of capital,
respectively. For instance, for Firm 1 corresponding to i = 1, the T × p (6× 6) matrix of covariates
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X1 and vector of observed patent counts y1, are given by

X1 =



−0.685 −0.151 0.084 −0.216 1 1.975

−1.485 −0.685 −0.151 0.084 1 1.975

−1.195 −1.485 −0.685 −0.151 1 1.975

−0.610 −1.195 −1.485 −0.685 1 1.975

−0.581 −0.610 −1.195 −1.485 1 1.975

−0.609 −0.581 −0.610 −1.195 1 1.975


and y1 =



2

3

2

1

1

1


,

respectively. It is clear that since the type of firm and log book value of capital are not changing
with time, the error variances σ̂2

5 = σ̂2
6 = 0 and correlation parameters for these covariates ϕ̂5 =

ϕ̂6 = 0. Now, using (3.4) in §3.1 to estimate the error variances, σ2
u and magnitude of the correlation

parameters ϕu, u = 1, 2, . . . , 6, we find that σ̂2
1 = 0.0855, σ̂2

2 = 0.0807, σ̂2
3 = 0.0921, σ̂2

4 = 0.0996,
σ̂2
5 = σ̂2

6 = 0, and ϕ̂u = 0.2, u = 1, . . . , 4, ϕ̂u = 0, u = 5, 6. These results show that the
magnitude of the measurement errors in the patent count data may not be large enough to mask the
effect of the covariates. Next, using the iterative procedures for the modified GQL and the modified
GMM approaches of §3.1-3.3 we obtained estimates of the covariate effects, variance and correlation
index parameters as β̂ = (0.4394,−0.1058,−0.0033, 0.0006, 0.2672, 0.2104), σ̂2

γ = 0.3598, and
ρ̂ = 0.0671, respectively. The estimated parameters show that firm type, log book value of capital
in 1972 and R & D expenditure at time t (lag 0) had a large positive effect on patent counts with
scientific firms having more patent count awards than non-scientific firms. The effect of the most
recent (lag 0) R & D expenditures on patent counts appear to be large (0.4394), while the effect of
the expenditures in the previous year (lag 1) and two years earlier (lag 2) were moderate and negative
(-0.1058 and -0.0033, respectively). The estimated parameters also show that the effect of the lag 3
R & D expenditures is positive but appear to be very minimal.

In order to assess the performance of the model in fitting the data, we compared the yearly mean,

ȳt =
∑K

i=1 yit/K and standard deviation St =
√∑K

i=1(yit − ȳt)2/(K − 1), t = 1, . . . , 6 of the
patent counts with the overall yearly mean and standard deviations of the fitted values computed
based on (2.8) and (2.10). The results, in Table 7, show that the fitted values are quite close to the
true yearly means and standard deviations of the patent counts. For instance, in 1974, 1976, and
1978, the true means were 2.952, 2.369 and 2.399, respectively with corresponding fitted values of
2.314, 2.317 and 2.427.

6 Concluding Remarks
Previous research on the effect of measurement error in covariates on model parameters have focused
largely on Gaussian data. The problem for count and binary data has, however, not been adequately
addressed in the literature. In particular, to our knowledge, no research is currently available in the
literature when the observed longitudinal counts are influenced by unobservable latent variables and
covariates that are measured with error. In this paper we have outlined some results to bridge that
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Table 7: Yearly mean and standard deviation (SD) of patent counts and yearly fitted values based on
GQL and GMM estimates of β, σ2

γ and ρ.

Patent Count

1974 1975 1976 1977 1978 1979

Mean 2.952 2.435 2.369 2.244 2.399 2.161

SD 3.508 2.952 2.704 2.851 3.094 2.854

Fitted Values

1974 1975 1976 1977 1978 1979

Mean 2.314 2.238 2.317 2.359 2.427 2.441

SD 2.131 2.078 2.132 2.161 2.207 2.217

gap. We proposed a dynamic conditionally Poisson mixed model for the data and developed estimat-
ing equations and iterative methods for computing unbiased and consistent estimates of the model
parameters, namely, the effect of the covariates, the variance of the latent variable and the correla-
tion index parameter. We also developed an R code for implementing the techniques and used it in
our simulation studies and application to a real data. The results of our simulation studies showed
that the proposed computational methods performed well when the magnitude of the measurement
error is not so large as to dominate or mask the effect of the true covariates. In some longitudinal
studies, the number of observations for each subject may be unequal. Also, the observations may
be measured at unequally spaced intervals. We note that the approach proposed in this paper can be
extended to these situations.
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Appendix
Proof of Theorem 1.

(a) It is clear that the integrand in the expression
∫
[h∗

1(Fϵ) − h∗
2(Fϵ)]dFϵ(y), is a continuous

function of ϵ. Therefore, using Leibniz rule (see Flanders (1973)) and (3.13), it can be shown{∫ [
∂h∗

1(Fϵ)

∂β(Fϵ)
− ∂h∗

2(Fϵ)

∂β(Fϵ)

]
dF · ∂β(Fϵ)

∂ϵ

}∣∣∣∣
ϵ=0

+

∫
[h∗

1(F )− h∗
2(F )] dG = 0. (A.1)



176 Oyet

The influence function in (3.14) is obtained at G = δy . In (3.14),

∂h∗
1(F )

∂β
=

∂h∗
1(Fϵ)

∂β(Fϵ)

∣∣∣∣
ϵ=0

=
∂M1ϕ(F )

∂β
[X ′ −B1ϕ{β(F )⊗ 1′

T }]
T∑

k=1

JkU
1/2
x (F )QzU

−1/2
x (F )D

−1/2
z,k (F )y

−M1ϕ(F )B1ϕ
∂{β(F )⊗ 1′

T }
∂β

T∑
k=1

JkU
1/2
x (F )QzU

−1/2
x (F )D

−1/2
z,k (F )y

+M1ϕ(F )[X ′ −B1ϕ{β(F )⊗ 1′
T }]

T∑
k=1

Jk

{
∂U

1/2
x (F )

∂β
QzU

−1/2
x (F )D

−1/2
z,k (F )

+U1/2
x (F )Qz

∂U
−1/2
x (F )

∂β
D

−1/2
z,k (F )

+ U1/2
x (F )QzU

−1/2
x (F )

∂D
−1/2
z,k (F )

∂β

}
y, (A.2)

where

∂M1ϕ(F )

∂β
: T × T × p;

∂{β(F )⊗ 1′
T }

∂β
: p× T × p;

∂U
1/2
x (F )

∂β
: T × T × p; and

∂D
−1/2
z,k (F )

∂β
: T × T × p,

are 3-dimensional arrays (tensors). The components of these tensors are defined in the fol-
lowing way.

For r = 1, . . . , T , s = 1, . . . , T and l = 1, . . . , p, the (r, s, l)th element of ∂M1ϕ(F )
∂β is defined

as M (1)
r,s,l =

∂M1ϕ(r,s)(F )

∂βl
, with

M (1)
r,r =

∂M1ϕ(r,r)(F )

∂β
= −m1B1ϕβ : p× 1,

when r = s and M
(1)
r,s = 0 : p × 1, when r ̸= s. Similarly, For r = 1, . . . , p, s = 1, . . . , T

and l = 1, . . . , p, we have

β(1)
r,s =

∂{β(F )⊗ 1′
T }(r,r)

∂β
= j = (0, 0, . . . , 0, 1, 0, . . . , 0)′,

where 1 is the rth element of the p× 1 vector j and zeros elsewhere. Also, for r = 1, . . . , T ,
s = 1, . . . , T and l = 1, . . . , p, we have

U (1)
r,r =

∂U
1/2
x(r,r)(F )

∂β
= µ1/2

x,rxr/2 : p× 1,
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when r = s and U
(1)
r,s = 0 : p× 1, when r ̸= s. Next, we have that

U (2)
r,r =

∂U
−1/2
x(r,r)(F )

∂β
= −µ−1/2

x,r xir/2 : p× 1,

when r = s and U
(2)
r,s = 0 : p × 1, when r ̸= s. Finally, we have that for r = 1, . . . , T ,

s = 1, . . . , T and l = 1, . . . , p,

D(1)
r,r =

∂D
−1/2
z,k(r,r)(F )

∂β
=

∂d̂z,kr
∂β

: p× 1,

when r = s and D
(2)
r,s = 0 : p× 1, when r ̸= s, where

∂d̂z,kr
∂β

= µx,r[xr − Λβ] exp(β′Λβ)[exp(σ2
γ − 1)] + µx,k[xk − Λβ] exp(β′Λβ)[exp(σ2

γ − 1)]

+ µx,rµx,k[xr + xk − 2(Λ + Λϕ)β] exp(β
′(Λ + Λϕ)β)[exp(σ

2
γ − 1)].

The partial derivative ∂h∗
2(F )
∂β is similarly defined.

(b) We begin by taking the first order Taylor series expansion of β(Fϵ) with respect to ϵ. In
particular, at ϵ = 1 we obtain

β(G)− β(F ) ≈ ∂β(Fϵ)

∂ϵ

∣∣∣∣
ϵ=0

. (A.3)

Using (A.1), we note that at G = Fk the expression (A.3) becomes

β(G)− β(F ) ≈ 1

K

K∑
i=1

IF (yi,β, F )]. (A.4)

The consistency of β(FK) then follows from applying Theorem 6.2 of Billingsley (1986).

(c) The asymptotic normality of β(FK) follows from rewriting (A.4) and applying Lindeberg’s
central limit theorem (Billingsley, 1986, Thm 27.2, Pg 369).
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