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SUMMARY

In this paper we consider a random effects panel data model with one-way error com-
ponents and derive methods for identifying outliers using the deletion technique. These
outliers may be a single unit, a single time-point or a particular time-point in a particu-
lar unit. Expressions for the diagnostics for each of these three cases are derived and the
technique illustrated through an example.

Keywords and phrases: Panel data, random effects, outlier detection, deletion technique.

AMS Classification: 62J20

1 Introduction
In most economic or biological studies data are not obtained either spatially or in the form of a time-series.
Data more generally are in the form of a panel taken on a set of units (households, individuals, firms or coun-
tries) over several equidistant time-points. Some examples are the incomes of a cross-section of households
observed over a number of years or the conditions of a group of patients studied over a number of days. The
fundamental advantage of a panel or longitudinal data set over cross-sectional data is that it allows greater
flexibility in modeling differences in behaviour across units. This is natural because the heterogeneity among
individuals or units or that over time cannot be captured through either a cross-sectional or a time-series
model.

Various models have been suggested over the years to study the effects of a set of regressors on the
response obtained in the form of panels. The study and analysis related to these models have been the subject
of one of the most active and innovative bodies of literature in both econometrics and biostatistics, partly
because panel data provide a rich environment for the development of sophisticated inferential techniques.
Comprehensive discussions on such models can be found in Diggle et.al. (1994), Baltagi (2008) and Greene
(2005).

However, very few studies have been conducted on detection of outliers in panel data. Outliers often exert
an inordinate influence on the estimates of the parameters and distorts the inferences and predictions based on
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these estimates. It is thus necessary to detect these outliers and, if found present, take appropriate remedial
measures so as to obtain a good fit. Although outlier detection studies have a long history in regression
analysis, these studies have not been greatly extended to panel data models.

In regression models two techniques are generally employed to detect outliers - the deletion technique and
the perturbation technique. The deletion technique, initially based on independent errors, was extensively
studied by, among others, Belsley et. al. (1980), Cook (1986) and Chatterjee and Hadi (1988). Later the
results were extended by Haslett and Hayes (1998), Haslett (1999) and Sen Roy and Guria (2004) to models
with correlated errors as proposed by Beach and MacKinnon (1978). Zhu et. al. (2012) looked at the problem
caused by different degrees of perturbation arising from the deletion of different numbers of observation and
proposed a new measure to take account of it.

The perturbation technique too has mostly been applied to models with spherical error structures. Ex-
tensions to models with correlated error structures were made by Schall and Dunne (1991), Tsai and Wu
(1992) and Kim amd Huggins (1998). Here, to check whether a particular observation is an outlier, a weight
is attached to it, the other observations being unweighted. The differences in the estimators and fitted values
obtained with and without the weight are then observed to identify whether the particular observation is an
outlier or not. An alternative way is often to look at the impact of the weight on the log-likelihood function
as observed through the likelihood displacement, the plot of which gives the influence graph. However, in
this paper we only seek to extend the deletion diagnostics to panel data models.

In the early diagnostics studies of longitudinal models Banerjee and Frees (1997) used the partial influence
technique to take account of the effects of subject-specific parameters and to measure the effect of a subject
on the population parameters. Banerjee (1998) also noted that the effectiveness of Cook’s distance as an
influence measure in longitudinal data was limited. Ouwens et. al. (1999) demonstrated the necessity to
use observation-oriented influence measures in addition to subject-oriented influence measures and showed
that subject-oriented measures may fail to detect influential subjects, owing to the relative position of the
observations within and across subjects. Tan et. al. (2001) proposed an alternative version of the Cook’s
distance by conditioning on the subjects in the sample. Yang and Chang (2006), considered a longitudinal
model with mixed effect and taking cognisance of the high within subject dependence, proposed multiple
quantitative indices and plots to check for outliers.

In the context of panel data, outliers can be of three different types - an unit may be an outlier, all obser-
vations at a particular time point may be outliers, or only a single observation corresponding to a particular
unit at a particular time point may be an outlier. For example, the U.S. Gross Investment data which we use
in Section 3 to illustrate our results, consist of observations over 20 years across 10 firms. Here a single firm
can be an outlier because its performance is different from the remaining nine, or a particular year may be
an outlier because there is an upturn or downturn in the economy, or a specific year of a particular firm may
be an outlier, because of short-term changes in its internal structure or policies. Thus the diagnostics would
relate to the effect produced on the regression coefficients or the predictors by the deletion respectively of
either one unit or one time point or one single observation. In the first case, deletion generally leaves the
structure of the dispersion matrix unaffected. However, this is not true in the latter two cases and the problem
becomes more complex.

In Section 2 we describe our model and the diagnostic tools while Section 3 gives the main results. Section
4 indicates the changes in the results under an alternative error structure. A numerical example is given in
Section 5 to illustrate our technique and some concluding remarks are made in Section 6.
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2 The Model and the Problem

Suppose n individuals are observed over T time points. Let yit and xit be respectively the response and the
p-dimensional vector of explanatory variables on the ith individual at time t. We then write the model as

yit = x′
itβ + uit, with (2.1)

uit = µi + νit, (2.2)

where β is the p × 1 parameter vector. In (2.2) we have taken the usual one-way error component model,
where µi is the effect due to the ith individual and νit the random error. We assume that the µi’a are i.i.d.
N(0, σ2

µ) independently of the νit’s which are also i.i.d. N(0, σ2
ν).

Let yi = (yi1, . . . , yiT )
′, Xi = (xi1, . . . ,xiT )

′ and ui = (ui1, . . . , uiT )
′. Then writing y = (y′

1, . . . ,

y′
n)

′, X = (X′
1, . . . ,X

′
n)

′ and u = (u′
1, . . . ,u

′
n)

′, (2.1) can be written as

y = Xβ + u, (2.3)

where y and u are nT × 1 vectors and X is a nT × p matrix. Since

cov(uit, ujs) =


σ2
µ + σ2

ν for i = j, t = s;

σ2
µ for i = j, t ̸= s;

0 otherwise,

the dispersion of u is given by Ω = In ⊗ V, where In is the identity matrix of order n and V is a T × T

matrix of the form

V = σ2


1 τ τ · · · τ

τ 1 τ · · · τ
...

...
. . . v

τ τ τ · · · 1


,

with σ2 = (σ2
µ + σ2

ν) and τ = σ2
µ/(σ

2
µ + σ2

ν). Using the generalized least-squares, the best linear unbiased
estimator of β is given by

β̂ = (X′Ω−1X)−1X′Ω−1y

=
( n∑

i=1

X′
iV

−1Xi

)−1 n∑
i=1

X′
iV

−1yi, (2.4)

with the residual vector defined as e = y−Xβ̂ = (e′1, . . . , e
′
n)

′, where ei = yi−Xiβ̂ is the residual vector
corresponding to the ith individual i = 1, . . . , n.

Let H = X(X′Ω−1X)−1X′ with Hii = Xi(X
′Ω−1X)−1X′

i, the block diagonal corresponding to the
ith individual. The diagonal elements of H give the leverages.
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In practice, Equation (2.4) leads to a reasonably accurate estimate of β provided of course there are no
outliers in the data. An intial idea of any such outlier is provided by the residuals or the leverages. Generally,
the residuals identify outliers in the response while the leverages indicate outliers in the independent variable.
However, to get a more comprehensive view of outliers, and particularly to identify influential observations,
we need to look further.

3 The Main Results

Suppose for any m, the m observations (yi1t1 ,x
′
i1t1

), . . . , (yimtm ,x′
imtm

) are deleted from the data set. Let
K = {(ij , tj) : 1 ≤ ij ≤ n, 1 ≤ tj ≤ T, j = 1 . . . ,m} i.e. K is the set of indices corresponding to the
deleted observations. Then let (y(K),X(K)) be the (nT − m) observations remaining after deleting the m

observations from (y,X). The estimator of β based on these (nT −m) observations is

β̂(K) = (X′
(K)Ω

−1
(K)X(K))

−1X′
(K)Ω

−1
(K)y(K), (3.1)

with the corresponding residuals defined as e(K) = y(K) −X(K)β̂(K) = (e′1(K), . . . , e
′
n(K))

′.

The deletion technique for identification of influential observations then considers the difference in the
estimators β̂ and β̂(K) given by DFBETAK = β̂ − β̂(K). However, it is often more convenient to look
at either the difference in the predicted values of yK , DFFITK = XK(β̂ − β̂(K)) or the Cook’s distance,
CDK = (β̂ − β̂(K))

′X′Ω−1X(β̂ − β̂(K))/p.

As discussed earlier, in looking for outliers in panel data, three distinct cases may arise. The diagnostics
in each of these cases would be different and hence each needs to be tried out while searching for outliers.

Case 1: A particular unit is an outlier

Very often a unit itself is an outlier. Hence all its observations over time would be different from those of
the other units. To identify such an outlier, we need to delete the unit as a whole and observe its effect on
the regression parameters. Deleting the jth unit i.e. K = {(j, 1), (j, 2), . . . , (j, T )}, we have the following
proposition

Proposition 3.1. For the jth unit deleted, j = 1, . . . , n,

DFBETAj = (X′Ω−1X)−1X′
j [V −Hjj ]

−1ej

DFFITj = Hjj [V −Hjj ]
−1ej

CDj = p−1e′j [V −Hjj ]
−1Hjj [V −Hjj ]

−1ej .
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Proof. For any j = 1, . . . , n,

β̂j =

( n∑
i=1̸=j

X′
iV

−1Xi

)−1( n∑
i=1̸=j

X′
iV

−1yi

)

=

( n∑
i=1

X′
iV

−1Xi −X′
jV

−1Xj

)−1( n∑
i=1

X′
iV

−1yi −X′
jV

−1yj

)

=

[( n∑
i=1

X′
iV

−1Xi

)−1

+

( n∑
i=1

X′
iV

−1Xi

)−1

X′
j

{
V −Xj

( n∑
i=1

X′
iV

−1Xi

)−1

X′
j

}−1

Xj

( n∑
i=1

X′
iV

−1Xi

)−1
][

n∑
i=1

X′
iV

−1yi −X′
jV

−1yj

]

= β̂ +

( n∑
i=1

X′
iV

−1Xi

)−1

X′
j

{
V −Xj

( n∑
i=1

X′
iV

−1Xi

)−1

X′
j

}−1

Xj β̂

−
( n∑

i=1

X′
iV

−1Xi

)−1

X′
j

{
V −Xj

( n∑
i=1

X′
iV

−1Xi

)−1

X′
j

}−1

[{
V −Xj

( n∑
i=1

X′
iV

−1Xi

)−1

X′
j

}
V−1yj +Xj

( n∑
i=1

X′
iV

−1Xi

)−1

X′
jV

−1yj

]

= β̂ −
( n∑

i=1

X′
iV

−1Xi

)−1

X′
j

[
V −Xj

( n∑
i=1

X′
iV

−1Xi

)−1

X′
j

]−1(
yj −Xj β̂

)
(3.2)

from which the expression of DFBETAj follows. DFFITj is obtained by pre-multiplying (3.2) by Xj ,
while the use of the DFBETAj expression gives CDj .

Case 2: A particular time point is deleted

Sometimes a single time point may be an outlier. In such a case all the units will show an unusual value at
this time-point. To detect such outliers we need to delete the time point from all the units and observe the
effect on the regression coefiicients. If the n observations corresponding to the time point s are deleted i.e.
if K = {(1, s), (2, s), . . . , (n, s)}, then along with the sth row in each of (yi,Xi), i = 1, . . . , n, the sth

row and column of V will also need to be deleted. To observe the effect of this, let a = τ/
(
1 + (T − 1)τ

)
and define as as a T-component vector with sth component 1 − a and all other components a. Also let
cs = (0, . . . , 1, . . . , 0)′ be the sth unit vector. Then with As = In ⊗ a′s and θ = σ2(1− τ)(1− a), we have
the following proposition.

Proposition 3.2. If the sth time point is deleted, s = 2, . . . , T ,

DFBETAs = (X′Ω−1X)−1X′A′
s[θIn −AsHA′

s]
−1Ase

DFFITs = (In ⊗ c′s)HA′
s[θIn −AsHA′

s]
−1Ase

CDs = p−1e′A′
s[θIn −AsHA′

s]
−1AsHA′

s[θIn −AsHA′
s]

−1Ase.
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Proof. For observations corresponding to ith unit, the deletion of the sth time point leads to

X′
iV

−1Xi =
1

σ2(1− τ)
{X′

iXi −
τ

1 + (T − 1)τ
X′

i11
′Xi}

=
1

σ2(1− τ)
{X′

i(s)Xi(s) −
τ

1 + (T − 1)τ
X′

i(s)1s1
′
sXi(s)}

+
1

σ2(1− τ)
{xisx

′
is −

τ

1 + (T − 1)τ
(X′

i(s)1sx
′
is + xis1

′
sXi(s) + xsx

′
s)}

=
1

σ2(1− τ)
{X′

i(s)Xi(s) −
τ

1 + (T − 2)τ
X′

i(s)1s1
′
sXi(s)}

+
1

σ2(1− τ)
{ τ2

(1 + (T − 2)τ)(1 + (T − 1)τ)
X′

i(s)1s1
′
sXi(s)

− τ

1 + (T − 1)τ
(X′

i(s)1sx
′
is + xis1

′
sXi(s)) +

1 + (T − 2)τ

1 + (T − 1)τ
xisx

′
is}

= X′
i(s)V

−1
s Xi(s)

+
1

σ2(1− τ)
{(1 + (T − 1)τ

1 + (T − 2)τ
xis −

Tτ

1 + (T − 2)τ
X̄i)(xis −

Tτ

1 + (T − 1)τ
X̄i)

′}

Define wis = xis − TaX̄i = a′sXi and zis = (yis − Taȳi) = a′syi. Then

X′
i(s)V

−1
s Xi(s) = X′

iV
−1Xi −

1

θ
wisw

′
is.

Similarly

X′
i(s)V

−1
s yi(s) = X′

iV
−1yi −

1

θ
wiszis.

Next considering the sth time points in all the n units and defining zs = (z1s, z2s, . . . , zns)
′ = Asy,

Ws = (w1s,w2s, . . . ,wns)
′ = AsX and es = (e1s, e2s, . . . , ens)

′ = Ase, where

eis = yis − x′
isβ̂

β̂s = β̂ − (

n∑
i=1

X′
iV

−1Xi)
−1Ws(θIn −W′

s(

n∑
i=1

X′
iV

−1Xi)
−1Ws)

−1es,

from which the results follow.

Case 3: A particular time-point in a particular unit is deleted

In many situations a single observation in a particular unit may be unusual. To observe the impact of this
particular observation, say the sth observation of unit j, on the fitted model, we take K = {(j, s)}. This
requires deleting the sth row of (yj ,Xj) along with the deletion of sth row and column of V for the jth unit
only. The resultant effect is given in the following proposition.
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Proposition 3.3. For any j = 1, . . . , n and s = 1, . . . , T ,

DFBETAjs = (X′Ω−1X)−1Xjasa
′
sej/[θ − a′sHjjas]

DFFITjs = c′sHjjasa
′
sej/[θ − a′sHjjas]

CDjs = p−1[θ − a′sHjjas]
−2e′jasa

′
sHjjasa

′
sej .

Proof. For the jth unit, deleting the sth observation gives

X′
j(s)V

−1
s Xj(s) = X′

jV
−1Xj −

1

θ
wjsw

′
js,

X′
j(s)V

−1
s yj(s) = X′

jV
−1yj −

1

θ
wjszjs,

with no change in the remaining units. Thus

β̂js = (

n∑
i=1̸=j

X′
iV

−1Xi +X′
j(s)V

−1
s Xj(s))

−1(

n∑
i=1̸=j

X′
iV

−1yi +X′
j(s)V

−1
s yj(s))

= (

n∑
i=1

X′
iV

−1Xi −
1

θ
wjsw

′
js)

−1(

n∑
i=1

X′
iV

−1yi −
1

θ
wjszjs)

from which the results follow.

Generally for comparisons the standardized versions of DFBETA and DFFIT are used. For simplicity
these are very often normed by V ar(β̂) and V ar(Xβ̂) respectively. However, it’s always better to use
instead V ar(DFBETAK) and V ar(DFFITK). The following proposition gives these expressions for the
three cases.

Proposition 3.4. (i) For the jth unit deleted,

V ar(DFBETAj) = (X′Ω−1X)−1X′
j(V −Hjj)

−1Xj(X
′Ω−1X)−1

V ar(DFFITj) = Hjj(V −Hjj)
−1Hjj

(ii) For the sth time-point deleted,

V ar(DFBETAK) = (

n∑
i=1

X′
iV

−1Xi)
−1X′A′

s(θIn −AsHA′
s))

−1AsX(

n∑
i=1

X′
iV

−1Xi)
−1

V ar(DFFITK) = A′
sHA′

s(θIn −AsHA′
s)

−1AsHA′
s

(iii) For the sth time point of jth unit deleted,

V ar(DFBETAis) = (X′Ω−1X)−1X′
ja

′
s(θ − asHjja

′
s)

−1asXj(X
′Ω−1X)−1

V ar(DFFITjs) = a′sHjjas(θ − asHjja
′
s)

−1a′sHjjas
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Proof. Consider any set of m deleted observations as defined by K.

V ar(DFBETAK) = V ar(β̂) + V ar(β̂K)− 2Cov(β̂, β̂K)

= (X′Ω−1X)−1 + (X′
(K)Ω

−1
(K)X(K))

−1

−2(X′Ω−1X)−1X′Ω−1Cov(y,y′
(K))Ω

−1
(K)X(K)(X

′
(K)Ω

−1
(K)X(K))

−1 (3.3)

Let Ω∗
K denote the nT × (nT −m) matrix obtained from Ω by deleting the m columns corresponding to K

from Ω. Then Cov(y,y′
K) = Ω∗

K. Writing EK as a nT × (nT −m) matrix obtained from the nT th order
identity matrix by deleting the m columns corresponding to K, X′Ω−1Ω∗

K = X′EK = X′
(K). Substituting

this in (3.3) simplifies the 3rd term on the right-hand-side to 2(X′Ω−1X)−1. Hence
V ar(DFBETAK) = (X′

(K)Ω
−1
(K)X(K))

−1 − (X′Ω−1X)−1.
The results can then be obtained as special choices of K. Pre- and post-multiplying with the corresponding
xit’s give the respective variances of DFFIT s. ∇
Remark : Propositions 3.1 to 3.4, involve the unknown variances σ2

µ and σ2
ν , which thus need to be estimated

and substituted before the DFBETAs can be computed. Averaging over the T observations on the ith

individual, model (2.1) can be written as

yi0 = x′
i0β + ui0, (3.4)

where the suffix 0 indicates the average over the corresponding index. Following Baltagi (2008) and defining
σ∗2 = Tσ2

µ + σ2
ν , the estimators can then be obtained as

σ̂∗2 =
T

n

n∑
i=1

u2
i0

and σ̂2
ν =

1

n(T − 1)

n∑
i=1

T∑
t=1

(uit − ui0)
2,

with σ̂2
µ = T−1(σ̂∗2 − σ̂2

ν).

4 Model with AR(1) error

An alternative error structure that is often used instead of (2.2) in panel data modelling is the autoregressive
errors of order one or AR(1),

uit = ρui(t−1) + ϵit, (4.1)
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where the ϵit’s are uncorrelated with E(ϵit) = 0 and E(ϵ2it) = σ2 ∀ i and t and |ρ| < 1.
The dispersion of Ω is then of the form Ω = In ⊗M, where

M =
σ2

(1− ρ2)


1 ρ ρ2 · · · ρT−1

ρ 1 ρ · · · ρT−2

...
. . .

...

ρT−1 ρT−2 ρT−3 · · · 1


.

Proposition 3.1 remains unchanged for this error structure except for V being replaced by M . As for the
other results, let a∗s = (1 + ρ2)−1/2(ρps+1 − ps), where p′

s is the kth row of the n× n non-singular matrix
P obtained from M−1 = P ′P , M being positive definite. Then Propositions 3.2, 3.3 and 3.4 hold with As

defined as As = In ⊗ a∗
′

s and θ replaced by one.
Here also the DFBETAs will depend on the unknown parameter ρ. A simple method to obtain an

estimate of ρ would be to ignore both the ((i − 1)T + t)th and ((i − 1)T + t + 1)th terms for all indices
(i, t) ∈ K and estimate ρ from the remaining observations. For a detailed discussion on this see Sen Roy and
Guria (2004).

5 Numerical Illustrations
In this section we illustrate our results through the Gross Investment data as used by Grunfeld (1958) and
Baltagi (2008). It is a 20 years data (1935-1954) on 10 U.S. firms, where annual real gross investment (y)
is the response and real value of the firm (shares outstanding) (x1) and real value of the capital stock (x2)
are explanatory variables. The model used is (2.1) with p = 3 (including the intercept). Initial simple
regressions for each of the firms separately revealed that there is variation in the intercept term. Since there
was no perceptible time effect, the one-way error structure (2.2) is assumed. All three types of influential
observations are then searched for.

Table 1 shows the DFBETA and DFFIT values when the units are deleted one at a time. Although
not so apparent from the DFBETA values, the DFFIT s clearly indicate that the 2nd and 3rd firms are
outliers.

Tables 2 and 3 give respectively the DFBETA and DFFIT values when each of the 20 time points are
deleted one at a time. However, the results show that all the time points give quite small values of both and
hence cannot be considered as outliers.

Table 4 shows the DFFIT values when each observation corresponding to each firm and every time
point is deleted (the corresponding DFBETAs are too numerous and hence are not shown). It is observed
that most of the observations corresponding to Firms 2 and 3 are large. Also the time points 19 and 20 are
large for most firms except 4, 6, 7 and 10, while the first firm has large values for time points 3, 4, 5, 6, 8 and
12.

Taking all of these into account it can be said that firms 2 and 3 are different from the other firms. The
first firm experienced some fluctuations in the initial years which later stablized. Also there is an indication
of change in the last two years, although this is not reflected in Tables 2 and 3 because it is yet to affect all
the firms.
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Figure 5. 1: DFFITS when individual points
7th and 77th are outliers
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Figure 5. 2: Cook’s-Distances when individual
points 7th and 77th are outliers
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Figure 5. 3: DFFITS when unit-5 is outlier
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lier
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Figure 5. 5: DFFITS when Time point-8 is
outlier
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Table 1: Showing DFBETA and DFFITS values when different firms are omitted

FIRM 1 2 3 4 5 6 7 8 9 10

Coeff DFBETA

β0 -35.3571 9.7088 -5.8883 3.7104 -4.0557 5.3188 -0.0839 -0.5232 -3.3611 9.0865

β1 -0.0025 0.0113 -0.0096 -0.0004 0.0065 -0.0009 0.0007 -0.0002 0.0018 -0.0019

β2 0.1575 -0.0114 -0.0148 -0.0019 -0.0332 -0.0035 -0.0042 -4.7E-05 -0.0057 -0.0071

TIME DFFITS

1 -1.7973 6.7415 -6.4156 1.0246 -2.2672 1.3608 -0.0949 -0.1925 -1.1354 1.9349

2 -1.0507 6.7489 -6.4181 0.9940 -2.3329 1.3601 -0.1116 -0.2157 -1.1451 1.9349

3 -0.5739 6.9006 -6.4267 1.0004 -2.4197 1.3593 -0.1276 -0.2327 -1.1490 1.9349

4 -0.4877 7.3218 -6.8727 1.0395 -2.5547 1.3585 -0.1548 -0.2223 -1.1666 1.9349

5 -0.4379 7.4114 -6.9491 1.0279 -2.6096 1.3575 -0.1808 -0.2203 -1.1670 1.9349

6 -0.4104 7.2479 -7.1004 1.0255 -2.6448 1.3572 -0.2051 -0.2291 -1.1819 1.9349

7 -0.2020 7.2386 -7.4940 1.0349 -2.6798 1.3566 -0.2296 -0.2241 -1.1906 1.9349

8 0.1674 7.3484 -8.0712 1.0490 -2.7323 1.3552 -0.2474 -0.2311 -1.2024 1.9349

9 -0.1431 7.3846 -8.1786 1.0354 -2.7555 1.3540 -0.2629 -0.2409 -1.2133 1.9349

10 -0.4437 7.3635 -8.2053 1.0250 -2.7998 1.3538 -0.2740 -0.2432 -1.2174 1.9349

11 -0.1682 7.1996 -8.0771 1.0115 -2.8264 1.3539 -0.2848 -0.2526 -1.2376 1.9349

12 0.3921 6.9674 -8.1243 1.0205 -2.8555 1.3532 -0.2929 -0.2530 -1.2306 1.9349

13 2.6791 7.3334 -8.3746 1.0481 -2.8791 1.3516 -0.3069 -0.2442 -1.2494 1.9349

14 3.6227 7.4525 -8.0620 1.0457 -2.8973 1.3501 -0.3154 -0.2560 -1.2628 1.9349

15 3.5670 7.5241 -7.4318 1.0678 -2.9191 1.3473 -0.3245 -0.2520 -1.2685 1.9349

16 3.7734 7.5326 -7.5559 1.0675 -2.9357 1.3434 -0.3362 -0.2552 -1.2714 1.9349

17 3.3140 7.4123 -7.7245 1.0763 -2.9499 1.3418 -0.3462 -0.2611 -1.2778 1.9349

18 3.8035 7.5771 -7.7845 1.1133 -2.9721 1.3385 -0.3541 -0.2780 -1.2875 1.9349

19 3.7775 7.4953 -7.7843 1.1164 -2.9920 1.3354 -0.3630 -0.3182 -1.3006 1.9349

20 4.6994 7.4333 -7.8145 1.1400 -3.0017 1.3286 -0.3741 -0.3324 -1.3112 1.9349
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Table 2: Showing DFBETA values when time points are omitted

TIME DFBETA

β0 β1 β2

1 6.72E-07 3.73E-10 -2.37E-09

2 1.24E-06 1.88E-09 -7.47E-09

3 8.64E-07 3.50E-09 -1.04E-08

4 6.51E-07 1.06E-10 -7.69E-10

5 4.28E-07 7.48E-10 -2.18E-09

6 7.43E-07 2.39E-09 -6.53E-09

7 1.12E-06 3.05E-09 -7.86E-09

8 1.32E-06 1.25E-09 -3.23E-09

9 9.57E-07 1.78E-09 -4.45E-09

10 1.07E-06 2.24E-09 -6.38E-09

11 6.98E-07 2.86E-09 -7.12E-09

12 6.15E-07 4.43E-09 -9.28E-09

13 8.38E-07 6.52E-10 3.30E-09

14 9.61E-07 -1.73E-10 6.76E-09

15 -7.39E-08 8.43E-12 8.34E-09

16 -6.47E-07 8.42E-11 1.13E-08

17 -2.41E-06 2.38E-09 1.35E-08

18 -4.80E-06 1.88E-09 2.65E-08

19 -1.43E-05 4.94E-09 5.41E-08

20 -1.94E-05 2.61E-10 9.05E-08
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Table 3: Showing DFFITS values when time points are omitted

FIRM 1 2 3 4 5 6 7 8 9 10

TIME DFFITs

1 0.0009 0.0008 0.0007 0.0007 0.0003 0.0007 0.0004 0.0007 0.0004 0.0007

2 0.0023 0.0024 0.0022 0.0022 0.0000 0.0016 0.0007 0.0021 0.0006 0.0015

3 0.0032 0.0032 0.0030 0.0030 -0.0012 0.0016 0.0002 0.0030 0.0002 0.0014

4 0.0007 0.0010 0.0007 0.0008 0.0006 0.0007 0.0007 0.0008 0.0007 0.0007

5 0.0012 0.0016 0.0012 0.0010 -0.0002 0.0007 0.0002 0.0009 0.0004 0.0006

6 0.0033 0.0037 0.0032 0.0025 -0.0015 0.0014 -0.0005 0.0025 0.0000 0.0012

7 0.0047 0.0051 0.0049 0.0033 -0.0016 0.0020 -0.0007 0.0032 0.0001 0.0017

8 0.0050 0.0047 0.0039 0.0021 0.0003 0.0019 0.0008 0.0025 0.0011 0.0018

9 0.0039 0.0044 0.0041 0.0024 -0.0009 0.0015 -0.0002 0.0025 0.0005 0.0014

10 0.0038 0.0048 0.0043 0.0031 -0.0017 0.0018 -0.0009 0.0029 0.0002 0.0016

11 0.0039 0.0047 0.0045 0.0034 -0.0023 0.0015 -0.0016 0.0032 -0.0006 0.0012

12 0.0064 0.0066 0.0068 0.0051 -0.0034 0.0024 -0.0024 0.0048 -0.0010 0.0013

13 0.0060 0.0056 0.0051 0.0025 0.0029 0.0023 0.0025 0.0026 0.0027 0.0013

14 0.0042 0.0050 0.0044 0.0028 0.0038 0.0028 0.0036 0.0030 0.0037 0.0015

15 0.0041 0.0044 0.0037 0.0019 0.0034 0.0019 0.0030 0.0018 0.0030 0.0000

16 0.0048 0.0051 0.0044 0.0022 0.0040 0.0023 0.0035 0.0017 0.0035 -0.0008

17 0.0072 0.0091 0.0066 0.0039 0.0046 0.0029 0.0036 0.0020 0.0038 -0.0029

18 0.0082 0.0092 0.0081 0.0049 0.0070 0.0032 0.0058 0.0015 0.0063 -0.0057

19 0.0121 0.0119 0.0122 0.0077 0.0108 0.0018 0.0083 0.0021 0.0090 -0.0135

20 0.0125 0.0122 0.0129 0.0089 0.0132 0.0034 0.0117 0.0005 0.0118 -0.0168

6 Concluding Remarks

In this paper we have studied the deletion diagnostics for panel data. Methods to deal with an outlier in a unit,
or at a particular time-point or for a particular unit at a particular time-point are derived. It is obvious that an
outlier in one of the three cases may not be an outlier in another case and hence the identification needs to be
done in the proper perspective. This has been illustrated through our example.

The error structure assumed in both the derivations and the illustrations is as in (2.2). This structure is
usually preferred when there is reason to believe that there is a unit effect as reflected by the changing inter-
cepts of the different units. However, if the panel data is thought to have additionally a time effect, then a
two-way error model of the form, uit = µi + λt + vit, needs to be applied.

Extension to the AR(1) error structure (4.1) has been discussed in Section 4. Such an error structure is
preferred when the response exhibits first order autocorrelation. These results can be extended to a general
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Table 4: Showing DFFITS values when a single time point corresponding to a particular firm is omitted

FIRM 1 2 3 4 5 6 7 8 9 10

TIME DFFITs

1 1.2315 2.2176 -0.7154 2.5626 3.1465 3.0014 2.7192 3.7005 0.8720 2.4903

2 -7.8844 10.0847 -7.2090 1.1645 3.6734 3.1895 1.5031 1.6398 0.2736 2.2395

3 -14.8923 9.4871 -11.1829 -0.4414 5.0540 2.7953 1.9118 0.0787 0.2756 2.3267

4 -5.8559 -2.4377 -8.8338 2.5084 2.4724 2.7564 1.9369 0.4800 -0.0677 2.5687

5 -13.6336 -8.8507 -10.6929 -0.3071 0.1926 1.5215 0.6676 0.4007 -0.7839 2.3338

6 -5.7553 2.9702 -8.0535 0.7397 0.1054 1.6858 0.8602 0.0819 -0.6035 2.2491

7 -1.7672 10.8122 -3.2049 1.3742 0.8806 3.1467 1.4994 2.7786 -0.1234 2.3834

8 5.2392 10.4471 -4.7018 1.8855 -2.3754 2.6870 0.0902 1.4330 0.1530 2.5352

9 1.8598 4.5048 -10.6247 0.1385 -0.0518 0.7088 0.3394 -0.4288 -1.7371 2.4462

10 4.0061 -0.3988 -10.5100 0.2725 -2.6147 0.7505 2.4359 -0.6367 0.5032 2.4804

11 -0.5776 -2.0349 -9.6442 1.5721 -2.5331 1.4643 -0.7964 -1.7988 -1.5721 2.4562

12 6.8041 11.8158 -5.8792 -1.0533 -3.9221 1.6723 -1.0310 -0.4493 -0.2772 2.5063

13 2.3456 13.9535 -4.1049 1.0083 -4.9020 1.3461 -1.1925 1.1716 -0.6873 2.6999

14 -2.3226 22.8354 -5.0459 2.0509 -4.0501 2.1550 -1.5254 -0.8905 -2.6905 2.8178

15 -6.4542 11.3410 -8.0524 1.2340 -5.1648 1.1758 -1.9222 -2.0387 -3.4512 2.5851

16 -1.2671 12.3591 -10.6249 1.8667 -6.7983 -0.5223 -3.2194 -2.5090 -2.5222 2.4958

17 -4.2802 21.3092 -9.8570 5.5988 -5.9516 0.9747 -2.0422 -1.0951 -2.3530 2.4586

18 1.1537 25.0638 -11.3688 2.3148 -6.6486 0.5007 -1.6677 -1.3593 -3.4419 2.6691

19 13.8365 17.5512 -13.3026 0.8957 -7.2683 1.9932 -2.0548 -3.7934 -4.2126 2.8011

20 22.3682 2.3989 -17.0622 1.7803 -8.3269 0.5505 -1.2773 -6.7147 -5.9036 2.6516
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autoregressive model of order p (AR(p)), or a moving average model of order q (MA(q)) or even an autore-
gressive moving average model of orders p and q (ARMA(p, q)), depending on the nature and lag of the
autocorrelations. A simulation study to validate the results can also be carried out in subsequent studies.
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